## Algebraic Semantics

Algebraic semantics involves the algebraic specification of data and language constructs.

Foundations based on abstract algebras.

## Basic idea

- Name the sorts of objects and the operations on the objects.
- Use algebraic axioms to describe their characteristic properties.

An algebraic specification contains two parts:
signature and equations.
A signature $\Sigma$ of an algebraic specification is a pair <Sorts, Operations> where

- Sorts is a set containing names of sorts.
- Operations is a family of function symbols indexed by the functionalities of the operations represented by the function symbols.

Abstract type whose values are lists of integers:

Sorts $=\{$ Integer, Boolean, List $\}$.
Function symbols with their signatures:

```
zero : Integer
```

one : Integer
plus (_, _ ) : Integer, Integer $\rightarrow$ Integer
minus (_, _ ): Integer, Integer $\rightarrow$ Integer
true : Boolean
false : Boolean
emptyList : List
cons (_ , _ ) : Integer, List $\rightarrow$ List
head (_) : List $\rightarrow$ Integer
tail ( _ ) : List $\rightarrow$ List
empty? ( _ ) : List $\rightarrow$ Boolean
length ( _ ) : List $\rightarrow$ Integer

## Module Representation

- Decompose definitions into relatively small components.
- Import the signature and equations of one module into another.
- Define sorts and functions to be either exported or hidden.
- Modules can be parameterized to define generic abstract data types.

```
A Module for Truth Values
module Booleans
    exports
    sorts Boolean
    operations
        true : Boolean
        false : Boolean
        errorBoolean : Boolean
        not ( _ ) : Boolean }->\mathrm{ Boolean
        and (_, _ ) :
            Boolean, Boolean }->\mathrm{ Boolean
        or (_, _ ) :
                Boolean, Boolean }->\mathrm{ Boolean
        implies (_, _) :
                            Boolean,Boolean }->\mathrm{ Boolean
        eq? (_, _ ) :
                        Boolean, Boolean }->\mathrm{ Boolean
    end exports
    operations
        xor ( _ , _ ) : Boolean, Boolean -> Boolean
```

Chapter 12

## variables

b, $\mathrm{b}_{1}, \mathrm{~b}_{2}$ : Boolean

## equations

[B1] and (true, b) =b
[B2] and (false, true) = false
[B3] and (false, false) = false
[B4] not (true)= false
[B5] not (false) = true
[B6] or $\left(b_{1}, b_{2}\right)=$ not (and (not $\left(b_{1}\right)$, not $\left.\left.\left(b_{2}\right)\right)\right)$
[B7] implies ( $b_{1}, b_{2}$ ) $=$ or (not ( $b_{1}$ ), $b_{2}$ )
[B8] xor $\left(b_{1}, b_{2}\right)=$ and (or( $\left.\left.\mathrm{b}_{1}, \mathrm{~b}_{2}\right), \operatorname{not}\left(\mathrm{and}\left(\mathrm{b}_{1}, \mathrm{~b}_{2}\right)\right)\right)$
[B9] eq? $\left(b_{1}, b_{2}\right)=\operatorname{not}\left(x o r\left(b_{1}, b_{2}\right)\right)$
end Booleans

## Note module syntax

A conditional equation has the form lhs=rhs when $\mathrm{Ins}_{1}=\mathrm{rhs}_{1}, \mathrm{Ihs}_{2}=\mathrm{rhs}_{2}, \ldots, \mathrm{Ihs}_{\mathrm{n}}=\mathrm{rhs}_{\mathrm{n}}$.

## A Module for Natural Numbers

```
module Naturals
    imports Booleans
    exports
        sorts Natural
        operations
            0 : Natural
            1 : Natural
            10:Natural
            errorNatural: Natural
            succ (_) : Natural }->\mathrm{ Natural
            add (_, _) : Natural, Natural }->\mathrm{ Natural
            sub (_, _) : Natural, Natural }->\mathrm{ Natural
            mul (_, _) : Natural, Natural }->\mathrm{ Natural
            div (_, _) : Natural, Natural }->\mathrm{ Natural
            eq? ( _ , _) : Natural, Natural }->\mathrm{ Boolean
            less?(_, _) :
                        Natural, Natural }->\mathrm{ Boolean
        greater?(_, _) :
                        Natural, Natural }->\mathrm{ Boolean
    end exports
```


## variables

$\mathrm{m}, \mathrm{n}$ : Natural

## equations

[N1] $1=\operatorname{succ}(0)$
[N2] $10=$ succ (succ (succ (succ (succ (
succ (succ (succ (succ (succ (0))))))))))
[N3] add $(\mathrm{m}, 0)=\mathrm{m}$
[N4] add ( $\mathrm{m}, \operatorname{succ}(\mathrm{n}))=\operatorname{succ}(\operatorname{add}(\mathrm{m}, \mathrm{n}))$
[N5] sub $(0, \operatorname{succ}(n))=$ errorNatural
[N6] sub $(\mathrm{m}, 0)=\mathrm{m}$
[N7] $\operatorname{sub}(\operatorname{succ}(m), \operatorname{succ}(n))=\operatorname{sub}(m, n)$
[N8] $\mathrm{mul}(\mathrm{m}, 0)=0 \quad$ when $\mathrm{m} \neq$ errorNatural
[N9] $\mathrm{mul}(m, 1)=\mathrm{m}$
[N10] mul $(m, \operatorname{succ}(n))=\operatorname{add}(m, \operatorname{mul}(m, n))$
[N11] div (m, 0) = errorNatural
[N12] div $(0, \operatorname{succ}(\mathrm{n}))=0$ when $\mathrm{n}=$ errorNatural
[N13] div $(m, \operatorname{succ}(n))=$

$$
\begin{aligned}
& \text { if }(\text { less? }(m, \operatorname{succ}(n)) \\
& 0, \\
& \quad \operatorname{succ}(\operatorname{div}(\operatorname{sub}(m, \operatorname{succ}(n)), \operatorname{succ}(n))))
\end{aligned}
$$

[N14] eq? $(0,0)=$ true
[N15] eq? (0, succ (n)) = false when $\mathrm{n}=\mathrm{error}$ Natural
[N16] eq? (succ (m), 0) = false when $\mathrm{m}=$ errorNatural
[N17] eq? (succ (m), succ (n)) = eq? (m, n)
[N18] less? $(0$, succ $(m))=$ true when $\mathrm{m} \neq \mathrm{error}$ Natural
[ $N 19$ ] less? $(m, 0)=$ false when $m \neq e r r o r$ Natural
[N20] less? (succ (m), succ ( $n$ )) = less? (m, n)
[ N 21 ] greater? $(\mathrm{m}, \mathrm{n})=$ less? $(\mathrm{n}, \mathrm{m})$
end Naturals

## All operations propagate errors

succ (errorNatural) = errorNatural, sub $(\operatorname{div}(0,0), \operatorname{succ}(0))=$ errorNatural, not (errorBoolean) = errorBoolean, and eq? ( 0 , succ (errorNatural)) = errorBoolean.

## Conditions are Necessary

Use [N8] and ignore the condition:

$$
\begin{aligned}
0 & =\text { mul(succ(errorNatural),0) } \\
& =\text { mul(errorNatural, } 0) \\
& =\text { errorNatural. }
\end{aligned}
$$

and

$$
\operatorname{succ}(0)=\operatorname{succ}(\text { errorNatural })=\text { errorNatural, }
$$

$$
\operatorname{succ}(\operatorname{succ}(0))=
$$

succ(errorNatural) = errorNatural,
and so on.

Conditions are needed when variable(s) on the left disappear on the right.

## A Module for Characters

module Characters
importsBooleans, Naturals
exports
sorts Char operations
eq? (_, _) : Char, Char $\rightarrow$ Boolean letter? ( _ ) : Char $\rightarrow$ Boolean
digit? ( _ ) : Char $\rightarrow$ Boolean
ord ( _ ) : Char $\rightarrow$ Natural
char-0 : Char
char-1: Char
: :
char-9: Char
char-a: Char
char-z: Char
errorChar : Char
end exports

## variables

$\mathrm{c}, \mathrm{c}_{1}, \mathrm{c}_{2}$ : Char

## equations

[C1] ord (char-0) $=0$
[C2] ord (char-1) = succ (ord (char-0))
[C3] ord (char-2) = succ (ord (char-1))
: : :
[C11] ord (char-a) = succ (ord (char-9))
[C12] ord (char-b) = succ (ord (char-a))
: : :
[C36] ord (char-z) = succ (ord (char-y))
[C37] eq? ( $c_{1}, c_{2}$ ) $=$ eq? (ord ( $c_{1}$ ), ord ( $\left.c_{2}\right)$ )
[C38] letter? (c) = and (not (greater? (ord (char-a), ord (c))),
not (greater? (ord (c), ord (char-z))))
[C39] digit? (c) = and (not (greater? (ord (char-0), ord (c))), not (greater? (ord (c) ord (char-9)))) end Characters

## Parameterized Module and Instantiations

## module Lists

imports Booleans, Naturals
parameters Items
sorts Item
operations
errorltem : Item
eq? : Item, Item $\rightarrow$ Boolean
variables
a, b, c : Item

## equations

eq? $(\mathrm{a}, \mathrm{a})=$ true $\quad$ when $\mathrm{a} \neq$ errorltem eq? $(a, b)=e q$ ? $(b, a)$ implies(and(eq?(a,b),eq?(b,c)), eq?(a,c))=true when $\mathrm{a}=$ errorltem, $\mathrm{b} \neq \mathrm{errorltem}$, c=errorltem
end Items

## exports

sorts List
operations
null : List
errorList : List cons (_, _ ) : Item, List $\rightarrow$ List concat (_, _) : List, List $\rightarrow$ List length ( _ ) : List $\rightarrow$ Natural equal? ( _ , _ ): List, List $\rightarrow$ Boolean mkList ( _ ) : Item $\rightarrow$ List
end exports

