
167

Chapter 6
SELF-DEFINITION OF
PROGRAMMING LANGUAGES

The execution of a program written in a high-level language provides an
informal, operational specification of the program. Two primary ap-
proaches are used to implement high-level languages: as an interpreter

for the language or as a compiler for the language. Since interpreters and
compilers are able to process any syntactically legal program, they them-
selves can provide an operational definition for a programming level lan-
guage. Program translation will be discussed in Chapter 7. In this chapter we
focus on program interpreters—in particular, a Lisp interpreter written in
Lisp and a Prolog interpreter written in Prolog. In each case, the interpreter
itself is written in the programming language it is interpreting. We call such
an approach an operational self-definition of a programming language and
refer to the implementation as a metacir cular interpr eter .

6.1 SELF-DEFINITION OF LISP

Lisp, initially developed by John McCarthy in 1958, is the second oldest
programming language (after Fortran) in common use today. In the early
1960s McCarthy realized that the semantics of Lisp can be defined in terms
of a few Lisp primitives and that an interpreter for Lisp can be written as a
very small, concise Lisp program. Such an interpreter, referred to as a
metacircular interpreter, can handle function definitions, parameter pass-
ing, and recursion as well as simple S-expressions of Lisp. The small size of
the interpreter is striking, considering the thousands of lines of code needed
to write a compiler for an imperative language.

We have elected to construct the interpreter in Scheme, a popular dialect of
Lisp. Although we implement a subset of Scheme in Scheme, the interpreter
is similar to the original self-definition given by McCarthy. The basic opera-
tions to decompose a list, car and cdr, and the list constructor cons are
described in Figure 6.1. Combined with a predicate null? to test for an empty
list, a conditional expression cond , and a method to define functions using

168 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

define , it is possible to write useful Scheme functions. See Appendix B for a
more detailed description of Scheme. Our first example concatenates two
lists. A function for concatenating lists is usually predefined in Lisp systems
and goes by the name “append”.

(define (concat lst1 lst2)

(cond ((null? lst1) lst2)

(#t (cons (car lst1) (concat (cdr lst1) lst2)))))

List Operations

(car <list>) return the first item in <list>

(cdr <list>) return <list> with the first item removed

(cons <item> <list>) add <item> as first element of <list>

Arithmetic Operations
(+ <e1> <e2>) return sum of the values of <e1> and <e2>
(- <e1> <e2>) return difference of the values of <e1> and <e2>
(* <e1><e2>) return product of the values of <e1> and <e2>
(/ <e1> <e2>) return quotient of the values of <e1> and <e2>

Predicates
(null? <list>) test if <list> is empty
(equal? <s1> <s2>) test the equality of S-expressions <s1> and <s2>
(atom? <s>) test if <s> is an atom

Conditional
(cond (<p1> <e1>) sequentially evaluate predicates <p1>, <p2>, ... till

(<p2> <e2>) one of them, say <pi>, returns a not false (not #f)
 : : result; then the corresponding expression ei is
(<pn> <en>)) evaluated and its value returned from the cond

Function Definition and Anonymous Functions
(define (<name> allow user to define function <name> with formal

<formals>) parameters <formals> and function body <body>
<body>)

(lambda (<formals>) create an anonymous function
 <body>)

(let (<var-bindings>) an alternative to function application;
<body>) <var-bindings> is a list of (variable S-expression)

pairs and the body is a list of S-expressions; let
returns the value of last S-expression in <body>

Other
(quote <item>) return <item> without evaluating it
(display <expr>) print the value of <expr> and return that value
(newline) print a carriage return and return ()

Figure 6.1: Built-in Functions of Scheme

1696.1 SELF-DEFINITION OF LISP

The symbols #t and #f represent the constant values true and false. Anony-
mous functions can be defined as lambda expressions. The let expression is
a variant of function application. If we add an equality predicate equal? and
an atom-testing predicate atom? , we can write other useful list processing
functions with this small set of built-in functions. In the replace function
below, all occurrences of the item s are replaced with the item r at the top
level in the list lst.

