
W E D N E S D A Y , J A N 2 6 T H

Improving our First Program

How do while statements affect program flow?

Line 1

while boolean expression:
Line 2
Line 3

Line 4

Flow

Line 1,

bool expr, Line 2, Line 3,

bool expr, Line 2, Line 3,

…

bool expr

Line 4

Line 1

Is boolean
expression true?

Line 2

Line 3

Line 4

no

yes

Body of while loop

Line 1

while boolean expression:

Line 2

Line 3

Line 4

 Lines 2 and 3 form the body of the while loop

 Python uses indentation to identify the lines
following the while statement that constitute the
body of the while loop.

Boolean expressions

 Python has a type called bool

 The constants in this type are True and False.

(Not true and false!)

 The comparison operators:

< > <= >= != ==

can be used to construct boolean expressions, i.e.,
expressions that evaluate to True or False.

Boolean expressions: examples

 Suppose x has the value 10

Expression Value

x < 10 False

x != 100 True

x <= 10 True

x > -10 True

x >= 11 False

A silly while loop example

n = int(raw_input("Enter a positive integer:"))
while n != 0:

n = n – 2

 What happens when input is 8?

 What happens when the input is 9?

The biggest danger with while loops is that they may
run forever.

Improving the output

 How can we put together the bits we generate, in the
correct order, to construct the binary equivalent?

 String concatenation!

Expression Value

“0” + “1001” “01001”

“1” + “1001” “11001”

Algorithmic idea

 After i iterations of the while loop we have generated
the right most i bits of our answer.

 Call this the length-i suffix.

 We want to maintain a string:

Length-
0 suffix

Length-1
suffix

Length-2
suffix

Example

 Input is 39.

Output Suffix

1 “”
1 “1”
1 “11”
0 “111”
0 “0111”
1 “00111”

“100111”

Improved program

n = int(raw_input("Enter a positive integer:"))

suffix = “”

while n > 0:

suffix = str(n % 2) + binary

n = n/2

print suffix

Making the program more robust

 What if the user types in a negative integer or 0?

Or a real number? Or some non-numeric string,
(e.g., “hello”)?

 We will only discuss the negative integer or 0
situation now.

 Later when we discuss exceptions and how to handle
them, we’ll return to this program.