## variables

i, $i_{1}, i_{2}$ : Item
$\mathrm{s}, \mathrm{s}_{1}, \mathrm{~s}_{2}$ : List

## equations

[S1] concat (null, s) $=s$
[S2] $\operatorname{concat}\left(\operatorname{cons}\left(\mathrm{i}, \mathrm{s}_{1}\right), \mathrm{s}_{2}\right)=$ cons(i,concat( $\left.\mathrm{s}_{1}, \mathrm{~s}_{2}\right)$ )
[S3] equal? (null, null) = true
[S4] equal? (null, cons (i, s)) = false when $\mathrm{s} \neq \mathrm{e}$ rrorList, $\mathrm{i}=\mathrm{errorltem}$
[S5] equal? (cons (i, s), null) = false when $\mathrm{s}=$ errorList, $\mathrm{i}=$ errorltem
[S6] equal? (cons ( $\mathrm{i}_{1}, \mathrm{~s}_{1}$ ), cons $\left.\left(\mathrm{i}_{2}, \mathrm{~s}_{2}\right)\right)=$ and(eq?( $\left.\mathrm{i}_{1}, \mathrm{i}_{2}\right)$, equal?( $\left.\mathrm{s}_{1}, \mathrm{~s}_{2}\right)$ )
[S7] length (null) $=0$
[S8] length (cons (i, s)) = succ (length (s)) when $\mathrm{i}=$ errorltem
[S9] mkList (i) = cons (i, null)
end Lists

## Instantiations

## module Files importsBooleans, Naturals, instantiation of Lists bind Items

using Natural for Item using errorNatural for errorltem using eq? for eq?
rename using File for List using emptyFile for null using mkFile for mkList using errorFile for errorList
exports sorts File operations
empty? ( _ ) : File $\rightarrow$ Boolean
end exports
variables $f$ : File
equations
[F1] empty? (f) = equal? (f, emptyFile)
end Files
module Strings
imports Booleans, Naturals, Characters, instantiation of Lists
bind Items using Char for Item using errorChar for errorltem using eq? for eq?
rename using String for List using nullString for null using mkString for mkList using strEqual for equal? using errorString for errorList
exports
sorts String operations
string-to-natural ( _ ) :
String $\rightarrow$ Boolean, Natural
end exports

## exports

sorts Mapping
operations
emptyMap : Mapping
errorMapping : Mapping
update (_, , , $)_{\text {) : }}$
Mapping,Domain,Range $\rightarrow$ Mapping
apply ( $\quad, \quad$, ) :
Mapping, Domain $\rightarrow$ Range
end exports
variables
m : Mapping
$\mathrm{d}, \mathrm{d}_{1}, \mathrm{~d}_{2}$ : Domain
$r$ : Range
equations
[M1] apply (emptyMap, d) = errorRange
[M2] apply (update( $m, d_{1}, r$ ), $d_{2}$ ) $=r$
when equals $\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right)=$ true, $\mathrm{m}=$ errorMapping
[M3] apply (update $\left.\left(m, d_{1}, r\right), d_{2}\right)=\operatorname{apply}\left(m, d_{2}\right)$ when equals $\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right)=$ false, $\mathrm{r} \neq \mathrm{e}$ rrorRange
end Mappings

## A Store Structure

```
module Stores
    imports Strings, Naturals,
        instantiation of Mappings
        bind Entries
            using String for Domain
            using Natural for Range
            using strEqual for equals
            using errorString for errorDomain
            using errorNatural for errorRange
        rename using Store for Mapping
                    using emptySto for emptyMap
                    using updateSto for update
                    using applySto for apply
end Stores
```


## Mathematical Foundations

Simplify modules.
module Bools
exports
sorts Boolean
operations
true : Boolean
false: Boolean
not ( _ ) : Boolean $\rightarrow$ Boolean
end exports
equations
[B1] not (true) $=$ false
[B2] not (false) = true
end Bools
module Nats
imports Bools

## exports

 sorts Natural operations0 : Natural
succ ( _ ) : Natural $\rightarrow$ Natural add (_, _ ) : Natural, Natural $\rightarrow$ Natural
end exports

## variables

m, n: Natural

## equations

[N1] add $(\mathrm{m}, 0)=\mathrm{m}$
[ N 2 ] $\operatorname{add}(\mathrm{m}, \operatorname{succ}(\mathrm{n}))=\operatorname{succ}(\operatorname{add}(m, n))$ end Nats

## Ground Terms

Function symbols used to construct terms that stand for the objects of the sorts in the signature.

## Defn:

For a given signature $\Sigma=<$ Sorts, Operations $>$, the set of ground terms Ts of sort S is defined inductively:

1. All constants of sort $S$ in Operations are ground terms (in Ts).
2. For every function symbol $f: S_{1}, \ldots, S_{n} \rightarrow S$ in Operations, if $\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}$ are ground terms of sorts $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}$, respectively,
then $f\left(t_{1}, \ldots, t_{n}\right)$ is a ground term of sort $S$ where $S_{1}, \ldots, S_{n}, S \in$ Sorts.

Example: Ground terms of sort Boolean in Bools

```
true, not(true),
    not(not(true)), not(not(not(true))), ..
false, not(false), not(not(false)), ...
```

Ground terms of sort Natural in Nats:
$0, \operatorname{succ}(0), \operatorname{succ}(\operatorname{succ}(0)), \ldots$
$\operatorname{add}(0,0), \quad \operatorname{add}(0, \operatorname{succ}(0))$,
add(succ(0),0), add(succ(0),succ(0)),
add(0,succ(succ(0))),
add(succ(succ(0)),0),
add(0,succ(succ(succ(0)))),
add(succ(succ(succ(0))),0),
add(succ(0),succ(succ(0)),

On the basis of the signature only (no equations), the ground terms must be mutually distinct.

## $\Sigma$-Algebras

Algebraic specifications deal with syntax.
Semantics is provided by defining algebras that serve as models of the specifications.

Heterogeneous or Many-sorted Algebras:
A set of operations acting on a collection of sets.

Defn: For a given signature $\Sigma$, an algebra A is a $\Sigma$-algebra under the following circumstances:

- There is a one-to-one correspondence between the carrier sets of A and the sorts of $\Sigma$
- There is a one-to-one correspondence between the constants and functions of A and the operation symbols of $\Sigma$ so that those constants and functions are of the appropriate sorts and functionalities.

Let $\Sigma=<$ Sorts, Operations $>$ be a signature where

- Sorts is a set of sort names and
- Operations is a set of function symbols of the form $f: S_{1}, \ldots, S_{m} \rightarrow S_{m+1}$ where each $S_{i} \in$ Sorts.

A $\Sigma$-algebra A consists of:

1. A collection of sets $\left\{S_{A} \mid S \in\right.$ Sorts $\}$, the carrier sets
2. A collection of functions $\left\{\mathrm{f}_{\mathrm{A}} \mid \mathrm{f} \in\right.$ Operations $\}$ with the functionality
$f_{A}:\left(S_{1}\right)_{A}, \ldots,\left(S_{m}\right)_{A} \rightarrow S_{A}$
for each $f: S_{1}, \ldots, S_{m} \rightarrow S$ in Operations.
$\Sigma$-algebras are called heterogeneous or manysorted algebras because they may contain objects of more than one sort.

Defn: The term algebra $\mathrm{T}_{\Sigma}$ for a signature $\Sigma=<$ Sorts, Operations $>$ is constructed as follows. Carrier sets $\left\{\mathrm{S}_{\mathrm{T}_{\Sigma}} \mid \mathrm{S} \in\right.$ Sorts $\}$ are defined by:

1. For each constant $c$ of sort $S$ in $\Sigma$ we have a corresponding constant " $c$ " in $\mathrm{S}_{\mathrm{T}_{\Sigma}}$.
2. For each function symbol $f: S_{1}, \ldots, S_{n} \rightarrow S$ in $\Sigma$ and any $n$ elements $t_{1} \in\left(S_{1}\right)_{T_{\Sigma}}, \ldots, t_{n} \in\left(S_{n}\right)$ $\mathrm{T}_{\Sigma}$, the term " $\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$ " belongs to the carrier set $\mathrm{S}_{\mathrm{T}_{\Sigma}}$.
For each function symbol $f: S_{1}, \ldots, S_{n} \rightarrow S$ in $\Sigma$ and any $n$ elements $t_{1} \in\left(\mathrm{~S}_{1}\right)_{T_{\Sigma}}, \ldots, \mathrm{t}_{\mathrm{n}} \in\left(\mathrm{S}_{\mathrm{n}}\right)_{\mathrm{T}_{\Sigma}}$, define $f_{T_{\Sigma}}$ by $f_{T_{\Sigma}}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)=" \mathrm{f}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$ ".

The elements of the carrier sets of $T_{\Sigma}$ consist of strings of symbols chosen from a set containing the constants and function symbols of $\Sigma$ together with the special symbols "(", ")", and ",".

## Example

The carrier set for the term algebra $\mathrm{T}_{\Sigma}$ constructed from the module Bools contains all the ground terms from the signature, including
"true", "not(true)", "not(not(true))", ...
"false", "not(false)", "not(not(false))", ....
The function not $T_{T_{\Sigma}}$ maps "true" to "not(true)", maps "not(true)" to "not(not(true))", and so forth.

The carrier set is infinite.
Also, "false" = "not(true)"

We have not accounted for the equations and what properties they enforce in an algebra.

Defn: For a signature $\Sigma$ and a $\Sigma$-algebra A, the evaluation function eval ${ }_{\mathrm{A}}: \mathrm{T}_{\Sigma} \rightarrow \mathrm{A}$ from ground terms to values in A is defined as:

$$
\begin{aligned}
& \operatorname{eval}_{A}(" c ")=c_{A} \text { for constants } c \text {, and } \\
& \operatorname{eval}_{A}\left({ }^{(f( }\left(t_{1}, \ldots, \mathrm{t}_{n}\right) "\right)=\mathrm{f}_{\mathrm{A}}\left(\operatorname{eval}_{\mathrm{A}}\left(\mathrm{t}_{1}\right), \ldots, \text { eval }_{\mathrm{A}}\left(\mathrm{t}_{n}\right)\right)
\end{aligned}
$$

where each term $t_{i}$ is of sort $\mathrm{S}_{\mathrm{i}}$ for the symbol $f: S_{1}, \ldots, S_{m} \rightarrow S$ in Operations.

## A Congruence from the Equations

The function symbols and constants create a set of ground terms.

The equations of a specification generate a congruence $\equiv$ on the ground terms.

A congruence is an equivalence relation with an additional "substitution" property.

