
J A N 2 8 , 2 0 1 5

Improving our first program

Our first program

 n = int(input("Enter a positive integer:"))
 while n > 0:

 print(n % 2)
 n = n // 2

Revisiting while-loops

 Line 1
 while boolean expression:
 Line 2
 Line 3
 Line 4

�  while-loops affect the flow of the program, i.e., the order in which

program statements are executed.

�  For the above example the flow of the program is:

Line 1, bool expr (True), Line 2, Line 3, bool expr (True), Line 2, Line 3, bool expr (False), Line 4

Body of while loop

�  Lines 2 and 3 form the body of the while loop

�  Python uses indentation to identify the lines

following the while statement that constitute the
body of the while loop.

Our first program

 n = int(input("Enter a positive integer:"))
 while n > 0:

 print(n % 2)
 n = n // 2

�  Suppose n has value 35 initially.
�  Then the sequence of values that n takes on is:

 35, 17, 8, 4, 2, 1, 0.

�  When the value of n becomes 0, then the boolean
expression in the while-statement becomes false and the
while-loop ends.

while-loops example 2: Counting up

n = int(input("Please type a positive integer: "))

count = 0 # Initialization. It is easy to forget this.
while count < n:
 print(count)
 count = count + 1

print("Done”)

�  What is the output if the user types 10 in response to the

prompt?

while-loops example 3: Counting down

n = int(input("Please type a positive integer: "))

while n > 0:
 print(n)
 n = n - 1

print("Done”)

�  What is the output if the user types 10 in response to the

prompt?

while-loops example 4: Accumulating a sum

n = int(input("Please type a positive integer: "))

total = 0 # Initially the total has value 0
while n > 0:
 total = total + n
 n = n - 1

print(total)

�  What is the output if the user types 10 in response to the

prompt?

while-loops example 4: Accumulating a product

n = int(input("Please type a positive integer: "))

product = 1 # Initially the product has value 1
while n > 0:
 product = product * n
 n = n - 1

print(product)

�  What is the output if the user types 10 in response to the

prompt?

Improving the output

�  The current program generates bits one by one in the
wrong order!

�  How can we put together the bits we generate, in the
correct order, to construct the binary equivalent?

�  String concatenation!
 Expression Value
 “0” + “1001” “01001”
 “1” + “1001” “11001”

Algorithmic idea

�  After i iterations of the while loop we have generated
the right most i bits of our answer.

�  Call this the length-i suffix.

�  We want to maintain a string that grows as:

 Length-0

suffix
Length-1

suffix
Length-2

suffix

Example

�  Input is 39.

 Output Suffix
 1 “”
 1 “1”
 1 “11”
 0 “111”
 0 “0111”
 1 “00111”
 “100111”

Improved program

 n = int(input("Enter a positive integer:"))
 suffix = “”
 while n > 0:
 suffix = str(n % 2) + suffix
 n = n // 2
 print(suffix)

Further improvement

�  Now suppose that we want a more informative output message:
 The binary equivalent of 39 is 100111

�  Will this work?

 n = int(input("Enter a positive integer:"))
 suffix = “”
 while n > 0:
 suffix = str(n % 2) + suffix
 n = n // 2
 print(“The binary equivalent of ”, n, “ is “, suffix)

Here is what works

 n = int(input("Enter a positive integer:"))
 suffix = ""
 originalN = n
 while n > 0:
 suffix = str(n % 2) + suffix
 n = n // 2
 print("The binary equivalent of", originalN, "is", suffix)

