
M A R C H 2 7 , 2 0 1 5

Programming Problem:
Finding the principal characters of a literary text

Programming Problem

Write a program that reads a literary text (e.g., “War
and Peace” or “The Illiad”) and does simple text
analysis to figure out the principal characters of the
novel.

For example, when I ran my program on “The Illiad”
the most frequent characters were:

(563, 'Trojans'), (548, 'Achaeans'), (447, 'Jove'),
(421, 'Hector'), (383, 'Achilles'), (183, 'Agamemnon'),
(178, 'Priam'), (160, 'Patroclus'), (146, 'Minerva'), (137, 'Ajax’)

Motivation

Solving this problem will provide additional
illustration of new Python features we have learned:

�  Slices of lists and strings

�  String operations (e.g., split, join, etc.)

�  List comprehensions

Main Idea

�  Since character names are proper nouns, starting with
upper case letters, the idea is to look for words starting
with upper case letters that do not appear at the
beginning of sentences.

�  So the program will partition the text into sentences,

assuming that ".", "!", and "?” are all the possible
sentence delimiters.

�  Then it counts the frequency of the proper nouns and

reports the most frequent of these. We only keep names
that are at least 4 letters long.

Takes a string as parameter and "splits" it into "sentences."
We assume that ".", "!", and "?" are sentence delimiters

def parseSentences(bigString):
 return bigString.replace("!", ".").replace("?", ".").split(".")

�  bigString is indeed a big string, representing the entire file.

�  This function returns a list – each element in the list is a
string representing a sentence.

Function parseSentences

Next task: split sentences into word sequences

�  We have solved this problem earlier and written a
function called “parse” for it.

�  That algorithm examined the string character-by-
character and pulled out contiguous sequences of
letters.

�  Now we will use a different algorithm to solve this
problem.

Algorithmic Idea

1.  Replace every non-letter in each sentence by space.

2.  Then split on spaces.

�  Question: How do we specify all non-letter
characters?

Function replaceNonLetters

Replaces all non-letters in a given string s by space
def replaceNonLetters(s):
 # Make a list of all non-letters. Note the use of the list comprehension here
 nonLetters = [x for x in s if not x.isalpha()]

 # Replaces each nonletter character in s by space
 for char in nonLetters:
 s = s.replace(char, " ")

 return s

Function replaceNonLetters: Alternate version

def nonLetterToSpace(ch):
 if ch.isalpha():
 return ch
 else:
 return " "

def replaceNonLetters(s):
 return "".join([nonLetterToSpace(x) for x in s])

�  Note the use of a join in conjunction with a list
comprehension.

Function parseWords

Takes a list of sentences and parses each sentence in this list into a list of words.
So the result is a list of lists, e.g., [["This", "is", "ok"], ["This", "is", "not"]].
We use the same definition of a word as before. It is a contiguous sequence of
letters.

def parseWords(sentenceList):

 # Once non-letters have been replaced by spaces then a simple split() using
 # blank as the delimiter will help us get all the words. Note that this
 # constructs a nested list of words for each sentence.

 return [replaceNonLetters(x).split() for x in sentenceList]

Part 1 of the main program

main program
f = open("illiad.txt", "r")
bigString = f.read()
sentenceList = parseSentences(bigString)
nestedWordList = parseWords(sentenceList)

�  This produces a list of word lists from the file, where each

word list corresponds to words in a sentence.

�  Example: [["This", "is", "ok"], ["This", "is", "not"]]

Part 2 of the main program

This block of code creates a new nested list of word lists with the
the first word in each sentence deleted. Then this nested list of word
lists is flattened into a list of words. Finally, from this list we pick words
that start with an upper case letter and have length at least 4 and create
a new list.

We then use computeFrequencies (remember, from HW4) to produce a list
of unique words and their frequencies.

nestedWordList = [x[1:] for x in nestedWordList]
wordList = [y for x in nestedWordList for y in x]
characterNames = [x for x in wordList if x[0].isupper() and len(x) > 3]

[masterList, frequencies] = computeFrequencies(characterNames)

Part 3 of the main program

zips the frequencies and words together and sorts the zipped list in descending
order of frequencies.
combinedList = [[frequencies[i], masterList[i]] for i in range(len(masterList))]
combinedList.sort(reverse = True)

Prints the 30 most frequent character names
print(combinedList[:30])

�  Note that combinedList is a list of ordered pairs, each
ordered pair being a list with a frequency followed by a
word. This is because we are sorting (in non-increasing
order) of frequency.