Definition: Let Spec $=<\Sigma, E>$ be a specification with signature $\Sigma$ and equations $E$.
The congruence $\bar{E}_{\mathrm{E}}$ determined by E on $\mathrm{T}_{\Sigma}$ is the smallest relation satisfying the properties:

1. Variable Assignment: Given an equation lhs $=$ rhs in $E$ that contains variables $\mathrm{v}_{1}, . ., \mathrm{V}_{\mathrm{n}}$ and given any ground terms $\mathrm{t}_{1}, . ., \mathrm{t}_{n}$ from $\mathrm{T}_{\Sigma}$ of the same sorts as the respective variables,

$$
\begin{aligned}
\operatorname{Ihs}\left[\mathrm{v}_{1}\right. & \left.\rightarrow \mathrm{t}_{1}, \ldots, \mathrm{v}_{\mathrm{n}} \mid \rightarrow \mathrm{t}_{\mathrm{n}}\right] \equiv \equiv_{\mathrm{E}} \\
\quad \operatorname{rhs}\left[\mathrm{v}_{1}\right. & \xrightarrow{\rightarrow} \mathrm{t}_{1}, \ldots, \mathrm{v}_{\mathrm{n}} \\
& \left.\rightarrow \mathrm{t}_{\mathrm{n}}\right]
\end{aligned}
$$

where $v_{i} l \rightarrow t_{i}$ indicates substituting the ground term $t_{i}$ for the variable $\mathrm{v}_{\mathrm{i}}$.
If equation is conditional, the condition must be valid after variable assignment is carried out on it.
2. Reflexive: For every ground term $t \in T_{\Sigma}$, $t \equiv \mathrm{E}$.
3. Symmetric: For any ground terms $\mathrm{t}_{1}, \mathrm{t}_{2} \in \mathrm{~T}_{\Sigma}$, $\mathrm{t}_{1} \equiv \mathrm{E} \mathrm{t}_{2}$ implies $\mathrm{t}_{2} \equiv \mathrm{E} \mathrm{t}_{1}$.
4. Transitive: For any terms $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3} \in \mathrm{~T}_{\Sigma}$, ( $\mathrm{t}_{1} \equiv \mathrm{E} \mathrm{t}_{2}$ and $\mathrm{t}_{2} \equiv \mathrm{E} \mathrm{t}_{3}$ ) implies $\mathrm{t}_{1} \equiv_{\mathrm{E}} \mathrm{t}_{3}$.
5. Substitution Property: If $\mathrm{t}_{1} \equiv_{\mathrm{E}} \mathrm{t}_{1}{ }^{\prime}, \ldots, \mathrm{t}_{\mathrm{n}} \equiv_{\mathrm{E}} \mathrm{tn}^{\prime}$ and $f: S_{1}, \ldots, S_{n} \rightarrow S$ is any function symbol in $\Sigma$, then $f\left(\mathrm{t}_{1}, \ldots, \mathrm{tn}_{\mathrm{n}}\right) \equiv \equiv_{\mathrm{E}} \mathrm{f}\left(\mathrm{t}_{1}{ }^{\prime}, \ldots, \mathrm{tn}^{\prime}\right)$.

Generate an equivalence relation from equations:

- Take every ground instance of all the equations as a basis.
- Allow any derivation using properties reflexive, symmetric, and transitive and the substitution rule that each function symbol preserves equivalence when building ground terms.

Ground terms for Bools module:

$$
\begin{aligned}
\text { true } \equiv \operatorname{not}(\text { false }) & \equiv \operatorname{not}(\text { not(true })) \\
& \equiv \operatorname{not}(\operatorname{not}(\text { not (false }))) \equiv \ldots \\
\text { false } \equiv \operatorname{not}(\text { true }) & \equiv \operatorname{not}(\text { not(false })) \\
& \equiv \operatorname{not}(\operatorname{not}(\text { not }(\text { true }))) \equiv \ldots
\end{aligned}
$$

## Sample Proof

$$
\begin{aligned}
& \operatorname{add}(\operatorname{succ}(0), \operatorname{succ}(0)) \\
& \quad \equiv \operatorname{succ}(\operatorname{add}(\operatorname{succ}(0), 0)) \underset{[\mathrm{ming} \rightarrow \operatorname{succ}(0), \mathrm{ni} \rightarrow 0]}{\operatorname{usin}} \\
& \equiv \operatorname{succ}(\operatorname{succ}(0)) \quad \begin{array}{c}
\text { using }[\mathrm{N} 1] \text { and } \\
{[\mathrm{m} \mid \rightarrow \operatorname{succ}(0)] .}
\end{array}
\end{aligned}
$$

Defn: If Spec $=<\Sigma, \mathrm{E}>$, a $\Sigma$-algebra A is a model of Spec if for all ground terms $t_{1}$ and $t_{2}$, $\mathrm{t}_{1} \equiv \mathrm{E} \mathrm{t}_{2}$ implies eval $\mathrm{A}_{\mathrm{A}}\left(\mathrm{t}_{1}\right)=\operatorname{eval}_{\mathrm{A}}\left(\mathrm{t}_{2}\right)$.

Construct a particular $\Sigma$-algebra, called the initial algebra, that is guaranteed to exist, and take it to be the meaning of the specification Spec.

## Quotient Algebra

Build the quotient algebra Q from the term algebra $T_{\Sigma}$ of a specification $<S, E>$ by factoring out congruences.

Defn: Let $<\Sigma, E>$ be a specification with $\Sigma=<$ Sorts, Operations>.
If $t$ is a term in $T_{\Sigma}$, we represent its congruence class as $[\mathrm{t}]=\left\{\mathrm{t}^{\prime} \mid \mathrm{t} \equiv \mathrm{E} \mathrm{t}^{\prime}\right\}$.

So $[t]=\left[t^{\prime}\right]$ if and only if $t \equiv E t^{\prime}$.
Carrier sets $=\left\{(S)_{T_{\Sigma}} \mid S \in\right.$ Sorts $\}$.

A constant c becomes congruence class [c].
Functions in the term algebra define functions in the quotient algebra:
Given a function symbol $f: S_{1}, \ldots, S_{n} \rightarrow S$ in $\Sigma$, $f_{Q}\left(\left[\mathrm{t}_{1}\right], \ldots,\left[\mathrm{t}_{\mathrm{n}}\right]\right)=\left[\mathrm{f}\left(\mathrm{t}_{1}, ., \mathrm{t}_{\mathrm{n}}\right)\right]$ for any terms $\mathrm{t}_{\mathrm{i}}: \mathrm{S}_{\mathrm{i}}$, with $1 \leq i \leq n$, from the appropriate carrier sets.

The function $f_{Q}$ is well-defined:
$\mathrm{t}_{1} \equiv \mathrm{E} \mathrm{t}_{1}{ }^{\prime}, \ldots, \mathrm{t}_{\mathrm{n}} \equiv \mathrm{E} \mathrm{t}^{\prime}{ }^{\prime}$

$$
\text { implies } f_{Q}\left(t_{1}, \ldots, t_{n}\right) \equiv_{E} f_{Q}\left(t_{1}, \ldots, t_{n}^{\prime}\right)
$$

by the Substitution Property for congruences.

For Bools:
true $_{\mathrm{Q}}=[$ true $]$ and false $\mathrm{Q}_{\mathrm{Q}}=[$ false $]$.
The congruence class [true] contains
"true", "not(false)","not(not(true))", ...
The congruence class [false] contains
"false", "not(true)", "not(not(false))", ....

Chapter 12

The function notQ:

$$
\begin{aligned}
& \text { notQ }(\text { [false }])=[\text { not(false })]=[\text { true }], \text { and } \\
& \text { not }([\text { true }])=[\text { not(true })]=[\text { false }] .
\end{aligned}
$$

This quotient algebra is an initial algebra for Bools.

Initial algebras are not necessarily unique.
For example, the algebra
A = <\{off, on\}, \{off, on, switch\}> is also an initial algebra for Bools.

An initial algebra is finest-grained: It equates only those terms required to be equated, and so its carrier sets contain as many elements as possible.

Using this procedure for developing the term algebra and then the quotient algebra, we can always guarantee that at least one initial algebra exists for any specification.

## Homomorphisms

Functions between $\Sigma$-algebras that preserve the operations are called $\Sigma$-homomorphisms.
Used to compare and contrast algebras that act as models of specifications.

Defn: Suppose that A and B are $\Sigma$-algebras for a given signature $\Sigma=<$ Sorts, Operations $>$. h is a $\Sigma$-homomorphism if it maps carrier sets of A to carrier sets of B and constants and functions of $A$ to constants and functions of $B$, so that the behavior of constants and functions is preserved.
h consists of a collection $\{$ hs I $S \in$ Sorts \} of functions hs: $\mathrm{S}_{\mathrm{A}} \rightarrow \mathrm{S}_{\mathrm{B}}$ for $\mathrm{S} \in$ Sorts such that $h s\left(c_{A}\right)=C_{B}$ for each constant symbol $c: S$, and
$\mathrm{hs}_{\mathrm{s}}\left(\mathrm{f}_{\mathrm{A}}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)\right)=\mathrm{f}_{\mathrm{B}}\left(\mathrm{h}_{\mathrm{s}_{1}}\left(\mathrm{a}_{1}\right), \ldots, \mathrm{h}_{\mathrm{n}}\left(\mathrm{a}_{\mathrm{n}}\right)\right)$ for each function symbol $f: S_{1}, \ldots, S_{n} \rightarrow S$ in $\Sigma$ and any $n$ elements $a_{1} \in\left(S_{1}\right)_{A}, \ldots, a_{n} \in\left(S_{n}\right)_{A}$.
$h$ is an isomorphism
If $h$ is a $\Sigma$-homomorphism from $A$ to $B$ and the inverse of $h$ is a $\Sigma$-homomorphism from $B$ to $A$.

Apart from renaming carrier sets, constants, and functions, the two algebras are exactly the same.

Defn: A $\Sigma$-algebra I in the class of all $\Sigma$-algebras serving as models of a specification with signature $\Sigma$ is called initial if for any $\Sigma$-algebra A in the class, there is a unique homomorphism h:I $\rightarrow$ A.

The quotient algebra Q for a specification is an initial algebra.

For any $\Sigma$-algebra A that acts as a model of the specification, there is a unique $\Sigma$-homomorphism from Q to A .

The function eval ${ }_{A}: \mathrm{T}_{\Sigma} \rightarrow \mathrm{A}$ induces a $\Sigma$-homomorphism $h$ from Q to A using the definition:

$$
h([t])=\text { eval }_{A}(t) \text { for each } t \in T_{\Sigma} .
$$

Any algebra isomorphic to Q is also an initial algebra.

So since the quotient algebra Q and the algebra $\mathrm{A}=<\{$ off, on\}, \{off, on, switch\}> are isomorphic, A is also an initial algebra for Bools.