(define (replace s r lst)

(cond ((null? lst) lst)

((equal? (car lst) s) (cons r (replace s r (cdr lst))))

(#t (cons (car lst) (replace s r (cdr lst))))))

In order to test the metacircular interpreter, it is necessary to have a function
quote that returns its argument unevaluated and a function display that
prints the value of an S-expression. The basic built-in functions of Scheme
are shown in Figure 6.1.

We have elected to expand the basic interpreter by adding four arithmetic
operations, +, -, * , and /, so that we can execute some recursive arithmetic
functions that are familiar from imperative programming.

(define (fibonacci n)

(cond ((equal? n 0) 1)

 ((equal? n 1) 1)

 (#t (+ (fibonacci (- n 1)) (fibonacci (- n 2))))))

(define (factorial n)

(cond ((equal? n 0) 1)

 (#t (* n (factorial (- n 1))))))

Metacircular Interpreter

When designing a metacircular interpreter, it is easy to confuse those ex-
pressions belonging to the language being interpreted and those belonging to
the language that is doing the interpreting, since both are Scheme. To re-
duce confusion, we use two different fonts: san-serif font for the interpreter code
and normal serif font for the interpreted language. We need three major func-
tions to construct the interpreter:

• The top-level function micro-rep reads an S-expression (an atom or a list),
evaluates it, and prints the result, thus the name rep. The function micro-
rep begins with an empty environment in which all identifiers are unbound.

170 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

• The function micro-eval accepts an S-expression and an environment and
returns the value of the S-expression in the context of the environment.

• The function micro-apply accepts a function name or lambda abstraction,
a list of the results from evaluating the actual parameters, and an environ-
ment, and returns the result of applying the given function to the param-
eters in the given environment.

The functions micro-eval and micro-apply are mutually recursive and continue
simplifying the task at hand until they reach a base case that can be solved
directly. An environment is an association list, a list of (name value) pairs.
Function definitions and variable bindings share the same association list.

The recursive function micro-rep repeatedly reads an S-expression after printing
a prompt, evaluates the expression, prints the result, and calls itself with the
new environment reflecting any definitions that have been elaborated. The
function micro-rep handles two situations:

• If the S-expression is the atom quit, micro-rep prints “Goodbye” and exits
the interpreter.

• If the S-expression is a function definition, micro-rep uses the utility func-
tion updateEnv to add the function name to the environment with an asso-
ciated value, which is a lambda expression encapsulating the parameter
list and the body of the function. Then micro-rep displays the name of the
function.

All other S-expressions are passed on to micro-eval for evaluation. Note that
atoms are recognized first so that we only apply car to a list.

(define (micro-rep env)
(let ((prompt (display ">> ")) (s (read)))

(if (equal? s ‘quit)
(begin (newline) (display "Goodbye") (newline))
(cond

((atom? s) (begin (newline)
(display (micro-eval s env))
(newline)
(micro-rep env)))

((equal? (car s) 'define)
(let ((newenv (updateEnv env

(caadr s)
(list 'lambda (cdadr s) (caddr s)))))

(begin (newline)
(display (caadr s))
(newline)
(micro-rep newenv))))

1716.1 SELF-DEFINITION OF LISP

(#t (begin (newline)
(display (micro-eval s env))
(newline)
(micro-rep env)))))))

The utility function updateEnv adds a new binding onto the front of the given
environment.

(define (updateEnv env ide binding) (cons (list ide binding) env))

The function micro-eval deals with several forms of S-expressions as described
below:

• An atom is either a constant (#t, #f, or a numeral) or a variable whose
value is returned.

• A quoted expression is returned unevaluated.

• The function “display” evaluates its argument, displays that value, and
returns the value of the expression printed.

• The function “newline” prints a carriage return.

• A conditional expression “cond” is handled separately since, unlike most
other functions, its arguments are only evaluated on an “as needed” basis.

• A “let” expression augments the environment with the new variable bind-
ings and evaluates the body of the let in this environment.

All other S-expressions are function calls to be processed by micro-apply, which
receives three arguments:

• A function object, either an identifier bound to a function or a lambda
expression.

