
CS:1210 (22C:16) Homework 2
Due via ICON on Thursday, Feb 27th, 4:59 pm

What to submit: Your submission for this homework will consist of three text files, named
hw2a.py, hw2b.py, and hw2c.py. These should contain Python programs for Problems (a), (b),
and (c) respectively. These files should each start with with a comment block containing your
name, section number, and student ID. You will get no credit for this homework if your files
are named differently, have a different format (e.g., docx), and if your files are missing your
information. For this homework (and all future homeworks), make sure that your program is
carefully documented and variables names are chosen with care.

(a) One way to speedup our implementation of primality testing is the following. Suppose
that n (a positive integer) is the input that we want to check for being a prime. Let us
assume that we have already tested if 2 and 3 are factors of n and suppose that neither
of these are factors of n. It turns out that the rest of the candidate factors the program
needs to consider have the form 6k ± 1 for k = 2, 3, . . . (i.e., one less than a multiple of 6
and one more than a multiple of 6). In other words, the program need not consider any
factors besides 5, 7, 11, 13, 17, 19, 23, 25, etc. Thus a more efficient algorithm would only
consider these candidate factors, skipping over the rest. The reason for why this works
is quite straightforward and I’ll let you read about this at Wikipedia’s page on primality
testing (see http://en.wikipedia.org/wiki/Primality_test). In fact this Wikipedia
page also provides a nice Python implementation of this faster algorithm.

For this problem, you are asked to implement a program that compares the running time
of the “naive” algorithm that we developed in class (see primalityTesting3.py on the
course page) with the faster primality testing algorithm, mentioned above. Your program
should start by reading a positive integer N , specifying the number of integers the program
is expected to test for primality. Then the program reads N positive integers that it is
going to test for primality using both algorithms (i.e., the “naive” algorithm and the
faster algorithm). The program then runs the “naive” algorithm on each of the N input
integers and outputs the average running time. Following this, the program runs the faster
algorithm on each of the N integers and outputs the average running time.

(b) Generating random input data is a problem that computer scientists (and many others)
think about because it provides an easily repeatable way of testing programs and algo-
rithms against data that might model real world features. Here is a simple programming
problem that asks you to generate a random sequence according to a prescribed probability
distribution.

Write a program that reads a positive integer N and outputs a random sequence of N
integers in the range [1, 100] such that each integer x in the sequence is generated according
to the following probability distribution. First, a sub-range is chosen for x, with sub-range
[1, 25] chosen with probability 1/8, the sub-range [26, 50] with probability 1/2, the sub-
range [51, 75] with probability 1/4, and the sub-range [76, 100] with probability 1/8. Once
a sub-range for x has been chosen (e.g., [1, 25]) then a value for x is picked uniformly
at random from that sub-range (i.e., each value in the sub-range is equally likely to be
chosen).

Take a look at the random module to find functions useful for this task. The interaction
between the user and your program should look like:

10

4

78

1



37

44

6

91

30

84

90

57

In this example, the user starts by inputting 10, the size of the sequence she wants. In re-
sponse your program generates the sequence 4, 78, 37, etc. Of course, since this is a random
sequence, your program will almost surely generate some other output and furthermore
each time it is run, it will generate a different output.

(c) The input is a sequence of non-empty strings terminated by an empty string. After reading
this sequence, your program should output the longest string and the second-longest string.
For example, the interaction between your program and the user might look like this:

hello

ok

secondary

mammoth

estimate

density

LONGEST: secondary

NEXT LONGEST: estimate

In this example, the user inputs the strings "hello", "ok", etc., followed by the empty
string. Your program outputs the longest string and the second-longest string. In general,
if there are two or more longest strings, it does not matter what your program outputs.
Similarly, if there are several second-longest strings, it does matter what your program
outputs.

Here is a simple algorithm that can perform this task. Suppose that after processing some
number of strings you have figured out (i) the longest string and its length and (ii) the
second-longest string and its length. Now your program reads the next string and there
are three possibilities:

(a) The new string is longer than the longest string. In this case, the new string becomes
the longest string and the longest string gets demoted to being the second-longest
string.

(b) The new string is not longer than the longest string, but is longer than the second-
longest string. In this case, the new string becomes the second-longest string.

(c) The new string is not longer than the second-longest string. In this case, your program
need not make any updates.

You should implement this algorithm for your program.

2