Defn: Let $<\Sigma$, E $>$ be a specification, let Q be the quotient algebra for $\langle\Sigma, E\rangle$, and let $B$ be an arbitrary model of the specification.

1. If homomorphism from $Q$ to a $\Sigma$-algebra $B$ is not onto, then B contains junk (values that do not correspond to terms constructed from signature).


The positive integers above 32767 must be confusion.
When mapping an infinite carrier set onto a finite machine, confusion must occur.

## Consistency and Completeness

Suppose we want to add a predecessor operation to naturals by importing Naturals (original version) and defining a predecessor function pred.
module Predecessor ${ }_{1}$ imports Boolean, Naturals

## exports

 operationspred ( _ ) : Natural $\rightarrow$ Natural
end exports
variables
n : Natural
equations
[P1] pred (succ (n)) $=\mathrm{n}$
end Predecessor ${ }_{1}$
Naturals is a subspecification of Predecessor ${ }_{1}$ since the signature and equations of

The negative integers are junk with respect to Nats since they cannot be images of any of the natural numbers.

Predecessor ${ }_{1}$ include the signature and equations of Naturals.
The new congruence class $[p r e d(0)]$ is not congruent to 0 or any of the successors of 0 .
We say that $[p r e d(0)]$ is junk and that Predecessor ${ }_{1}$ is not a complete extension of Naturals.
We can resolve this problem by adding the equation [P2] pred $(0)=0($ or $[P 2] \operatorname{pred}(0)=$ errorNatural).
Suppose that we define another predecessor module in the following way:
module Predecessor2
imports Boolean, Naturals
exports operations
pred (_) : Natural $\rightarrow$ Natural
end exports
variables
n : Natural
equations
[P1] pred ( n ) = sub ( n , succ (0))
[P2] pred (0) $=0$
end Predecessor 2

The first equation specifies the predecessor by subtracting one, and the second equation is carried over from the "fix" for Predecessor ${ }_{1}$.
In the module Naturals, we have the congruence classes:
[errorNatural], [0], [succ(0)], [succ(succ(0))], ....
With the new module Predecessor ${ }_{2}$,

$$
\begin{aligned}
& \operatorname{pred}(0)=\operatorname{sub}(0, \operatorname{succ}(0)) \\
& \quad=\text { errorNatural by }[\mathrm{P} 1] \text { and }[\mathrm{N} 5] \text {, and } \\
& \operatorname{pred}(0)=0 \text { by }[\mathrm{P} 2] .
\end{aligned}
$$

So we have reduced the number of congruence classes, since [0] = [errorNatural].
Because this has introduced confusion, we say that Predecessor 2 is not a consistent extension of Naturals.

## Defn:

Let Spec be a specification with signature $\Sigma=<$ Sorts, Operations> and equations $E$.
Suppose SubSpec is a subspecification of Spec with sorts SubSorts (a subset of Sorts) and equations SubE (a subset of E).
Let T and SubT represent the terms of Sorts and SubSorts, respectively.

- Spec is a complete extension of SubSpec if for every sort S in SubSorts and every term $t_{1}$ in $T$, there exists a term $t_{2}$ in SubT such that $t_{1}$ and $t_{2}$ are congruent with respect to E .
- Spec is a consistent extension of SubSpec if for every sort subS in SubSorts and all terms $t_{1}$ and $t_{2}$ in $T, t_{1}$ and $t_{2}$ are congruent with respect to $E$ if and only if $t_{1}$ and $t_{2}$ are congruent with respect to SubE.


## Using Algebraic Specifications

## Data Abstraction

1. Information Hiding: Compiler should ensure that the user of an ADT does not have access to the representation (of values) and implementation (of operations) of an ADT.
2. Encapsulation: All aspects of specification and implementation of an ADT should be contain in one or two syntactic unit(s) with a well-defined interface to the users of the ADT.
Examples: Ada package

> Modula module Classes in OOP
3. Generic types (parameterized modules):

A way of defining an ADT as a template without specifying the nature of all its components.
A generic type is instantiated when the properties of its missing component values are provided.

## A Module for Unbounded Queues

Start by giving the signature of a specification of queues of natural numbers.

module Queues<br>imports Booleans, Naturals<br>exports<br>sorts Queue<br>operations<br>newQ : Queue<br>errorQueue : Queue<br>addQ (_, _) : Queue, Natural $\rightarrow$ Queue<br>deleteQ ( _ ) : Queue $\rightarrow$ Queue<br>frontQ ( - ) : Queue $\rightarrow$ Natural<br>isEmptyQ ( _ ) : Queue $\rightarrow$ Boolean<br>end exports<br>end Queues

Cannot assume any properties of the operations other than their basic syntax.
This module could be specifying stacks instead of queues.

## Properties of Queues

Define the characteristic properties of the queue ADT by describing informally what each operation does, for example:

- The function isEmptyQ(q) returns true if and only if the queue q is empty.
- The function frontQ(q) returns the natural number in the queue that was added earliest without being deleted yet.
- If $q$ is an empty queue, frontQ(q) is an error value.

The descriptions are ambiguous, depending on terms that have not been defined-for example, "empty" and "earliest".
One may be tempted to define the meaning of the operations in terms of an implementation, but this defeats the whole intent of data abstraction, which is to separate logical properties of data objects from their concrete realization.

## Implementing Queues as Unbounded Arrays

Assuming that the axioms correctly specify the concept of a queue, use them to verify that an implementation is correct.
Realization of an abstract data type:

- a representation of the objects of the type
- implementations of the operations
- representation function $\Phi$ that maps terms in the model onto the abstract objects so that the axioms are satisfied.


## Plan

Represent queues as arrays with two pointers, one to the front of the queue and one to the end.

```
A Module for Unbounded Arrays
module Arrays
    imports Booleans, Naturals
    exports
        sorts Array
        operations
        newArray : Array
        errorArray: Array
        assign(_,_,_) : Array,Natural,Natural }->\mathrm{ Array
        access (_, _ ) : Array, Natural }->\mathrm{ Natural
    end exports
    variables
        arr: Array
        i, j, m : Natural
    equations
        [A1]access (newArray, i) = errorNatural
        [A2] access (assign (arr, i, m), j) =
            if ( i = j, m, access (arr, j) )
                when m\not=errorNatural
end Arrays
```

Array queues are related to the abstract queues by a homomorphism
$\Phi:$ :ArrayQ,Natural,Boolean\} $\rightarrow$
\{Queue,Natural,Boolean\},
defined on the objects and operations of the sorts.

Use symbolic terms " $\Phi(\mathrm{arr}, \mathrm{f}, \mathrm{e})$ " to represent abstract queue objects in Queue.
For <arr,f,e> : ArrayQ, m : Natural, and b : Boolean,
$\Phi(<a r r, f, e>)=\Phi($ arr $, \mathrm{f}, \mathrm{e}) \quad$ when $\mathrm{f} \leq e$
$\Phi(<a r r, f, e>)=$ errorQueue when $\upharpoonright>e$
$\Phi(\mathrm{m})=\mathrm{m}$
$\Phi(\mathrm{b})=\mathrm{b}$
$\Phi($ newAQ $)=n e w Q$
$\Phi(\operatorname{add} A Q)=a d d Q$
$\Phi($ deleteAQ $)=$ delete $Q$
$\Phi$ (frontAQ) = frontQ
$\Phi($ isEmptyAQ $)=$ isEmptyQ

Implementation of the ADT Queue using the ADT Array has the following set of triples as its objects:
ArrayQ =
\{ <arr,f,e> I arr:Array, f,e:Natural, and f $\leq e$ \}.
Operations over ArrayQ are defined as follows:
[AQ1] newAQ= <newArray,0,0>
[AQ2] addAQ (<arr,f,e>, m) =
<assign(arr,e,m),f,e+1>
[AQ3] deleteAQ (<arr,f,e>) = if ( $\mathrm{f}=\mathrm{e},<\operatorname{arr}, \mathrm{f}, \mathrm{e}>,<a r r, \mathrm{f}+1, \mathrm{e}>$ )
[AQ4] frontAQ (<arr,f,e>) = if $(f=e$, errorNatural,
access(arr,f))
[AQ5] isEmptyAQ (<arr,f,e>) $=(f=e)$ when arr=errorArray

Under the homomorphism, the five equations that define operations for the array queues map into five equations describing properties of abstract queues.
[D1] newQ $=\Phi($ newArray,0,0)
[D2] addQ ( $\Phi(\operatorname{arr}, \mathrm{f}, \mathrm{e}), \mathrm{m})=$

$$
\Phi(\text { assign(arr,e,m),f,e+1) }
$$

[D3] deleteQ $(\Phi(a r r, f, e))=$

$$
\text { if }(\mathrm{f}=\mathrm{e}, \Phi(\mathrm{arr}, \mathrm{f}, \mathrm{e}), \Phi(\mathrm{arr}, \mathrm{f}+1, \mathrm{e}))
$$

[D4] frontQ $(\Phi(a r r, f, e))=$ if ( $\mathrm{f}=\mathrm{e}$, errorNatural, access(arr,f))
[D5] isEmptyQ $(\Phi(\operatorname{arr}, f, e))=(f=e)$

Consider the image of [AQ2] under $\Phi$.
Assume [AQ2] $\operatorname{addAQ}(<a r r, f, e>, m)=$ <assign (arr,e,m),f,e+1>
Then addQ ( $\Phi($ arr,f,e),m)
$=\Phi(\operatorname{addAQ})(\Phi(<a r r, f, \mathrm{e}>), \Phi(\mathrm{m})>)$
$=\Phi(\operatorname{addAQ}(<a r r, f, \mathrm{e}>, \mathrm{m}))$
$=\Phi($ assign $(\mathrm{arr}, \mathrm{e}, \mathrm{m}), \mathrm{f}, \mathrm{e}+1)$,
which is [D2].

The implementation is correct if its objects can be shown to satisfy the queue axioms [Q1] to [Q6] for arbitrary queues of the form $\mathrm{q}=$ $\Phi($ arr,f,e) with $\mathrm{f} \leq \mathrm{e}$ and arbitrary elements m of Natural, given the definitions [D1] to [D5] and the equations for arrays.