• The actual parameters after their evaluation, accomplished by mapping
micro-eval over the actual parameter list.

• The current environment.

We first present the main function micro-eval. The environment is an associa-
tion list where the first item in each entry is an identifier. The utility function
applyEnv uses the built-in function assoc to search for a given identifier in an
association list and return the first list entry that matches the identifier.

(define (applyEnv ide env) (cadr (assoc ide env)))

Map, which is used to evaluate a list of actual parameters, is a built-in func-
tion that applies a functional argument to every item in a list and returns the
list of results.

172 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

(define (micro-eval s env)
(cond ((atom? s)

(cond ((equal? s #t) #t)
((equal? s #f) #f)
((number? s) s)
(else (applyEnv s env))))

((equal? (car s) 'quote) (cadr s))
((equal? (car s) 'lambda) s)
((equal? (car s) 'display)

(let ((expr-value (micro-eval (cadr s) env)))
(display expr-value) expr-value))

((equal? (car s) 'newline) (begin (newline) ‘()))
((equal? (car s) 'cond) (micro-evalcond (cdr s) env))
((equal? (car s) 'let)

(micro-evallet (cddr s) (micro-let-bind (cadr s) env)))
(else (micro-apply (car s)

(map (lambda (x) (micro-eval x env)) (cdr s))
env))))

Observe that the value of a lambda expression in this implementation is the
lambda expression itself. So lambda expressions are handled in the same
way as boolean constants and numerals, and the internal representation of a
function is identical to its syntactic representation.

The arguments for the cond function are a sequence of lists, each with two
parts: a predicate to be tested and an expression to be evaluated if the result
of the test is non-#f (not false). These lists are evaluated sequentially until
the first non-#f predicate is encountered. If all predicates return #f, cond
returns #f. The function micro-evalcond is used to perform the necessary
evaluations on an “as needed” basis.

(define (micro-evalcond clauses env)
(cond ((null? clauses) #f)

((micro-eval (caar clauses) env) (micro-eval (cadar clauses) env))
(else (micro-evalcond (cdr clauses) env))))

We show two simple uses of the let expression before discussing its imple-
mentation. The following let expression returns 5:

(let ((a 2) (b 3)) (+ a b))

In the case of nested let’s, the nearest local binding is used.

(let ((a 5)) (display a)

(let ((a 6)) (display a))

(display (display a)))

173

prints (all on one line)

5 from the first display

6 from the second display inside the inner let

5 from the final nested display

5 from the final outer display

5 from the outer let.

Notice that the value returned from the inner let is not displayed since it is
not the final S-expression in the outer let. The function micro-evallet receives
a list of one or more S-expressions from the body of the let and the environ-
ment constructed using micro-let-bind applied to the list of bindings. These
S-expressions are evaluated until the final one is reached, and that one is
returned after being evaluated.

(define (micro-evallet exprlist env)
(if (null? (cdr exprlist))

(micro-eval (car exprlist) env)
(begin (micro-eval (car exprlist) env)

(micro-evallet (cdr exprlist) env))))

The environment for the execution of a let is the current environment of the
let augmented by the bindings created by the list of (identifier value) pairs.

(define (micro-let-bind pairlist env)
(if (null? pairlist)

env
(cons (list (caar pairlist) (micro-eval (cadar pairlist) env))

(micro-let-bind (cdr pairlist) env))))

We now turn our attention to micro-apply. If the object passed to micro-apply is
one of the predefined functions car, cdr, cons, atom?, null?, equal?, +, -, * , or
/, the appropriate function is executed. If the object is a user-defined func-
tion, micro-apply is called recursively with the value (a lambda expression)
associated with the function identifier, retrieved from the environment using
micro-eval, as the first parameter. If fn, the first formal parameter of micro-
apply, is not an atom, it must already be a lambda expression (an explicit
check can be added if desired). Calling micro-apply with a lambda expression
causes micro-eval to be called with the body of the function as the S-expres-
sion and the environment augmented by the binding of the formal param-
eters to the actual parameter values. This binding is accomplished by micro-
bind, which accepts a list of formal parameters, a list of values, and the cur-
rent environment and adds the (identifier value) pairs, one at a time, to the
environment. Notice that the bindings are added to the front of the environ-

6.1 SELF-DEFINITION OF LISP

174 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

ment, which acts like a stack, so that the most recent value is always re-
trieved by applyEnv.

