22C:196 Homework 2
Due: Tuesday, 10/17

Notes: (a) Computer Science Ph.D. students are required to solve Problems 3-7. The rest of the
students are required to solve the first 5 problems. The problem numbers refer to problems in the
textbook, by Mitzenmacher and Upfal. (b) It is possible that solutions to some of these problems
are available to you via other textbooks, on-line lecture notes, etc. If you use any such sources,
please acknowledge these in your homework and present your solutions in your own words. You will
benefit most from the homework, if you sincerely attempt each problem on your own first, before
seeking other sources. (¢) As mentioned in the syllabus, it is not okay to discuss these problems
with your classmates. But, you are welcome to come and chat with me about the problems. (d)
Students who are not Computer Science Ph.D. students will receive extra credit for submitting
correct solutions to any non-empty subset of Problems 6-7.

1. Suppose we roll a standard die 1000 times. Let X denote the sum of the numbers that
appeared over the 1000 rolls. Use Chebyshev’s inequality to upper bound Pr(X > 5000).

2. In an election with two candidates using paper ballots, each vote is independently misrecorded
with probability p = 0.02. Use a Chernoff bound to give an upper bound on the probability
that more than 4% of the votes are misrecorded in an election of 1,000,000 ballots.

3. A fized point of a permutation m : [1,n] — [1,n] is a value for which 7(z) = z. Find the
variance in the number of fixed points of a permutation chosen uniformly at random from all
permutations.

Hint: Let X; = 1 if n(i) = 4, so that X = Y"1 ; X is the number of fixed points. Calculate
E[X;] and E[X;- X/] in order to calculate E[X] and E[X?] and use this to calculate Var(X).

4. This problem is on the median finding algorithm that uses random sampling. This algorithm
and its analysis appear in Section 3.4 in the textbook and all of this was discussed in class.

(a) In the analysis of this algorithm, Chebyshev’s inequality was used to derive the ﬁ

upper bound on the probability that the algorithm will fail to yield a median. Instead,
could we use Chernoff bounds to derive a sharper upper bound on the failure probabil-
ity? In particular, could we use Chernoff bounds to show that the algorithm fails with
probability at most 1/n? For your answer, you can either show how to obtain the 1/n
upper bound on the failure probability via Chernoff bounds or explain why Chernoff
bounds cannot be applied in this setting or do not yield the desired bound even when
used.

(b) In this algorithm we used a sample R of size n3/4. Suppose we use a much smaller

sample of size O(logn). With other appropriate changes to the algorithm (e.g., in the
definitions of d and u) could we design an algorithm that runs in O(n) time with failure
probability bounded above by 1/n¢ for a constant ¢ > 0?7 Your answer should either be
a restatement of the algorithm (with appropriate changes to parameter values) followed
by a modified analysis or an explanation of why a sample size of O(logn) is too small.

5. There is a simple randomized median finding algorithm, that is very similar to the randomized
quicksort algorithm discussed in class. Here is an informal description of this algorithm.



Suppose we want to find an element of rank & in the given set S (of n distinct elements).
We pick a pivot y € S uniformly at random and construct subsets S = {u € S | u < y} and
Sy ={v €S |v>y} Ifyhasrank k, we are done. Otherwise, we recurse on one of Sy or
So looking for an element of appropriate rank. State this algorithm precisely and show that
the expected running time of this algorithm is O(n).

Hint: Start by showing that the expected number of recursive calls that it takes for the
problem size to shrink from n to 2n/3 is O(1). Then account for the total (expected) number
of comparisons made by recursive calls whose input has more than 2n/3 elements. Repeat
this for size thresholds (2/3)%n, (2/3)n, etc., to obtain a full accounting of all the work done.

. Problem 3.22.

. The following problem models a simple distributed system wherein “agents” contend for
resources but “backoff” in the face of contention. This is a situation that arises in wireless
networks when wireless nodes contend for access to the wireless medium to send messages.

The system evolves in round. Every round, balls are thrown independently and uniformly
at random into n bins. Any ball that lands in a bin by itself is served and removed from
consideration. The remaining balls are all thrown again in the next round. We begin with n
balls in the first round and we finish when every ball is served.

(a) If there are b balls at the start of a round, what is the expected number of balls at the
start of the next round?

(b) Let x; be the number of balls left after j rounds. Show that x;;1 < sz/n Use this to
argue that if in every round the number of balls served was ezactly the expected number
of balls to be served, then all balls would be served in O(loglogn) rounds.