Lemma: For any queue $\Phi(\mathrm{a}, \mathrm{f}, \mathrm{e})$ constructed using the operations of the implementation, $\mathrm{f} \leq e$.
Proof: The only operations that produce queues are newQ, addQ, and deleteQ, the constructors in the signature. The proof is by induction on the number of applications of these operations.
Basis: Since newQ $=\Phi($ newArray $, 0,0), f \leq e$.
Induction Step: Suppose that $\Phi(\mathrm{a}, \mathrm{f}, \mathrm{e})$ has been constructed with $n$ applications of the operations and that $\mathrm{f} \leq e$.
Consider a queue constructed with one more application of these functions, for a total of $\mathrm{n}+1$.
Case 1: The $\mathrm{n}+1$ st operation is addQ.
But addQ $(\Phi(\mathrm{a}, \mathrm{f}, \mathrm{e}), \mathrm{m})=\Phi(\operatorname{assign}(\mathrm{a}, \mathrm{f}, \mathrm{m}), \mathrm{f}, \mathrm{e}+1)$ has $\mathrm{f} \leq \mathrm{e}+1$.
Case 2: The $\mathrm{n}+1$ st operation is deleteQ.
But deleteQ $(\Phi(\mathrm{a}, \mathrm{f}, \mathrm{e}))=$ if ( $\mathrm{f}=\mathrm{e}, \Phi(\mathrm{arr}, \mathrm{f}, \mathrm{e}), \Phi(\mathrm{arr}, \mathrm{f}+1, \mathrm{e})$ ).
If $f=e$, then $f \leq e$, and if $f<e$, then $f+1 \leq e$.

## Verification of Queue Axioms

Let $\mathrm{q}=\Phi(\mathrm{a}, \mathrm{f}, \mathrm{e})$ be an arbitrary queue and let m be an arbitrary element of Natural.
[Q1] isEmptyQ (newQ)
$=$ isEmptyQ ( $\Phi$ (newArray,f,f)) by [D1]
$=(f=f)=$ true by [D5].
[Q2] isEmptyQ (addQ ( $\Phi(\operatorname{arr}, \mathrm{f}, \mathrm{e}), \mathrm{m})$ )
$=$ isEmptyQ ( $\Phi$ (assign(arr,e,m),f,e+1)
by [D2]
$=(f=e+1)=$ false, since $f \leq e$
by [D5] \& lemma.
[Q3] deleteQ (newQ)

$$
\begin{aligned}
= & \operatorname{deleteQ}(\Phi(\text { newArray,f,f } \mathrm{f})) \text { by }[\mathrm{D} 1] \\
= & \Phi(\text { newArray }, \mathrm{f}, \mathrm{f})= \\
& \text { newQ } \\
& \quad \text { by }[\mathrm{D} 3] \text { and }[\mathrm{D} 1] .
\end{aligned}
$$

[Q4] deleteQ (addQ ( $\Phi(a r r, f, e), m)$ )

$$
\begin{aligned}
& =\operatorname{deleteQ}(\Phi(\operatorname{assign}(\operatorname{arr}, \mathrm{e}, \mathrm{~m}), \mathrm{f}, \mathrm{e}+1)) \text { by [D2] } \\
& =\Phi(\text { assign }(\operatorname{arr}, \mathrm{e}, \mathrm{~m}), \mathrm{f}+1, \mathrm{e}+1) \text { by }[\mathrm{D} 4] .
\end{aligned}
$$

Case 1: $f=e$,
that is, isEmptyQ $(\Phi(\operatorname{arr}, \mathrm{f}, \mathrm{e}))=$ true.
Then $\Phi(\operatorname{assign}(\mathrm{a}, \mathrm{e}, \mathrm{m}), \mathrm{f}+1, \mathrm{e}+1)=$ newQ by [D1].
Case 2: $f<e$,
that is, isEmptyQ $(\Phi(a r r, f, e))=$ false.
Then $\Phi($ assign $(a r r, e, m), f+1, e+1)$
$=\operatorname{addQ}(\Phi(\operatorname{arr}, f+1, e), m)$ by [D2]
$=$ addQ (deleteQ ( $\Phi($ arr,f,e) $), \mathrm{m})$ by [D3].
[Q5] frontQ (newQ)
= frontQ ( $\Phi$ (newArray,f,f) by [D1]
$=$ errorNatural since $f=f$ by [D4].
[Q6] frontQ (addQ ( $\Phi($ arr,f,e), m)) $=$ frontQ ( $\Phi(\operatorname{assign}(a r r, e, m), f, e+1))$ by
[D2] $=$ access (assign(arr,e,m), f) by [D4].
Case 1: $f=e$,
that is, isEmptyQ $(\Phi(\operatorname{arr}, \mathrm{f}, \mathrm{e}))=$ true.
Then access (assign(arr,e,m), f)
$=$ access (assign (arr,e,m), e) $=m$ by [A2].
Case 2: $f<e$,
that is, isEmptyQ $(\Phi($ arr,f,e $))=$ false.
Then access (assign (arr,e,m), f)

$$
\begin{aligned}
& =\operatorname{access}(a r r, \mathrm{f}) \\
& =\text { frontQ }(\Phi(\mathrm{arr}, \mathrm{f}, \mathrm{e})) \text { by [A2] and [D4]. }
\end{aligned}
$$

Since the six axioms for the unbounded queue ADT have been verified, the implementation via the unbounded arrays is correct.

Signature of Queues
The signature of the Queue ADT defines a term algebra $T_{\Sigma}$, sometimes called a free word algebra, formed by taking all legal combinations of operations that produce Queue objects.
The values in the sort Queue are those produced by the constructor operations.
Example of terms in $T_{\Sigma}$ : newQ, addQ (newQ,5), and deleteQ (addQ (addQ (deleteQ (newQ),9),15)).

The term free for such an algebra means that the operations are combined in any way satisfying the syntactic constraints, and that all such terms are distinct objects in the algebra.
The properties of an ADT are given by a set E of equations or axioms that define identities among the terms of $T_{\Sigma}$.
So the Queue ADT is not a free algebra, since the axioms recognize certain terms as being equal.
For example:

$$
\begin{aligned}
& \begin{array}{l}
\text { deleteQ }(\text { new } Q)= \\
\text { deleteQ(addQ(addQ(deleteQ } Q(\text { newQ }), 9), 15)) \\
\\
=
\end{array} \quad \text { addQ }(\text { new }, 15) .
\end{aligned}
$$

The equations define a congruence $\equiv$ e on the free algebra of terms as described in section 12.2. That equivalence relation defines a set of equivalence classes that partitions $\mathrm{T}_{\Sigma}$.

$$
[t]_{E}=\left\{u \in T_{\Sigma} \mid u \equiv E t\right\}
$$

For example, [ newQ ${ }_{E}=\{$ newQ, deleteQ(newQ), deleteQ(deleteQ(newQ)), $\ldots$ \}. The operations of the ADT can be defined on these equivalence classes before:

Chapter 12

For an n -ary operation $\mathrm{f} \in \mathrm{S}$
and $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}} \in \mathrm{T}_{\mathrm{\Sigma}}$, let $f_{Q}\left(\left[t_{1}\right],\left[t_{2}\right], \ldots,\left[t_{n}\right]\right)=\left[f\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right]$.
The resulting (quotient) algebra, also called $\mathrm{T}_{\Sigma, \mathrm{E}}$, is the abstract data type being defined. When manipulating the objects of the (quotient) algebra $\mathrm{T}_{\Sigma, \mathrm{E}}$ the normal practice is to use representatives from the equivalence classes.
Definition: A canonical or normal form for the terms in a quotient algebra is a set of distinct representatives, one from each equivalence class.

Lemma: For the Queue ADT $T_{\Sigma, \mathrm{E}}$ each term is equivalent to the value newQ or a term of the form
addQ(addQ(...addQ(addQ(newQ, $\left.\left.\left.m_{1}\right), m_{2}\right), \ldots\right)$, $m_{n-1}$ ), $m_{n}$ ) for some $n \geq 1$ where $m_{1}, m_{2}, \ldots, m_{n}:$ Natural.
Proof: The proof is by structural induction.
Basis: The only constant in $T_{\Sigma}$ is newQ, which is in normal form.

Chapter 12

Induction Step: Consider a queue term $t$ with more than one application of the constructors (newQ, addQ, deleteQ), and assume that any term with fewer applications of the constructors can be put into normal form.
Case 1: $t=\operatorname{addQ}(q, m)$ will be in normal form when q , which has fewer constructors than t , is in normal form.

Case 2: Consider $\mathrm{t}=$ deleteQ(q) where q is in normal form.
Subcase a: $q=$ newQ. Then deleteQ(q) $=$ newQ is in normal form.
Subcase b : $\mathrm{q}=\operatorname{addQ}(\mathrm{p}, \mathrm{m})$ where p is in normal form.
Then deleteQ(addQ $(p, m))=i f($
isEmptyQ(p),
newQ,
addQ(deleteQ(p),m))
If $p$ is empty, $\operatorname{delete} Q(q)=n e w Q$ is in normal form.
If $p$ is not empty, delete $Q(q)=$ addQ(deleteQ(p),m). Since deleteQ(p) has fewer constructors than $t$, it can be put into normal form, so that deleteQ(q) is in normal form.

A canonical form for a ADT can be thought of as an "abstract implementation" of the type.

John Guttag [Guttag78b] calls this a direct implementation and represents it graphically as shown below.


The canonical form for an ADT provides an effective tool for proving properties about the type.

Lemma: The representation function $\Phi$ that implements queues as arrays is an onto function.
Proof: Since any queue can be written as newQ or as addQ( $q, m$ ), we need to handle only these two forms.
By [D1], $\Phi($ newArray, 0,0$)=$ newQ.
Assume as an induction hypothesis that $\mathrm{q}=$ $\Phi($ arr,f,e) for some array.
Then by [D2], $\Phi($ assign $(a r r, e, m), f, e+1)=$ addQ ( $\Phi($ arr,f,e), m).
Therefore, any queue is the image of some triple under the representation function $\Phi$.

Given an ADT with signature S, operations in $S$ that produce element of the type of interest have already been called constructors. Those operations in $S$ whose range is an already defined type of "basic" values are called selectors. The operations of $S$ are partitioned into two disjoint sets, Con the set of constructors and Sel the set of selectors. The selectors for Queues are frontQ and isEmptyQ.

Definition: A set of equations for an ADT is sufficiently complete if for each ground term $f\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$ where $\mathrm{f} \in$ Sel, the set of selectors, there is an element $u$ of a predefined type such that $f\left(t_{1}, t_{2}, \ldots, t_{n}\right) \equiv E u$. This condition means there are sufficient axioms to make the derivation to $u$.