(define (micro-apply fn args env)
(if (atom? fn)

(cond ((equal? fn 'car) (caar args))
((equal? fn 'cdr) (cdar args))
((equal? fn 'cons) (cons (car args) (cadr args)))
((equal? fn 'atom?) (atom? (car args)))
((equal? fn 'null?) (null? (car args)))
((equal? fn 'equal?) (equal? (car args) (cadr args)))
((equal? fn '+) (+ (car args) (cadr args)))
((equal? fn '-) (- (car args) (cadr args)))
((equal? fn '*) (* (car args) (cadr args)))
((equal? fn '/) (/ (car args) (cadr args)))
(else (micro-apply (micro-eval fn env) args env)))

(micro-eval (caddr fn) (micro-bind (cadr fn) args env))))

(define (micro-bind key-list value-list env)
(if (or (null? key-list) (null? value-list))

env
(cons (list (car key-list) (car value-list))

(micro-bind (cdr key-list) (cdr value-list) env))))

This completes the code for our interpreter, which is initiated by entering

(micro-rep ‘()).

Running the Interpreter

To illustrate its operation, we trace the interpretation of a simple user-de-
fined function “first” that is a renaming of the built-in function car.

>> (define (first lst) (car lst))

first

Now consider the execution of the function call:

>> (first (quote (a b c)))

a

This S-expression is not dealt with by micro-eval, but is passed to micro-apply
with three arguments:

175

first a function identifier

((a b c)) evaluation of the actual parameters

((first (lambda (lst) (car lst)))) the current environment

The evaluation of the actual parameters results from mapping micro-eval onto
the actual parameter list. In this case, the only actual parameter is an ex-
pression that calls the function quote, which is handled by micro-eval di-
rectly.

Since micro-apply does not recognize the object first, it appeals to micro-eval to
evaluate first. So micro-eval looks up a value for first in the environment and
returns a lambda expression to micro-apply, which then calls itself recur-
sively with the following arguments:

((lambda (lst) (car lst))) a function object

((a b c)) evaluation of the actual parameter

((first (lambda (lst) (car lst)))) the current environment

Since the object is not an atom, this results in a call to micro-eval, with the
function body as the first parameter and the environment, augmented by the
binding of formal parameters to actual values.

(car lst) S-expression to be evaluated

((lst (a b c))

(first (lambda (lst) (car lst)))) the current environment

But micro-eval does not deal with car directly; it now calls micro-apply with the
first parameter as car, the evaluation of the actual parameters, and the envi-
ronment.

car a function identifier

((a b c)) evaluation of the actual parameters

((lst (a b c))

(first (lambda (lst) (car lst)))) the current environment

The actual parameter value is supplied when micro-eval evaluates the actual
parameter lst. The function car is something that micro-apply knows how to
deal with directly; it returns the caar of the arguments, namely the atom a.
This result is returned through all the function calls back to micro-rep, which
displays the result.

6.1 SELF-DEFINITION OF LISP

176 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

This interpreter can handle simple recursion, as illustrated by the Fibonacci
and factorial functions given earlier, and it can also handle nested recursion,
as illustrated by Ackermann’s function shown below. We illustrate by calling
Ackermann’s with values 3,2 and 3,3, but with no higher values due to the
explosion of recursion calls.

>> (define (ackermann x y)

(cond ((equal? x 0) (+ y 1))

((equal? y 0) (ackermann (- x 1) 1))

(#t (ackermann (- x 1) (ackermann x (- y 1))))))

ackermann

>> (ackermann 3 2)

29

>> (ackermann 3 3)

61

The interpreter can also deal with anonymous lambda functions, as illus-
trated by

>> ((lambda (lst) (car (cdr lst))) (quote (1 2 3)))

2

A let expression can also bind identifiers to lambda expressions, as illus-
trated by:

>> (let ((addition (lambda (x y) (+ x y))) (a 2) (b 3)) (addition a b))

5

Let expressions that are nested use the innermost binding, including lambda
functions.

