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1 Barabasi-Albert Preferential Attachment Model

Last time we discussed the Preferential Attachment Model which we will refer to as BA(M).
Remember that there are a few key notions presented about this model:

e At ¢t =0, there is a single isolated node in the network called 0 (name refers to the time)

e At time ¢, node ¢ arrives and connects to older nodes via m edges.For each new edge t, 7,0 <
j <t—1, is picked with probability proportional to deg(j) (i.e. degree of node j just before
time step t)

Definition 1 Constant of Proportionality

We define this property as follows:
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Taking the above definition into consideration, for our purposes of analysis set m = 1. In this case,
just before time step t, there are t — 1 edges in the graph. Then the value of ¢ is simply:
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Continuing our train of thought, let n;; = expected number of nodes with degree k just before
time step t. Set up a recurrence for ny ;41 for k > 1.
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Nh—1¢- m represents the number of nodes entering which will be degree k while ny, ; - m
represents the number of nodes exiting due to being degree k + 1.

For k=1
+1 1
n =n -n :
1,t+1 1Lt 1,t+1 20 —1)

Now let py; denote the expected fraction of nodes with degree k. Then p;; = nlz’t.

For k > 1
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Now assume as t — 00, pi; sequence converges. We will denote tlim Pkt = Dk
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Simplifying the above gives us:
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By using the same convergence assumption for the k£ = 1 recurrence, we get p; = %
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Therefore py =

2 Variant of Barabasi-Albert Model

The variant model has a few aspects that are different from the BA(m). When a new node arrives,
it does (a) with probability p and (b) with probability (1 —p). Instead of using the other end point
with a probability, this model does:

(a) Pick the other end point j of its edge with uniform probability
(b) Pick the other end pint j of its edge with probability proportional to deg;(j)
Similar to the previous model, we can write the same type of recurrences.

For k > 1
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Using fractions py ; instead of expected sizes ny; we get:
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The power law exponent is given by:
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Problem: Look at Easley-Kleinberg chp 18, Appendix for a different analysis:
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There are many features of networks that are modelled that we have not considered:
—Community Structure
—Assortativity: Tendency of nodes of certain types to have more edges between them
More information these features can be found in Newman’s paper.

There the power law exponent = 1 +
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