Theorem: The equations in the module Queues are sufficiently complete.
Proof:

1. Every queue can be written in normal form as newQ or as addQ(q,m).
2. isEmptyQ(newQ) = true, isEmpty $Q(\operatorname{addQ}(q, m))=$ false, front $Q($ new $Q)$
$=$ errorNatural, and frontQ(addQ(q,m))
$=\mathrm{m}$ or frontQ(q) (use induction).

## Example: Expressions

Concrete Syntax:

$$
\begin{aligned}
& \text { <expr> ::= <term> } \\
& \text { <expr> ::= <expr> + <term> } \\
& \text { <expr> ::= <expr> - <term> } \\
& \text { <term> ::=<element> } \\
& \text { <term> ::= <term>* <element> } \\
& \text { <element> ::= <identifier> } \\
& \text { <element> : := (<expr>) }
\end{aligned}
$$

Define a signature $\Sigma$ that corresponds exactly to the BNF definition.

Each nonterminal becomes a sort in $\Sigma$, and each production becomes a function symbol whose syntax captures the essence of the production.

The signature of the concrete syntax is given in the module Expressions.
module Expressions
exports
sorts Expression, Term, Element, Identifier operations
expr ( _ ) : Term $\rightarrow$ Expression
add (_, _ ) :
Expression, Term $\rightarrow$ Expression sub ( _ , _ ) :

Expression, Term $\rightarrow$ Expression term ( _ ) : Element $\rightarrow$ Term mul (_, _) : Term, Element $\rightarrow$ Term elem ( _ ) : Identifier $\rightarrow$ Element paren ( _ ) : Expression $\rightarrow$ Element

## end exports

end Expressions
The terminal symbols in the grammar are "forgotten" in the signature since they are embodied in unique names of the function symbols.

Consider the collection of $\Sigma$-algebras following this signature.
The term algebra $T_{\Sigma}$ is initial in the collection of all $\Sigma$-algebras, meaning that for any $\Sigma$-algebra A , there is a unique homomorphism $\mathrm{h}: \mathrm{T}_{\Sigma} \rightarrow \mathrm{A}$.
The elements of $T_{\Sigma}$ are terms constructed using the function symbols in $\Sigma$.
Since this signature has no constants, assume a set of constants of sort Identifier and represent them as structures of the form ide( $\mathbf{x}$ ) containing atoms as the identifiers.
Think of these structures as the tokens produced by a scanner.

The expression " $x$ * $(y+z)$ " corresponds to the following term in $\mathrm{T}_{\mathrm{\Sigma}}$ :
$t=\operatorname{expr}($ mul (term (elem (ide (x))), paren (add (expr (term (elem (ide(y)))), term (elem (ide(z))))))).

Constructing such a term corresponds to parsing the expression.

## Concrete Syntax



## Abstract Syntax



The concrete syntax of a programming language coincides with the initial term algebra of a specification with signature $\Sigma$.
What does its abstract syntax correspond to?
Consider the following algebraic specification of abstract syntax for the expression language.

```
module AbstractExpressions
    exports
        sorts AbsExpr, Symbol
        operations
            plus (_, _) :
                            AbsExpr, AbsExpr \(\rightarrow\) AbsExpr
        minus (_,_):
                            A'AbsExpr, AbsExpr \(\rightarrow\) AbsExpr
        times (_, _) :
                            AbsExpr, AbsExpr \(\rightarrow\) AbsExpr
        ide ( _ ) : Symbol \(\rightarrow\) AbsExpr
    end exports
end AbstractExpressions
```

Use set Symbol of symbolic atoms as identifiers.

Construct terms with the constructor function symbols in the AbstractExpressions module to represent the abstract syntax trees.

These freely constructed terms form term algebra A according to signature of AbstractExpressions.
A also serves as a model of the specification in the Expressions module; that is, A is a $\Sigma$-algebra:
Expression $_{\mathrm{A}}=$ Term $_{\mathrm{A}}=$ Element $_{\mathrm{A}}=$ AbsExpr
Identifier $_{\mathrm{A}}=\{\operatorname{ide}(\mathrm{x}) \mid \mathrm{x}:$ Symbol $\}$.
Operations:
expra : AbsExpr $\rightarrow$ AbsExpr
defined by $\operatorname{expr}_{\mathrm{A}}(\mathrm{e})=\mathrm{e}$
add $_{\mathrm{A}}:$ AbsExpr, AbsExpr $\rightarrow$ AbsExpr defined by $\operatorname{add}_{\mathrm{A}}\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)=\operatorname{plus}\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)$
sub $_{\text {A }}:$ AbsExpr, AbsExpr $\rightarrow$ AbsExpr defined by $\operatorname{sub}_{\mathrm{A}}\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)=\operatorname{minus}\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)$

Chapter 12
$=\operatorname{expr}_{\mathrm{A}}\left(\operatorname{mul}_{\mathrm{A}}\left(\operatorname{term}_{\mathrm{A}}(\operatorname{ide}(\mathrm{x}))\right.\right.$,
$\operatorname{paren}_{\mathrm{A}}\left(\operatorname{add}_{\mathrm{A}}\left(\operatorname{expr}_{\mathrm{A}}\left(\operatorname{term}_{\mathrm{A}}(\operatorname{ide}(\mathrm{y}))\right)\right.\right.$,
$\left.\left.\left.\left.\operatorname{term}_{\mathrm{A}}(\operatorname{ide}(\mathrm{z}))\right)\right)\right)\right)$
$=\operatorname{expr}_{\mathrm{A}}\left(\right.$ mul $_{\mathrm{A}}$ (ide $(\mathrm{x})$, paren $_{\mathrm{A}}$
$\operatorname{add}_{\mathrm{A}}\left(\operatorname{expr}_{\mathrm{A}}\right.$ (ide(y)),
ide(z)))))
$=\operatorname{mul}_{\mathrm{A}}\left(\operatorname{ide}(\mathrm{x}), \operatorname{add}_{\mathrm{A}}(\operatorname{ide}(\mathrm{y}), \operatorname{ide}(\mathrm{z}))\right)$
$=$ times (ide(x), plus (ide(y), ide(z))),
which represents the abstract syntax tree in A that corresponds to the original expression " $x$ * $(y+z)$ ".

Each version of abstract syntax is a $\Sigma$-algebra for the signature associated with the grammar that forms the concrete syntax of the language.

Any $\Sigma$-algebra serving as an abstract syntax is a homomorphic image of $T_{\Sigma}$, the initial algebra for the specification with signature $\Sigma$.

## Confusion

Generally, $\Sigma$-algebras acting as abstract syntax will contain confusion; the homomorphism from $T_{\Sigma}$ will not be one-to-one.
This confusion reflects the abstracting process:
By confusing elements in the algebra, we are suppressing details in the syntax.

The expressions " $x+y$ " and " $(x+y)$ ", although distinct in the concrete syntax and in $\mathrm{T}_{\Sigma}$, are the same when mapped to plus(ide(x),ide(y)) in A.

Any $\Sigma$-algebra for the signature resulting from the concrete syntax can serve as the abstract syntax for some semantic specification of the language, but many such algebras will be so confused that the associated semantics will be trivial or absurd.
The task of the semanticist is to choose an appropriate $\Sigma$-algebra that captures the organization of the language in such a way that appropriate semantics can be attributed to it.
module WrenValues imports Booleans, Naturals
exports
sorts WrenValue
operations
wrenValue ( _ ) : Natural $\rightarrow$ WrenValue wrenValue ( _ ) : Boolean $\rightarrow$ WrenValue errorValue : WrenValue eq?(_, ) :

WrenValue,WrenValue $\rightarrow$ Boolean
end exports
variables
$\mathrm{x}, \mathrm{y}$ : WrenValue
m, n: Natural
$b, b_{1}, b_{2}$ : Boolean

## Algebraic Semantics for Wren

```
module WrenTypes
    imports Booleans
    exports
        sorts WrenType
        operations
```

            naturalType, booleanType : WrenType
            programType, errorType : WrenType
            eq? (_, _ ) :
                WrenType,WrenType \(\rightarrow\) Boolean
    end exports
    variables
        \(\mathrm{t}_{1}, \mathrm{t}_{2}\) : WrenType
    equations
    [Wt1]eq? \(\left(\mathrm{t}_{1}, \mathrm{t}_{1}\right)=\) true \(\quad\) when \(\mathrm{t}_{1}=\) errorType
    [Wt2]eq? \(\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=\mathrm{eq}\) ? \(\left(\mathrm{t}_{2}, \mathrm{t}_{1}\right)\)
    [Wt3]eq? (naturalType, booleanType) = false
    [Wt4]eq? (naturalType, programType) = false
    [Wt5]eq? (naturalType, errorType) = false
    [Wt6]eq? (booleanType, programType) = false
    [Wt7]eq? (booleanType, errorType) = false
    [Wt8]eq? (programType, errorType) = false
    end WrenTypes

## equations

[Wv1] eq? ( $x, x$ ) = true when $x \neq e r r o r V a l u e$
[Wv2] eq? $(x, y)=e q$ ? $(y, x)$
[Wv3] eq? (wrenValue(m), wrenValue(n))
= eq? (m,n)
[Wv4] eq? (wrenValue( $b_{1}$ ), wrenValue $\left(b_{2}\right)$ )

$$
=e q ?\left(b_{1}, b_{2}\right)
$$

[Wv5] eq? (wrenValue(m), wrenValue(b)) = false when $m \neq e r r o r$ Natural, $b \neq e r r o r B o o l e a n$
[Wv6] eq? (wrenValue(m), errorValue) = false when $\mathrm{m}=$ errorNatural
[Wv7] eq? (wrenValue(b), errorValue) = false when $\mathrm{b} \neq$ errorBoolean
end WrenValues