>> (let ((addb 4) (b 2))

(let ((addb (lambda (x) (+ b x))) (b 3)) (display (addb b))))

6 from the display itself

6 from the inner let passing its result back through the outer let.

These values are printed on the same line.

Because of the way our interpreter works, let can be recursive (a letrec in
Scheme), as illustrated by the following example:

177

>> (let ((fact (quote (lambda (n)

(cond ((equal? n 0) 1)

(#t (* n (fact (- n 1)))))))))

(fact 5))

120

We complete our discussion of the Scheme interpreter by examining two strat-
egies for evaluating nonlocal variables. Most programming languages, in-
cluding Scheme and Common Lisp, use static scoping—that is, nonlocal vari-
ables are evaluated in their lexical environment. However, our interpreter
and early versions of Lisp use dynamic scoping for which nonlocal variables
are evaluated in the environment of the caller. This scoping strategy results
in the funarg (function argument) problem, which is best illustrated by an
example. We first define a function twice that has a function argument and a
value. The function twice returns the application of the function argument to
the value, and a second application of the function to the result.

>> (define (twice func val) (func (func val)))

twice

Suppose we define a function double that multiplies its argument times two.

>> (define (double n) (* n 2))

double

Now we call twice passing double as the function and three as the value:

>> (twice double 3)

12

The value returned is 12, as expected, since doubling 3 once gives 6, and
doubling it again gives 12. We now generalize the double function by writing
a function, called times, that multiplies its argument by a preset value, called
val.

>> (define (times x) (* x val))

If val is set to 2, we expect the times function to perform just like the double
function. Consider the following let expression:

>> (let ((val 2)) (twice times 3))

27

Surprisingly, the value of 27 is returned rather than the value 12. To under-
stand what is happening, we must carefully examine the environment at

6.1 SELF-DEFINITION OF LISP

178 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

each step of execution. At the time of the function call the environment has
three bindings:

((times (lambda (x) (* x val)))

 (twice (lambda (func val) (func (func val))))

 (val 2))

The execution of twice adds its parameter bindings to the environment be-
fore executing the body of the function.

((val 3)

 (func times)

 (times (lambda (x) (* x val)))

 (twice (lambda (func val) (func (func val))))

 (val 2))

Now we see the source of difficulty; when we start executing the function
body for times and it fetches a value for val, it fetches 3 instead of 2. So,
times became a tripling function, and tripling 3 twice gives 27. Once the
execution of the function is completed, all parameter bindings disappear from
the environment.

Although dynamic scoping is easy to implement, unexpected results, as il-
lustrated above, have led designers of modern programming languages to
abandon this approach. The exercises suggest some modifications to the in-
terpreter so that it implements static scoping.

Exercises

1. Given the following function definition

>> (define (even n)
(cond ((equal? n (* (/ n 2) 2)) #t)

(#t #f))),

trace the evaluation of the function call:

>> (even 3)

2. Add predicates to the interpreter for the five arithmetic relational opera-
tions: <, <=, =, >, and >=.

3. Add the functions “add1” and “sub1” to the interpreter.

179

4. Add the functions (actually special forms since they do not always evaluate
all of their parameters) “if”, “and”, and “or” to the interpreter.

5. Modify the interpreter to save the environment of function definition at
the time of a define. Make sure that this new interpreter solves the funarg
problem and gives the expected results, as shown by the following se-
quence of S-expressions:

>> (define (twice func val) (func (func val)))

>> (define (times x) (* x val))

>> (let ((val 2)) (twice times 3)) ; returns 12

>> (let ((val 4)) (twice times 3)) ; returns 48

6. Implement the predicate zero? and change cond so that an else clause is
allowed. Test the resulting implementation by applying these functions:

>> (define (even n)
(cond ((zero? n) #t)

(else (odd (- n 1)))))
>> (define (odd n)

(cond ((zero? n) #f)
 (else (even (- n 1)))))

