
M A R C H 2 3

Operations that modify Lists in
Place

Lists and strings also have important differences

 In Python some data types are mutable, i.e., they can be modified in
place.

 Of the data types we have seen so far, e.g., int, long, float, bool, str,
and list, only list is mutable.

Example:
>>> L = [3, 4, 5]
>>> type(L)
<type 'list'>
>>> L[0] = 8
>>> L
[8, 4, 5]

>>> s = "hello"
>>> type(s)
<type 'str'>
>>> s[0]
'h'
>>> s[0] = "t"
Traceback (most recent call last):
File "<string>", line 1, in <fragment>

TypeError: 'str' object does not support item assignment

By doing an assignment to L[0], we have replaced
the first element in the list L.

We can examine elements in the string s in a similar
manner, but we cannot assign anything to s[0]

More examples

Example:
>>> id(L)

12494888

>>> L[0] = 11

>>> id(L)

12494888

>>> n = 10

>>> id(n)

10022540

>>> n = 12

>>> id(n)

10022516

Recall that we said the id function when applied to a
variable name, returns the location pointed to by that
variable. Notice how the location of L does not change as
a result of replacing the first element by something else.

An assignment to an int variable does not modify the
variable “in place.” The variable ends up pointing to
another location.

List operations that modify a list “in place”

Replacing single elements or slices of lists

 L[0] = 10,

 L[3:5] = [10, 12],

 L[3:10:2] = [12,14,16, 18]

Deleting a list or its parts

 del L

 del L[3]

 del L[3:5]

 del L[3:10:2]

More such operations

Try and understand all of these operations.

 L.append(“hi”)

 L.extend([“good”])

 L.insert(4, “bye”)

 L.pop(), L.pop(4)

 L.remove(“hello”)

None of these work on strings.

And here are the last two:

 L.reverse(), L.sort()

Behind the scenes

 The difference between objects of type list and

objects of other types is due to an important
difference in implementation.

 Consider the assignment: L = [3, 4, 5]

 We might think that after this assignment, L points
to the list [3, 4, 5]. But no! L points to something
that in turn points to [3, 4, 5].

 In programming language terminology, we say L
points to a reference to [3, 4, 5].

Implications: list assignment

 Consider the example:
>>> L = [3, 4, 5]

>>> LL = L

>>> L.append(6)

>>> LL

[3, 4, 5, 6]

 Notice how when modified L, the list LL also changed. This
is not true for any of the data types we have seen so far.

 After the assignment LL = L, LL points to a reference that
points to the same list as L.

Another example of list assignment

>>> L = [3, 4, 5]

>>> LCopy = L

>>> M = [3, 4, 5]

>>> L == LCopy, LCopy == M, M == L

(True, True, True)

>>> L[0] = 9

>>> L == LCopy, LCopy == M, M == L

(True, False, False)

Implications: Mutation in Functions

def test(L):
L[0] = 7
return sum(L)

J = [3, 4, 5]
print test(J)
print J

 Consider the above program. When you run this and print J,
you will see that J has become [7, 4, 5].

 When J is sent in as argument to test, L is given a copy of J. But,
since J is pointing to a reference to a list, L ends up pointing to a
copy of the reference, but to the same physical list.

 This provides another way of communicating between a main
program and functions (and between functions).

