
M A R C H 5 T H , 2 0 1 4

Another Example with Lists:
Selection Sort

Sorting

�  Sorting and searching are the two most commonly
performed operations by computer programs.

�  You might have seen sorting in the context of
spreadsheets, where we want to sort by a certain
column.

�  Sorting occurs commonly in more complicated
contexts as well – graphics programs might maintain
collections of polygons in 3-dimensional space in
“sorted” order so as to render scenes efficiently.

Sorting Algorithms

�  Since sorting is such a common operations, there are many known
sorting algorithms.

 (Quick sort, Merge sort, Heap sort, Selection sort, Insertion sort,
 Bubble sort, Shell sort,…)

�  Today we will study the selection sort algorithm.

�  This will serve three purposes:
¡  Provide an introduction to a fundamental computational task
¡  Provide more clues to Homework 3.
¡  Show that lists are different from all other data types we have seen thus far due to a property

called mutability. We will focus on this issue in the next lecture.

�  It is worth pointing out that selection sort is terribly inefficient and you
should not use it in general. We’ll also study some of the more efficient
sorting algorithms – merge sort and quick sort, later.

The Selection Sort Algorithm

�  L is the list we want to sort. Let n = len(L).
�  In iteration 1,

¡  we find a smallest element in L[0..n-1] (i.e., the entire list) and
“swap” it with the first element (L[0]) in L.

¡  Thus after iteration 1, L[0] has its final value. We can now
work on L[1..n-1].

�  In iteration 2,
¡  we find a smallest element in L[1..n-1] and “swap” it with the

second element (L[1]) in L.
¡  Thus after iteration 2, L[0..1] has its final values.

The Selection Sort Algorithm (continued)

�  Thus after i iterations, the prefix of the list L[0..i-1]
has its final value.

�  In iteration i+1,
¡  we find a smallest element in L[i..n-1] and “swap” it with L[i].
¡  Thus after iteration i+1, L[0..i] has its final value.

�  We will be done after n-1 iterations.

The function selectionSort

def selectionSort(L):
 n = len(L)
 index = 0

 while index < n-1:
 # Finds the index of a smallest element in the range L[index..n-1]
 m = minIndex(L, index)

 # Bring this smallest element to the "front" by swapping L[m] and
 # L[index]
 swap(L, index, m)

 index = index + 1

The function minIndex

Finds and returns the index of a smallest element in the range L[lowerBound..len(L)-1]
def minIndex(L, lowerBound):
 # Initializations: we assume that the first elemnt in L[lowerBound..len(L)-1]
 # is smallest.
 minElement = L[lowerBound]
 indexOfMin = lowerBound

 # We then process the rest of the range starting from L[lowerBound+1]
 index = lowerBound + 1
 while index < len(L):
 if L[index] < minElement:
 minElement = L[index]
 indexOfMin = index

 index = index + 1

 return indexOfMin

The function swap

Exchanges the elements indexed i and j in list L
def swap(L, i, j):
 temp = L[i]
 L[i] = L[j]
 L[j] = temp

A few remarks about the code

�  Note that the function swap does not return
anything.

�  It communicates with selectionSort by modifying
the list L in-place and having this effect be felt
“outside.”

�  This type of communication between functions is
possible because lists are mutable.

Timing Selection Sort

�  It is easy to time selectionSort using the time
module.

�  Checkout timeSelectionSort.py on the course page.

�  We generated random length-n lists for n = 1000,
2000,…, 10000.

�  For each n, we generated 100 such lists and averaged
the running time of selection sort over 100 runs.

Timing Selection Sort

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

Series1

•  X-axis shows length of the list, in units of 1000.
•  Y-axis shows average time (over 100 replicates) in seconds.