7. The implementation of Scheme in this section allows the definition only
of functions using a particular format. Augment the implementation so
that the following definitions are also allowed:

>> (define n 55)

>> (define map (lambda (fn lst)
(cond ((null? lst) (quote ()))

(#t (cons (fn (car lst)) (map fn (cdr lst)))))))

6.2 SELF-DEFINITION OF PROLOG

We first build a very simple meta-interpreter in Prolog that handles only the
conjunction of goals and the chaining goals. A goal succeeds for one of three
reasons:

1. The goal is true.

2. The goal is a conjunction and both conjuncts are true.

3. The goal is the head of a clause whose body is true.

6.2 SELF-DEFINITION OF PROLOG

180 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

All other goals fail. A predefined Prolog predicate clause searches the user
database for a clause whose head matches the first argument; the body of
the clause is returned as the second argument.

prove(true).

prove((Goal1, Goal2)) :- prove(Goal1), prove(Goal2).

prove(Goal) :- clause(Goal, Body), prove(Body).

prove(Goal) :- fail.

We define a membership function, called memb so it will not conflict with any
built-in membership operation.

memb(X,[X|Rest]).
memb(X,[Y|Rest]) :- memb(X,Rest).

Here is the result of the testing:

:- prove((memb(X,[a,b,c]),memb(X,[b,c,d]))).
X = b ; % semicolon requests the next answer, if any
X = c ;
no
:- prove((memb(X,[a,b,c]),memb(X,[d,e,f]))).
no
:- prove(((memb(X,[a,b,c]),memb(X,[b,c,d])),memb(X,[c,d,e]))).
X = c ;
no

These results are correct, but they provide little insight into how they are
obtained. We can overcome this problem by returning a “proof tree” for each
clause that succeeds. The proof for true is simply true, the proof of a con-
junction of goals is a conjunction of the individual proofs, and a proof of a
clause whose head is true because the body is true will be represented as
“Goal<==Proof”. We introduce a new infix binary operator <== for this pur-
pose. The proof tree for failure is simply fail.

:- op(500,xfy,<==).

prove(true, true).

prove((Goal1, Goal2),(Proof1, Proof2)) :- prove(Goal1,Proof1),
prove(Goal2,Proof2).

prove(Goal, Goal<==Proof) :- clause(Goal, Body), prove(Body, Proof).

prove(Goal,fail) :- fail.

Here are the results of our test cases:

181

:- prove((memb(X,[a,b,c]),memb(X,[b,c,d])),Proof).
X = b
Proof = memb(b,[a,b,c])<==memb(b,[b,c])<==true,
memb(b,[b,c,d])<==true

:- prove((memb(X,[a,b,c]),memb(X,[d,e,f])), Proof).
no

:- prove(((memb(X,[a,b,c]),memb(X,[b,c,d])),
memb(X,[c,d,e])), Proof).

X = c
Proof =
(memb(c,[a,b,c])<==memb(c,[b,c])<==memb(c,[c])<==true,

 memb(c,[b,c,d])<==memb(c,[c,d])<==true),
 memb(c,[c,d,e])<==true

Displaying Failure

We still have no display for the second test where the proof fails. Another
alternative is to add a trace facility to show each step in a proof, whether it
succeeds or fails. This capability can be added to the second version of the
meta-interpreter, but for simplicity we return to the first version of the pro-
gram and add a tracing facility. Every time we chain a rule from a goal to a
body, we will indent the trace two spaces. Therefore we add an argument
that provides the level of indentation. This argument is initialized to zero and
is incremented by two every time we prove a clause from its body.

Before the application of a user-defined rule, we print “Call: ” and the goal. If
we exit from the body of the goal successfully, we print “Exit: ” and the goal.
If a subsequent goal fails, we have to backtrack and retry a goal that previ-
ously succeeded. We add a predicate retry that is true the first time it is called
but prints “Retry: ”, the goal, and fails on subsequent calls. When a goal fails,
“Fail: ” and the goal are printed. Here is the meta-interpreter implementing
these changes.

prove(Goal) :- prove(Goal, 0).

prove(true, _).

prove((Goal1, Goal2), Level) :- prove(Goal1, Level), prove(Goal2, Level).

prove(Goal, Level) :- tab(Level), write('Call: '), write(Goal), nl,
clause(Goal, Body),
NewLevel is Level + 2,
prove(Body, NewLevel),
tab(Level), write('Exit: '), write(Goal), nl,
retry(Goal, Level).