Abstract Syntax for Wren<br>module WrenASTs<br>imports Naturals, Strings, WrenTypes<br>exports<br>sorts WrenProgram, Block, DecSeq,<br>Declaration, CmdSeq, Cmd, Expr, Ident<br>operations<br>astWrenProg ( _ , _ ) : Ident, Block $\rightarrow$ WrenProg astBlock (_, _ ) : DecSeq, CmdSeq $\rightarrow$ Block<br>astDecs (_, _ ) : Declaration, DecSeq $\rightarrow$ DecSeq<br>astEmptyDecs : DecSeq<br>astDec (_ , _ ) : Ident, WrenType $\rightarrow$ Declaration<br>astCmds (_, _ ) : Cmd, CmdSeq $\rightarrow$ CmdSeq<br>astOneCmd ( _ ) : Command $\rightarrow$ CmdSeq<br>astRead ( _ ) : Ident $\rightarrow$ Command<br>astWrite ( _ ) : Expr $\rightarrow$ Command<br>astAssign ( _ , _ ) : Ident, Expr $\rightarrow$ Command<br>astSkip : Command<br>astWhile ( _ , _ ) : Expr, CmdSeq $\rightarrow$ Command

astlfThen ( _ , _ ) : Expr, CmdSeq $\rightarrow$ Command astlfElse ( _ , _ , _ ) : Expr,CmdS,CmdS $\rightarrow$ Cmd
astAddition (_, _) : Expr, Expr $\rightarrow$ Expr astSubtraction (_, _) : Expr, Expr $\rightarrow$ Expr astMultiplication ( _ , _ ) : Expr, Expr $\rightarrow$ Expr astDivision (_, _ ) : Expr, Expr $\rightarrow$ Expr astEqual (_, _) : Expr, Expr $\rightarrow$ Expr astNotEqual ( _ , _ ) : Expr, Expr $\rightarrow$ Expr astLessThan (_, _ ) : Expr, Expr $\rightarrow$ Expr astLessThanEqual ( _ , _ ) : Expr, Expr $\rightarrow$ Expr astGreaterThan (_, _ ) : Expr, Expr $\rightarrow$ Expr astGreaterThanEqual (_ , _ ) : Expr, Expr $\rightarrow$ Expr astVariable ( _ ) : Ident $\rightarrow$ Expr astNaturalConstant ( _ ) : Natural $\rightarrow$ Expr astldent ( _ ) : String $\rightarrow$ Ident

## end exports

end WrenASTs

```
A Type Checker for Wren
module WrenTypeChecker
    importsBooleans, WrenTypes, WrenASTs,
        instantiation of Mappings
        bind Entries
                using String for Domain
                    using WrenType for Range
                    using eq? for equals
                    using errorString for errorDomain
                    using errorType for errorRange
            rename using SymbolTable for Mapping
                                    using nullSymTab for emptyMap
exports
operations
    check ( _ ) : WrenProgram }->\mathrm{ Bool
    check (_ , _ ) : Block, SymTab }->\mathrm{ Bool
    check (_, _) :
                            DecSeq, SymTab -> Bool,SymTab
    check(_, _ ) :
            Declaration,SymTab }->\mathrm{ Bool,SymTab
    check (_ , _ ) : CmdSeq, SymTab -> Bool
    check (_, _ ) : Command, SymTab }->\mathrm{ Bool
end exports
```

typeExpr : Expr, SymTab $\rightarrow$ WrenType
variables
block : Block
decs : DecSeq
dec: Declaration
cmds, cmds ${ }_{1}$, cmds2 : CmdSeq
cmd: Command
expr, expr ${ }_{1}$, expr 2 : Expr
type:WrenType
symtab, symtab 1 : SymbolTable
m : Natural
name : String
b, $b_{1}, b_{2}$ : Boolean

## equations

## [Tc1]

check (astWrenProgram (astldent (name), block)) $=\operatorname{check}$ (block, update(nullSymTab,name,progType)
[Tc2]
check (astBlock (decs, cmds), symtab)
$=$ and ( $\mathrm{b}_{1}, \mathrm{~b}_{2}$ )
when $\left\langle b_{1}\right.$, symtab ${ }_{1}>=$ check (decs, symtab)

$$
\mathrm{b}_{2}=\text { check }\left(\mathrm{cmds}, \text { symtab }_{1}\right)
$$

[Tc3]
check (astDecs (dec, decs), symtab)
$=<a n d\left(b_{1}, \mathrm{~b}_{2}\right)$, symtab ${ }_{2}>$
when $\left\langle\mathrm{b}_{1}\right.$, symtab $\left.{ }_{1}\right\rangle=$ check (dec, symtab)
$\left\langle b_{2}\right.$, symtab $_{2}>=$ check(decs, symtab ${ }_{1}$ )
[Tc4]
check (astEmptyDecs, symtab)
= <true, symtab>
[Tc5]
check (astDec (astldent (name), type), symtab)
$=i f($ apply (symtab, name) $=$ errorType, <true, update(symtab, name, type)>, <false, symtab>)
[Tc6]
check (astCmds (cmd, cmds), symtab)
$=$ and (check (cmd, symtab), check (cmds, symtab))
[Tc7]
check (astOneCmd (cmd), symtab)
= check (cmd, symtab)
[Tc8]
check (astRead (astldent (name)), symtab)
= eq?(apply (symtab, name), naturalType)
[Tc9]
check (astWrite (expr, symtab)
= eq? (typeExpr (expr, symtab), naturalType)
[Tc10]
check(astAssign (astldent (name), expr), symtab)
= eq? (apply(symtab, name),
typeExpr (expr, symtab))
[Tc11]
check (astSkip, symtab)

$$
=\text { true }
$$

[Tc19]
typeExpr (astEqual (expr ${ }_{1}$, expr ${ }_{2}$ ), symtab)
= if (and(eq?(typeExpr(expr ${ }_{1}$,symtab), natType), eq?(typeExpr(expr2,symtab),natType)), booleanType, errorType)

## [Tc21]

typeExpr (astLessThan (expr ${ }_{1}$, expr2), symtab)
= if (and(eq?(typeExpr(expr ${ }_{1}$,symtab), natType), eq?(typeExpr(expr 2 ,symtab),natType)), booleanType, errorType)
[Tc25]
typeExpr (astNaturalConstant (m), symtab)
= naturalType
[Tc26]
typeExpr (astVariable (astldent(name)), symtab) = apply (symtab, name)
end WrenTypeChecker

The following equations perform the actual type checking:
[Tc8] The variable in a read command has naturalType
[Tc9] The expression in a write command has naturalType
[Tc10] The assignment target variable and expression have the same type
[Tc15-18] Arithmetic operations involve expressions of naturalType
[Tc19-24] Comparisons involve expressions of naturalType.

## An Interpreter for Wren

## module WrenEvaluator

imports Booleans, Naturals, Strings, Files, WrenValues, WrenASTs, instantiation of Mappings bind Entries
using String for Domain
using Wren-Value for Range using eq? for equals using errorString for errDomain using errorValue for errorRange rename
using Store for Mapping using emptySto for emptyMap using updateSto for update using applySto for apply
exports
operations
meaning (_,_) : WrenProgram, File $\rightarrow$ File
perform (_, _) : Block, File $\rightarrow$ File
elaborate $\left({ }_{-},{ }_{-}\right):$DecSeq, Store $\rightarrow$ Store
elaborate (_, _ ) : Declaration, Store $\rightarrow$ Store

## equations

[Ev1]
meaning(astWrenProgram(astldent(name),block),input)
= perform (block, input)
[Ev2]
perform (astBlock (decs,cmds), input)
= execute (cmds,
elaborate(decs,emptySto), input, emptyFile)
[Ev3]
elaborate (astDecs (dec, decs), sto)

$$
=\text { elaborate (decs,elaborate(dec, sto)) }
$$

[Ev4] elaborate (astEmptyDecs, sto) = sto
[Ev5]
elaborate(astDec(astldent(name),natType), sto) $=$ updateSto(sto, name, wrenValue(0))
[Ev6]
elaborate(astDec(astldent(name),booleanType),sto)
= updateSto(sto, name, wrenValue(false))
[Ev7]
elaborate (astEmptyDecs, sto)
= sto
[Ev8]
execute(astCmds(cmd,cmds), sto $_{1}$, input ${ }_{1}$, output ${ }_{1}$ ) $=$ execute (cmds, sto 2 , input 2 , output ${ }_{2}$ ) when <sto2, input 2 , output ${ }_{2}>=$ execute (cmd, sto $_{1}$, input ${ }_{1}$, output ${ }_{1}$ )
[Ev9]
execute (astOneCmd (cmd), sto, input, output) $=$ execute (cmd, sto, input, output)
[Ev10]
execute (astSkip, sto, input, output) = <sto, input, output>
[Ev11]
execute(astRead(astldent(name)),sto,input,output)

$$
=\text { if (empty? (input), }
$$

need error case here
<updateSto(sto,name,first), rest, output)
when cons(first,rest) $=$ input
[Ev12]
execute (astWrite (expr), sto, input, output)
= <sto,input, concat(output,mkFile(evaluate(expr,sto)))>
[Ev13]
execute(astAssign(astldent(name),expr), sto,input,output) $=<u p d a t e S t o(s t o, n a m e$, evaluate(expr,sto)), input,output
[Ev14]
execute(astWhile(expr,cmds), sto ${ }_{1}$, input ${ }_{1}$, output ${ }_{1}$ ) $=$ if (eq? (evaluate (expr, sto 1 ), wrenVal(true)) execute(astWhile(expr,cmds), sto2, input 2 , output 2 ) when $<$ sto $_{2}$, input 2 , output ${ }_{2}>=$ execute (cmds, sto ${ }_{1}$, input ${ }_{1}$, output ${ }_{1}$ ), <sto, input, output>)
[Ev15]
execute (astlfThen (expr, cmds), sto, input, output) $=$ if (eq? (evaluate (expr, sto), wrenVal(true)) execute (cmds, sto, input, output), <sto, input, outpu $>$ )
[Ev16]
execute(astlfElse(expr,cmds $1, \mathrm{cmds}_{2}$ ),sto,input,output) $=$ if (eq? (evaluate (expr, sto), wrenVal(true)) execute (cmds1, sto, input, output) execute ( $\mathrm{cmds}_{2}$, sto, input, output))
[Ev17]
evaluate (astAddition (expr ${ }_{1}$, expr 2 ), sto)
$=$ wrenValue(add ( $\mathrm{m}, \mathrm{n}$ ))
when wrenValue $(\mathrm{m})=$ evaluate ( expr $_{1}$, sto), wrenValue $(\mathrm{n})=$ evaluate $\left(\operatorname{expr}_{2}\right.$, sto
[Ev21]
evaluate (astEqual (expr ${ }_{1}$, expr2), sto)
$=$ wrenValue(eq? (m,n))
when wrenValue $(\mathrm{m})=$ evaluate ( expr $_{1}$, sto), wrenValue(n) $=$ evaluate $\left(\operatorname{expr}_{2}\right.$, sto $)$
[Ev23]
evaluate (astLessThan (expr ${ }_{1}$, expr ${ }_{2}$ ), sto)
$=$ wrenValue(less? $(m, n)$ )
when wrenValue $(m)=$ evaluate ( expr $_{1}$, sto), wrenValue $(n)=$ evaluate $\left(\operatorname{expr}_{2}\right.$, sto $)$
[Ev27]
evaluate (astNaturalConstant (m), sto) $=$ wrenValue $(\mathrm{m})$
[Ev28]
evaluate (astVariable (astldent (name)), sto) = applySto (sto, name)
end WrenEvaluator

## A Wren System

module WrenSystem
imports WrenTypeChecker, WrenEvaluator
exports operations
runWren: WrenProgram, File $\rightarrow$ File
end exports
variables
input : File
program : WrenProgram
equations
[Ws1] runWren (program, input) $=i f($ check (program), eval (program, input), emptyFile)
-- return an empty file if context violation, otherwise run program
end WrenSystem

## Implementing Algebraic Semantics

We show the implementation of three modules: Booleans, Naturals, and WrenEvaluator.

