
J A N 2 4 T H 2 0 1 4

Our First Programming
Problem

Problem: Converting decimal numbers to binary

�  Given a non-negative integer, convert it into its
binary equivalent.

� Example:
¡  Input: 123 Output: 1111011
¡  Input: 1363 Output: 10101010011
¡  Input: 12 Output: 1100

Plan of Action

1.  Understand the problem. What does “binary equivalent”
mean?

2.  Design an algorithm for the problem. How would we solve
the problem with a pencil and paper?

3.  Write down pseudocode for the algorithm.

4.  Translate the pseudocode into Python code.

5.  Think about correctness and test.

6.  Think about efficiency. Is the algorithm too slow?

This example will illustrate…

�  Constants
�  Variables
�  Operators
�  Data types
�  Expressions
�  Function calls
�  Input statements
�  Output statements
�  Control flow statements

Decimal numbers revisited

Consider the decimal number 8,374.

Digits 8 3 7 4
Place value 1000 100 10 1

Therefore, the “value” of this number is

 8 x 1000 + 3 x 100 + 7 x 10 + 4 x 1

What are binary numbers?

Similarly, consider the binary number 10110110.

Bits: 1 0 1 1 0 1 1 0
Place values: 128 64 32 16 8 4 2 1

Just like the place values for decimal numbers are powers of
10, the place values for binary numbers are powers of 2.

Therefore, the “value” of this number is

 128 + 32 + 16 + 4 + 2 = 182

Table of Binary Equivalents

 Decimal Binary
 0 0
 1 1
 2 10
 3 11
 4 100
 5 101
 6 110
 7 111
 8 1000
 9 1001
 10 1010
 11 1011
 12 1100
 13 1101
 14 1110

Two observations based on this table

Observation 1:
If n is even, then its binary equivalent ends with a 0;
otherwise, if n is odd, its binary equivalent ends with 1.

(Can you prove this?)

Two observations based on the table

Observation 2:
Suppose that the binary equivalent of n is

 bk … b2 b1 b0.
If n is even, then the binary equivalent of n/2 is

 bk … b2 b1
and if n is odd, then the binary equivalent of (n-1)/2 is

 bk … b2 b1.

(Can you prove this?)

This suggests an algorithm

1.  Check if the given number n is odd or even.

2.  If n is even, we know that its binary equivalent
ends with 0. Furthermore, to get the rest of n’s
binary equivalent, we need to “process” n/2.

3.  If n is odd, we know that the binary equivalent ends
with 1. Furthermore, to get the rest of n’s binary
equivalent, we need to “process” (n-1)/2.

What is an algorithm?

�  An algorithm is a step-by-step procedure to complete a task.

�  Examples of algorithms:

¡  A recipe for baking muffins,
¡  The output produced by Google maps when you ask for directions from

Iowa City to Santa Fe,
¡  The procedure for computing the binary equivalent of a decimal integer

described in the previous slide.

�  The oldest example of a computational algorithm: the 2300-year
old Euclid’s algorithm for computing the greatest common
divisor.

�  Your digital life depends on algorithms: web search algorithms,
cryptography algorithms, data compression algorithms, etc.

Ilustration of our algorithm

Let the given input be n = 203.

1. n = 203 is odd. So rightmost bit is 1.
To get the rest of the answer we should “process” (n-1)/2 = 101.
2. n = 101 is odd. So the rightmost bit is 1.
To get the rest of the answer we should “process” (n-1)/2 = 50
3. n = 50 is even. So the rightmost bit is 0.
To get the rest of the answer we should “process” n/2 = 25.
4. n = 25 is odd. So the rightmost bit is 1.
To get the rest of the answer we should “process” (n-1)/2 = 12.
5. n = 12 is even. So the rightmost bit is 0.
To get the rest of the answer we should “process” n/2 =6.
6. n = 6 is even. So the rightmost bit is 0.
To get the rest of the answer we should “process” n/2 =3.
7. n = 3 is odd. So the rightmost bit is 1.
To get the rest of the answer we should “process” (n-1)/2 = 1.
8. n = 1 is odd. So the rightmost bit is 1.
To get the rest of the answer we should “process” (n-1)/2 = 0.

So the output (right to left) is 1 1 0 1 0 0 1 1.

Pseudocode

1.  Read the number n given as input.
2.  If n is even, output 0. Replace n by n/2.
3.  If n is odd, output 1. Replace n by (n-1)/2.
4.  If n is 0, stop. Otherwise go to Line 2.

Note that this algorithm produces the binary
equivalent of n in “right to left order.”

What is pseudocode?

�  Pseudocode is a “language” used to describe
algorithms.

�  It is not as precise as actual programming language
code.

�  But it is precise enough that we can reason about
correctness and efficiency of the algorithm.

Our first program

 n = int(raw_input("Enter a positive integer:"))
 while n > 0:

 print n % 2
 n = n/2