6.2 SELF-DEFINITION OF PROLOG

182 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

prove(Goal, Level) :- tab(Level), write('Fail: '), write(Goal), nl, fail.

retry(Goal, Level) :- true ;
tab(Level), write('Retry: '), write(Goal), nl,
fail.

In the first test we call prove with the query

prove((memb(X,[a,b,c]),memb(X,[b,c,d]))).

X first binds to a, but this fails for the second list. The predicate memb is
retried for the first list and X binds to b. This succeeds for the second list, so
the binding of X to b succeeds for both clauses.

Call: memb(_483,[a,b,c])
Exit: memb(a,[a,b,c])
Call: memb(a,[b,c,d])
 Call: memb(a,[c,d])
 Call: memb(a,[d])
 Call: memb(a,[])
 Fail: memb(a,[])
 Fail: memb(a,[d])
 Fail: memb(a,[c,d])
Fail: memb(a,[b,c,d])
Retry: memb(a,[a,b,c])
 Call: memb(_483,[b,c])
 Exit: memb(b,[b,c])
Exit: memb(b,[a,b,c])
Call: memb(b,[b,c,d])
Exit: memb(b,[b,c,d])

Consider the second query, which has no solution.

prove((memb(X,[a,b,c]),memb(X,[d,e,f]))).

X binds to a, then b, then c, all of which fail to be found in the second list.
When the program backtracks to find any other bindings for X in the first
list, it fails and the entire proof thus fails.

Call: memb(_483,[a,b,c])
Exit: memb(a,[a,b,c])
Call: memb(a,[d,e,f])
 Call: memb(a,[e,f])
 Call: memb(a,[f])
 Call: memb(a,[])
 Fail: memb(a,[])
 Fail: memb(a,[f])
 Fail: memb(a,[e,f])

183

Fail: memb(a,[d,e,f])
Retry: memb(a,[a,b,c])
 Call: memb(_483,[b,c])
 Exit: memb(b,[b,c])
Exit: memb(b,[a,b,c])
Call: memb(b,[d,e,f])
 Call: memb(b,[e,f])
 Call: memb(b,[f])
 Call: memb(b,[])
 Fail: memb(b,[])
 Fail: memb(b,[f])
 Fail: memb(b,[e,f])
Fail: memb(b,[d,e,f])
Retry: memb(b,[a,b,c])
 Retry: memb(b,[b,c])
 Call: memb(_483,[c])
 Exit: memb(c,[c])
 Exit: memb(c,[b,c])
Exit: memb(c,[a,b,c])
Call: memb(c,[d,e,f])
 Call: memb(c,[e,f])
 Call: memb(c,[f])
 Call: memb(c,[])
 Fail: memb(c,[])
 Fail: memb(c,[f])
 Fail: memb(c,[e,f])
Fail: memb(c,[d,e,f])
Retry: memb(c,[a,b,c])
 Retry: memb(c,[b,c])
 Retry: memb(c,[c])
 Call: memb(_483,[])
 Fail: memb(_483,[])
 Fail: memb(_483,[c])
 Fail: memb(_483,[b,c])
Fail: memb(_483,[a,b,c])

The final query succeeds.

prove(((memb(X,[a,b,c]),memb(X,[b,c,d])),memb(X,[c,d,e]))).

X first binds to a, but this fails for the second list. Backtracking to the first
list, X binds to b, which succeeds for the second list but fails for the third list.
There are no other occurrences of b in the second list, so the program back-

6.2 SELF-DEFINITION OF PROLOG

184 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

tracks to the first list and binds X to c. This succeeds for the second and
third lists.

