
M A R C H  7 T H

List and Strings



Problem 

 A positive integer n is perfect if the sum of its factors 
(excluding itself) is equal to n.

Example: 6 is perfect because 1 + 2 + 3 = 6.

 Write a program that finds all perfect numbers 
between 1 and 10,000.



Operations that work on strings and lists

1. x in s, x not in s

2. s + t, s*n, n*s

3. s[i], s[i:j], s[i:j:k]

4. len(s), min(s), max(s)

5. s.index(i), s.count(i)



Accessing parts of lists and strings

“hi” 10 “bye” 100 -20 123 176 3.45 1 “it”

L = [“hi”, 10, “bye”, 100, -20, 123, 176, 3.45, 1, “it”]

0               1              2            3              4             5            6              7           8           9

• L[2:5] is [“bye”, 100, -20]
• L[:2] is [“hi”, 10]
• L[4:4] is []
• L[4] = -20
• L[:len(L):2] = [“hi”, “bye”, -20, 176, 1]
• L[2:5][1] = 100
• L[1:5][:2] = [10, “bye”]



The len, min, and max functions

 len(s) is the length of s (which may be a string or a 
list)

 min(s) (max(s)) is the smallest (largest) element in s
 If s is a list of numbers (integers and floats) these functions 

return the smallest (largest) number

 If s is a list of strings, these functions return the 
lexicographically smallest (largest) string

 If s is a string, these functions return the lexicographically 
smallest (largest) character in the string

 If s is a list that contains a mixture of numeric and non-
numeric objects, then the result is not specified by the 
language and you should not rely on such a result.



The “search” functions 

 s.index(i) returns the index of the first occurrence of i in s
 s.count(i) returns the number of occurrences of i in s

>>> L = [1, 3, 6] * 4
>>> L
[1, 3, 6, 1, 3, 6, 1, 3, 6, 1, 3, 6]
>>> L.index(3)
1
>>> L.count(3)
4
>>> L.index(0)
Traceback (most recent call last):
File "<string>", line 1, in <fragment>

ValueError: 0 is not in list
>>> L.count(0)
0



Useful string operations

1. str.find(s)

2. str.isalnum(), str.isalpha(), str.isdigit(), 
str.islower(), str.isupper(), etc.

3. str.upper(), str.lower()

4. str.split()

5. str.replace(old, new)



The find function

>>> s = "hello, how are you?"

>>> s.find("how")

7

>>> s.find("e")

1

>>> s.find("how", 2, 9)

-1

>>> s.find("how", 2, 10)

7



The split function

 s.split() returns a list obtained by splitting s into 

substrings obtained by deleting whitespaces.

Example: 

>>> s

'hello, how are you?'

>>> s.split()

['hello,', 'how', 'are', 'you?']



The replace function 

 s.replace(old, new) returns a string obtained by 
replacing all occurrences of the old string by the new 
string

Example:

>>> s
'hello, how are you?'
>>> s.replace(",", " ")
'hello  how are you?„
>>> s.replace("how", "who")
'hello, who are you?'



Problem

Write a program that builds a dictionary of words by 
processing a given text. 

 Definition of a word: Any contiguous sequence of 
characters that 

 starts at the beginning of a line or is immediately preceded by 
a whitespace or punctuation mark and 

 ends at the end of a line or is immediately followed by a 
whitespace or punctuation mark.


