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Influence maximization problem(IMP)

A social network is the graph of relationships and interactions within a group of individuals that
plays a fundamental role as a medium for the spread of information, ideas, and influence among
its members. The Influence maximization problem asks, for a parameter k, to nd a k-node set
of maximum Influence. This problem has applications in viral marketing, where a company may
wish to spread the rumor of a new product via the most influential individuals in popular social
networks[I]. Given a network G=(V,E) and a model M of a diffusion process that take place on
G, the goal is to find K initial adopters who will lead to most number of adoptions.

For any subset A C V let 6(A) denote the expected number of individuals who have adopted the
”innovations” given that A is the initial set of adopters.

Input/Output: Input is a network G=(V,E)and a positive integer K and Output is a subset
ACV,|A|< K such that §(A) is maximized. To understand the hardness of the problem and to
come up with good algorithms for the problem, let us visit Maximum Coverage.

Maximum Coverage: Input: A ground set w ={ 1,2,....n} and a collection of subsets of
u: Cl, 02, veey Cm

Additionally a positive integer K.
Output:A sub collection {iy, 2, ..., 7} such that | U;?:l Cij | is maximum.
For any subset A C {1,2,...,m}, let

Coverage(A) =| U Ci |
i€A

Algorithm 1 Greedy Algorithm

A0

: Fori=1tokdo

: Pick j € {1,2,...,m} coverage (AU {j}) — coverage(A) is mazimum
c A+ AU {]}

return A
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Let Opt C {12,..,m} denote an optimal solution to maximum coverage.



Theorem: Let A be the solution returned by Greedy.
1
Coverage(A) > (1 — —)Coverage(Opt)
e

Proof: Let x; denote the number of new elements covered by the choice in iteration i.

(x; = Coverage(AU {j}) — Coverage(A)

Let y; denote the number of elements covered by the choice in iterations 1,2,...,1.
Let z; = coverage(Opt) — y;
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Figure 1: Coverage(Opt), zo = 0 yo = 0 29 = Coverage(opt)

Claim:
Ly
zi < (1— %) Coverage(Opt)
suppose this were true then :

1
yr = Coverage(Opt) — z, > Coverage(Opt) — (1 — E)kCOUerage(Opt)
Recall that e* > 1 + x for all real x.

yr > Coverage(Opt) — ((e_Tl)k).Coverage(Opt)
yp > (1 — é).C’overage(Opt)
Proof of Claim:
Induction Hypothesis:
zic1 < (1— %)i_lCoverage(Opt)

This is clearly true for i —1 = 0 (Base Case). Now observe that z; > “~% due to greedy choice.
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what might a similar greedy algorithm for IMP be?

Algorithm 2 Greedy Algorithm

A0

Fori=1tokdo

Pickv: 6(AU{v}) — 6(A) is mazimized
A+ AU {v}

return A

Models: Linear Threshold and Independent Cascade Model

The Linear Threshold and Independent Cascade Models [2] are two of the most basic and widely
studied diffusion models. Both the Linear Threshold and Independent Cascade Models involve
an initial set of active nodes Ay that start the diffusion process. We define the influence of a set
of nodes A, denoted 0(A), to be the expected number of active nodes at the end of the process,
given that A is this initial active set Ag. While in general it is computationally hard to find an
optimal set of initial adopters, the linear threshold and independent cascade models satisfy the
monotonicity and sub modular properties. The greedy strategy is to iteratively add (to whatever
nodes have already been selected) one new initial adopter to maximize the expected marginal gain.
The linear threshold model originally proposed by Granovetter [3]. this model is defined over a
graph representing a social network of potential adopters. There exists a subset of individuals



who have already adopted the innovation. Each member is assumed to adopt the innovation if the
fraction of her neighbors that have adopted is above a certain threshold. A node v is influenced
by each neighbor w according to a weight b, ,, such that:

> byw<1

weneighbors(v)

Figure 3: v is influenced by each neighbor w

For each node v there is a threshold 6, € [0,1] let A be the initial adopters. These nodes are
active, the rest are initially inactive. The diffusion process unfolds deterministically discrete steps.
In time step t all nodes that were active in time step t-1 remains active.In addition we activate any
inactive node v for which:

Z bv,w > 91}

we ActiveNeighbors(v)

where 6(A) is the number of nodes that become active.

A social network is represented as a directed graph, with each person (customer) as a node. Nodes
start either active or inactive. An active node may trigger activation of neighboring nodes. Ac-
cording to monotonicity assumption active nodes never deactivate. The proof of approximation
depends on:

i) Coverage is monotonic . i.e.

Coverage(AU{j}) > Coverage(A)

ii) Coverage is sub modular for any A B: A C B

Coverage(B U {j}) — Coverage(B) < Coverage(AU {j}) — Coverage(A)

For the Linear Threshold Model and Independent Cascade Model , ¢ is both monotonic and
sub modular.



Figure 4: Coverage is sub modular for any AB: AC B
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