Call: memb(_486,[a,b,c])
Exit: memb(a,[a,b,c])
Call: memb(a,[b,c,d])
 Call: memb(a,[c,d])
 Call: memb(a,[d])
 Call: memb(a,[])
 Fail: memb(a,[])
 Fail: memb(a,[d])
 Fail: memb(a,[c,d])
Fail: memb(a,[b,c,d])
Retry: memb(a,[a,b,c])
 Call: memb(_486,[b,c])
 Exit: memb(b,[b,c])
Exit: memb(b,[a,b,c])
Call: memb(b,[b,c,d])
Exit: memb(b,[b,c,d])
Call: memb(b,[c,d,e])
 Call: memb(b,[d,e])
 Call: memb(b,[e])
 Call: memb(b,[])
 Fail: memb(b,[])
 Fail: memb(b,[e])
 Fail: memb(b,[d,e])
Fail: memb(b,[c,d,e])
Retry: memb(b,[b,c,d])
 Call: memb(b,[c,d])
 Call: memb(b,[d])
 Call: memb(b,[])
 Fail: memb(b,[])
 Fail: memb(b,[d])
 Fail: memb(b,[c,d])
Fail: memb(b,[b,c,d])
Retry: memb(b,[a,b,c])
 Retry: memb(b,[b,c])
 Call: memb(_486,[c])
 Exit: memb(c,[c])
 Exit: memb(c,[b,c])
Exit: memb(c,[a,b,c])
Call: memb(c,[b,c,d])
 Call: memb(c,[c,d])
 Exit: memb(c,[c,d])
Exit: memb(c,[b,c,d])

185

Call: memb(c,[c,d,e])
Exit: memb(c,[c,d,e])

Other improvements can be made to the interpreter, but these are left as
exercises. The interpreter works only with user-defined clauses. This limita-
tion is fairly easy to overcome by adding call for built-in clauses. There is no
provision for disjunction. Perhaps the most difficult problem to handle is the
addition of the cut clause to control the underlying search mechanism. Peter
Ross discusses some alternatives that can handle the cut correctly. (See the
further readings at the end of this chapter).

Our Prolog interpreter written in Prolog does not explicitly implement the
built-in backtracking of Prolog or show the unification process. The trace
facility allows us to follow the backtracking but does not illustrate its imple-
mentation. It is also possible to develop a simple Prolog interpreter written in
Lisp where both the backtracking and unification are explicit. The interested
reader may consult the references at the end of the chapter.

Exercises

1. Add a rule for prove that handles built-in predicates correctly by using
call. Be careful to ensure that user-defined clauses are not called twice.

2. Add the capability to handle the disjunction of clauses correctly.

3. Research the implementation of the cut clause (see the references). Imple-
ment cut in the meta-interpreter.

4. Investigate the implementation of a unification function in Lisp or Scheme.
Write and test your function.

5. Use your unification function from exercise 4 to build a logic interpreter
in Lisp or Scheme.

6.3 FURTHER READING

The self-definition of a programming language is a special case of a more
general technique: using a high-level programming language as a
metalanguage for defining the semantics of a high-level programming lan-
guage. The use of programming languages as metalanguages is discussed in
[Pagan76] and [Anderson76]. [Pagan81] gives a definition of the minilanguage
Pam using Algol68 as a metalanguage.

6.3 FURTHER READING

186 CHAPTER 6 SELF-DEFINITION OF PROGRAMMING LANGUAGES

Lisp was developed during the late 1950s; the seminal publication was
[McCarthy60]. Our self-definition of Scheme using Scheme, a variant of Lisp,
is similar to the original presentation of a Lisp interpreter written in Lisp
given in [McCarthy65b]. Other versions appear in many textbooks on pro-
gramming languages. The use of Scheme as a metalanguage to define a logic
interpreter is described in [Abelson85]. Other good references for the Scheme
programing language include [Springer89] and [Dybvig87].

We present Prolog as a metalanguage throughout this text. A variety of is-
sues dealing with the implementation of Prolog are discussed in [Campbell84].
[Nillson84] presents a very concise interpreter for Prolog written in Lisp. Our
treatment of a Prolog interpreter written in Prolog closely follows the more
detailed presentation by [Ross89].