Expected behavior of the system:
>> Interpreting Wren via Algebraic Semantics <<<
Enter name of source file: frombinary.wren program frombinary is
var sum, n : integer;
begin
sum := 0; read $n$;
while $\mathrm{n}<2$ do
sum := 2*sum+n; read $n$
end while;
write sum
end
Scan successful
Parse successful
Enter an input list followed by a period:
[1,0,1,0,1,1,2].
Output $=[43]$
yes

## Module Booleans

boolean(true).
boolean(false).
bnot(true, false).
bnot(false, true).
and(true, P, P).
and(false, true, false).
and(false, false, false).
or(false,P,P).
or(true, $P$,true) :- boolean $(P)$.
xor(P, Q, R) :- or(P,Q,PorQ), and(P,Q,PandQ), bnot(PandQ,NotPandQ), and(PorQ,NotPandQ, R).
beq(P, Q, R) :- xor(P,Q,PxorQ), bnot(PxorQ,R).

## Module Naturals

The predicate natural succeeds with arguments of the form
zero, succ(zero), succ(succ(zero)), ....
Calling this predicate with a variable, such as natural( M ), generates the natural numbers in this form if repeated solutions are requested by entering semicolons.
natural(zero).
natural(succ(M)) :- natural(M).
The arithmetic functions follow the algebraic specification closely.
Rather than return an error value for subtraction of a larger number from a smaller number or for division by zero, we print an appropriate error message and abort the program execution.
The comparison operations follow directly from their definitions.
add(M, zero, M) :- natural(M).
$\operatorname{add}(M, \operatorname{succ}(N), \operatorname{succ}(R)):-\operatorname{add}(M, N, R)$.
sub(zero, succ(N), R) :-
write('Fatal Error: Result of subtraction is negative'), nl , abort.
sub(M, zero, M) :- natural(M).
sub(succ(M), $\operatorname{succ}(N), R):-\operatorname{sub}(M, N, R)$.
mul(M, zero, zero) :- natural(M).
mul(M, succ(zero), M) :- natural(M).
$\operatorname{mul}(\mathrm{M}, \operatorname{succ}(\operatorname{succ}(\mathrm{N})), R):-$
mul(M,succ(N),R1), add(M,R1,R).
$\operatorname{div}(\mathrm{M}$, zero, R$)$ :write('Fatal Error: Division by zero'), $\mathrm{nl}, \mathrm{nl}$, abort.
$\operatorname{div}(M, \operatorname{succ}(N), z e r o):-\operatorname{less}(M, \operatorname{succ}(N)$, true $)$.
$\operatorname{div}(M, \operatorname{succ}(\mathrm{~N}), \operatorname{succ}($ Quotient)) :less(M,succ(N),false), sub(M,succ(N),Dividend), div(Dividend,succ(N), Quotient).

```
exp(M, zero, succ(zero)) :- natural(M).
```

$\exp (M, \operatorname{succ}(N), R):-\exp (M, N, M \exp N)$,
$\operatorname{mul}(M, M \operatorname{expN}, R)$.
eq(zero,zero,true).
eq(zero,succ(N),false) :- natural(N).
eq(succ(M),zero,false) :- natural(M).
eq(succ(M),succ(N),BoolValue) :-
eq(M,N,BoolValue).
less(zero,succ( N ),true) :- natural( N ).
less(M,zero,false) :- natural(M).
less(succ(M),succ(N),BoolValue) :-
less(M,N,BoolValue).
greater(M,N,BoolValue) :- less(N,M,BoolValue).

```
lesseq(M,N,BoolValue) :-
    less(M,N,B1), eq(M,N,B2),
    or(B1,B2,BoolValue).
greatereq(M,N,BoolValue) :-
    greater(M,N,B1), eq(M,N,B2),
    or(B1,B2,BoolValue).
```

Two operations not specified in Naturals module. toNat converts a numeral to natural notation toNum converts a natural number to a base-ten numeral.
toNat(4,Num) returns Num = succ(succ(succ(succ(zero)))).
toNat(0,zero).
toNat(Num, succ(M)) :-
Num $>0$, NumMinus 1 is Num-1, toNat(NumMinus1, M).
toNum(zero,0).
toNum(succ(M),Num) :toNum(M,Num1), Num is Num1+1.

## Declarations

The clauses for elaborate are used to build a store with numeric variables initialized to zero and Boolean variables initialized to false.

```
elaborate([DecIDecs],StoIn,StoOut) :- % Ev3
    elaborate(Dec,Stoln,Sto),
    elaborate(Decs,Sto,StoOut).
elaborate([],Sto,Sto). % Ev4
```

elaborate(dec(integer,[Var]),Stoln,StoOut) :-
updateSto(Stoln,Var,zero,StoOut). \% Ev5
elaborate(dec(boolean,[Var]),StoIn,StoOut) :-
updateSto(Stoln,Var,false,StoOut). \% Ev6

## Commands

For a sequence of commands, the commands following the first command are evaluated with the store produced by the first command execute([CmdICmds],Stoln,Inputln,Outputln, StoOut,InputOut,OutputOut) :- \% Ev8
execute(Cmd,Stoln,InputIn,Outputln, Sto,Input,Output), execute(Cmds,Sto,Input,Output, StoOut, InputOut,OutputOut).
execute([],Sto,Input,Output,Sto,Input,Output). \% Ev9
The read command removes the first item from the input file, converts it to the natural number notation, and places the result in the store.
execute(read(Var),StoIn,emptyFile,Output, StoOut,_,Output) :- \% Ev11 write('Fatal Error: Reading an empty file'), nl, abort.
execute(read(Var),[FirstInIRestIn],Output, StoOut,Restln,Output) :- \% Ev11 toNat(Firstln, Value),
updateSto(Stoln,Var,Value,StoOut).

The write command evaluates the expression, converts the resulting value from natural number notation to a numeric value, and appends the result to the end of the output file.

```
execute(write(Expr),Sto,Input,OutputIn,
            Sto,Input,OutputOut) :- % Ev2
            evaluate(Expr,Stoln,ExprValue),
            toNum(ExprValue,Value),
            mkFile(Value,ValueOut),
            concat(OutputIn,ValueOut,OutputOut).
```

Assignment evaluates the expression using the current store and then updates that store to reflect the new binding. The skip command makes no changes to the store or to the files. execute(assign(Var,Expr),Stoln,Input,Output, StoOut,Input,Output) :- \% Ev13 evaluate(Expr,Stoln,Value). updateSto(Stoln, Var, Value,StoOut). execute(skip,Sto,Input,Output,Sto,Input,Output). \% Ev10

Two forms of if test Boolean expressions and let a predicate "select" perform actions.

```
execute(if(Expr,Cmds),Stoln,Inputln,OutputIn,
            StoOut,InputOut,OutputOut) :-
        evaluate(Expr,StoIn,BoolVal), % Ev15
        select(BoolVal,Cmds, [ ],
                StoIn,InputIn,OutputIn,
                StoOut,InputOut,OutputOut).
execute(if(Expr,Cmds1,Cmds2),StoIn,InputIn,
                OutputIn,StoOut,InputOut,OutputOut) :-
        evaluate(Expr,Stoln,BoolVal), % Ev16
        select(BoolVal,Cmds1,Cmds2,
            Stoln,InputIn,OutputIn,
                        StoOut,InputOut,OutputOut).
select(true,Cmds1,Cmds2,
                        Stoln,InputIn,Outputln,
                        StoOut,InputOut,OutputOut) :-
        execute(Cmds1,StoIn,InputIn,OutputIn,
                        StoOut,InputOut,OutputOut).
select(false,Cmds1,Cmds2,
                Stoln,Inputln,OutputIn,
        StoOut,InputOut,OutputOut) :-
        execute(Cmds2,Stoln,InputIn,OutputIn,
                StoOut,InputOut,OutputOut).
```

If the comparison in the while command is false, the store and files are returned unchanged.
If the comparison is true, the while command is reevaluated with the store and files resulting from the execution of the while loop body.

```
execute(while(Expr,Cmds),
                                    Stoln,InputIn,OutputIn,
                                    StoOut,InputOut,OutputOut) :-
    evaluate(Expr,Stoln,BoolVal), % Ev14
        iterate(BoolVal,Expr,Cmds,
                                    StoIn,InputIn,OutputIn,
        StoOut,InputOut,OutputOut).
iterate(false,Expr,Cmds,
        Sto,Input,Output,Sto,Input,Output).
iterate(true,Expr,Cmds,
        Stoln,Inputln,OutputIn,
        StoOut,InputOut,OutputOut) :-
        execute(Cmds,StoIn,InputIn,OutputIn,
        Sto,Input,Output),
    execute(while(Expr,Cmds),
        Sto,Input,Output,
        StoOut,InputOut,OutputOut).
```

Evaluation of comparisons is similar to arithmetic expressions; the equal comparison is given below, and the five others are left as an exercise.

```
evaluate(exp(equal,Expr1,Expr2),Sto,Bool) :-
    evaluate(Expr1,Sto,Val1), % Ev21
    evaluate(Expr2,Sto,Val2),
    eq(Val1,Val2,Bool).
```

Prolog implementation of algebraic semantics is similar to the denotational interpreter with respect to command and expression evaluation.

Biggest difference:
Ignore native arithmetic in Prolog
Naturals module performs arithmetic based solely on a number system derived from applying a successor operation to an initial value zero.

