
J A N 2 9 T H 2 0 1 4

Understanding our first
program

Our first program

 n = int(raw_input("Enter a positive integer:"))
 while n > 0:

 print n % 2
 n = n/2

Last slide on the first line

n = int(raw_input("Enter a positive integer:"))

1.  raw_input prints the prompt, reads a line of the

user’s input, and returns what is read as a string.

2.  This string gets converted to an integer by the
function int.

3.  This integer gets assigned to the variable n.

On while-loops

 Line 1
 while boolean expression:
 Line 2
 Line 3
 Line 4

�  while-loops affect the flow of the program, i.e., the order in which

program statements are executed.

�  For the above example the flow of the program is:

Line 1, bool expr (True), Line 2, Line 3, bool expr (True), Line 2, Line 3, bool expr (False), Line 4

Body of while loop

�  Lines 2 and 3 form the body of the while loop

�  Python uses indentation to identify the lines

following the while statement that constitute the
body of the while loop.

Our first program

 n = int(raw_input("Enter a positive integer:"))
 while n > 0:

 print n % 2
 n = n/2

�  Suppose n has value 35 initially.
�  Then the sequence of values that n takes on is:

 35, 17, 8, 4, 2, 1, 0.

�  When the value of n becomes 0, then the boolean
expression in the while-statement becomes false and the
while-loop ends.

while-loops: Example 2

n = int(raw_input("Please type a positive integer: "))

count = 0
while count < n:
 print count
 count = count + 1

print "Done”

�  What is the output if the user types 10 in response to the

prompt?

while-loops: Example 3

n = int(raw_input("Please type a positive integer: "))

while n > 0:
 print n
 n = n - 1

print "Done”

�  What is the output if the user types 10 in response to the

prompt?

Boolean expressions

�  Python has a type called bool

�  The constants in this type are True and False.
 (Not true and false!)

�  The comparison operators:

 < > <= >= != ==
 can be used to construct boolean expressions, i.e.,
expressions that evaluate to True or False.

Boolean expressions: examples

�  Suppose x has the value 10

 Expression Value Type

 x < 10 False bool
 x != 100 True bool
 x <= 10 True bool
 x > -10 True bool
 x >= 11 False bool

Boolean expressions: more examples

�  (12/5) < (12/5.0)

�  “100” != 100

�  “hello” <= “best”

�  int(150.0) == (15 * 10)

Revisiting our program

 n = int(raw_input("Enter a positive integer:"))
 while n > 0:

 print n % 2
 n = n/2

�  The boolean expression is True when n is positive and is False when n

is less than or equal to 0.

�  n % 2 evaluates to 1 when n is odd and to 0 when n is even.

�  n/2 equals n/2 when n is even and it equals (n-1)/2 when n is odd.

�  Example: Suppose n is initially 25. Then n takes on the values (in this
order): 25, 12, 6, 3, 1, 0. When n becomes 0, the program exits the
while-loop.

Improving the output

�  How can we put together the bits we generate, in the
correct order, to construct the binary equivalent?

�  String concatenation!
 Expression Value
 “0” + “1001” “01001”
 “1” + “1001” “11001”

Algorithmic idea

�  After i iterations of the while loop we have generated
the right most i bits of our answer.

�  Call this the length-i suffix.

�  We want to maintain a string that grows as:

 Length-0

suffix
Length-1

suffix
Length-2

suffix

Example

�  Input is 39.

 Output Suffix
 1 “”
 1 “1”
 1 “11”
 0 “111”
 0 “0111”
 1 “00111”
 “100111”

Improved program

 n = int(raw_input("Enter a positive integer:"))
 suffix = “”
 while n > 0:
 suffix = str(n % 2) + suffix
 n = n/2
 print suffix

Further improvement

�  Now suppose that we want a more informative output message:
 The binary equivalent of 39 is 100111

�  Will this work?

 n = int(raw_input("Enter a positive integer:"))
 suffix = “”
 while n > 0:
 suffix = str(n % 2) + suffix
 n = n/2
 print “The binary equivalent of ”, n, “ is “, suffix

Here is what works

 n = int(raw_input("Enter a positive integer:"))
 suffix = ""
 originalN = n
 while n > 0:
 suffix = str(n%2) + suffix
 n = n/2
 print "The binary equivalent of", originalN, "is", suffix

