
31

31

Chapter 2
INTRODUCTION TO
LABORATORY ACTIVITIES

The laboratory activities introduced in this chapter and used elsewhere
in the text are not required to understand definitional techniques and
formal specifications, but we feel that laboratory practice will greatly

enhance the learning experience. The laboratories provide a way not only to
write language specifications but to test and debug them. Submitting speci-
fications as a prototyping system will uncover oversights and subtleties that
are not apparent to a casual reader. This laboratory approach also suggests
that formal definitions of programming languages can be useful. The labora-
tory activities are carried out using Prolog. Readers not familiar with Prolog,
should consult Appendix A or one of the references on Prolog (see the further
readings at the end of this chapter) before proceeding.

In this chapter we develop a “front end” for a programming language pro-
cessing system. Later we use this front end for a system that check the con-
text-sensitive part of the Wren grammar and for prototype interpreters based
on semantic specifications that provide implementations of programming lan-
guages.

The front end consists of two parts:

1. A scanner that reads a text file containing a Wren program and builds a
Prolog list of tokens representing the meaningful atomic components of
the program.

2. A parser that matches the tokens to the BNF definition of Wren, produc-
ing an abstract syntax tree corresponding to the Wren program.

Our intention here is not to construct production level software but to for-
mulate an understandable, workable, and correct language system. The Prolog
code will be kept simple and easy to read, since the main purpose here is to
understand the definitional techniques studied in the text. Generally, only
primitive error handling is provided, so that the scanner-parser system merely
fails when a program has incorrect context-free syntax.

The system requests the name of a file containing a program, scans the pro-
gram producing a token list, and parses it, creating an abstract syntax tree

32 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

representing the structure of the program. The transcript below shows a
typical execution of the scanner and parser. User input is depicted in bold-
face. The token list and abstract syntax tree have been formatted to make
them easier to read.

| ?- go .

>>> Scanning and Parsing Wren <<<

Enter name of source file: switch.wren

 program switch is
 var sum,k : integer;
 var switch : boolean;
 begin
 switch := true; sum := 0; k := 1;
 while k<10 do
 switch := not(switch);
 if switch then sum := sum+k end if;
 k := k+1
 end while;
 write sum
 end

Scan successful

[program,ide(switch),is,var,ide(sum),comma,ide(k),colon,integer,
 semicolon,var,ide(switch),colon,boolean,semicolon,begin,
 ide(switch),assign,true,semicolon,ide(sum),assign,num(0),
 semicolon,ide(k),assign,num(1),semicolon,while,ide(k),less,
 num(10),do,ide(switch),assign,not,lparen,ide(switch),rparen,
 semicolon,if,ide(switch),then,ide(sum),assign,ide(sum),plus,
 ide(k),end,if,semicolon,ide(k),assign,ide(k),plus,num(1),end,
 while,semicolon,write,ide(sum),end,eop]

Parse successful

prog([dec(integer,[sum,k]),dec(boolean,[switch])],
 [assign(switch,true),assign(sum,num(0)),assign(k,num(1)),
 while(exp(less,ide(k),num(10)),
 [assign(switch,bnot(ide(switch))),
 if(ide(switch),
 [assign(sum,exp(plus,ide(sum),ide(k)))],skip),
 assign(k,exp(plus,ide(k),num(1)))]),
 write(ide(sum))])

yes

332.1 SCANNING

Observe that the program “switch.wren”, although satisfying the context-
free syntax of Wren, is syntactically illegal. Review the context constraints in
Figure 1.11 to identify the (minor) error. Several predefined predicates, pri-
marily for input and output, are used to build the front end of the language
processing system. See Appendix A for a brief description of these predicates.

2.1 SCANNING

The scanner reads the program text and produces a list of tokens according
to the lexical syntax of the programming language. Recall that the lexical
syntax can be defined using a regular grammar—for example,

<numeral> ::= 0 | 1 | … | 9 | 0 <numeral>

| 1 <numeral> | … | 9 <numeral>,

which we abbreviate as

<numeral> ::= <digit> | <digit> <numeral>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9.

First we recognize a digit by specifying a span of ascii values.

digit(C) :- 48 =< C, C =< 57. % 0-9

The symbol “%” signals a comment that extends to the end of the line.

The form of these productions fits nicely with processing a stream of charac-
ters in Prolog. We name the predicate that collects a sequence of digits into a
numeral getnum and write the productions for numeral as

getnum ::= digit | digit getnum.

The first digit tells us that we have a numeral to process. We split the produc-
tion into two parts, the first to start the processing of a numeral and the
second to continue the processing until a nondigit occurs in the input stream.

getnum ::= digit restnum

restnum ::= ε | digit restnum % ε represents an empty string

We describe these regular productions using the transition diagram shown
in Figure 2.1.

Parameters are then added to the nonterminals, the first to hold a readahead
character and the second to contain the numeral being constructed, either
as a Prolog number or as a list of ascii values representing the digits.

34 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

getnum digit

digit

restnum

Figure 2.1: A Transition Diagram for getnum

The predicates are defined by

getnum(C,N) :- digit(C), get0(D), restnum(D,Lc), name(N,[C|Lc]).

restnum(C,[C|Lc]) :- digit(C), get0(D), restnum(D,Lc).

restnum(C,[]). % end numeral if C is not a digit

and the numeral processor is initiated by the query

get0(C), getnum(C,N).

The first get0 acts as a priming read that gets (inputs) the first character,
which is bound to C for getnum to process. Then getnum verifies that the first
character is a digit, gets the next character, which is bound to D, and asks
restnum to construct the tail Lc of the numeral. When restnum returns with
the tail, the entire list [C|Lc] of digits passes to the predefined predicate name,
which converts it into a Prolog number N. The predicate restnum reads char-
acters forming them into a list until a nondigit is obtained, finishing the list
with an empty tail.

Figure 2.2 shows a trace following the processing of the numeral given by the
characters “905” followed by a return. This string generates the ascii values
57, 48, 53, and 10 on the input stream. Note that variables are numbered,
since each recursive call requires a fresh set of variables to be instantiated.
For example, the predicate get0 is called four times with the variables C, D,
D1, and D2, respectively.

This example illustrates the basic principle behind the scanner—namely, to
get the first item in a list and then call another predicate to construct the tail
of the list. This second predicate is called repeatedly, with the items in the
list being constructed as the first elements of the subsequent tails. When no
more items are possible, the empty tail is returned. In order to comprehend
the scanner better, we uniformly name the variables found in it:

Character (an ascii value): C, D, E

Token (a Prolog atom or simple structure): T, U

List of Characters: Lc

List of Tokens: Lt

35

Query Bindings
get0(C) C = 57
getnum(57,N)

digit(57)
get0(D) D = 48
restnum(48,Lc) Lc = [48|Lc1]

digit(48)
get0(D1) D1 = 53
restnum(53,Lc1) Lc1 = [53|Lc2]

digit(53)
get0(D2) D2 = 10
restnum(10,Lc2) Lc2 = [10|Lc3]

digit(10) fails
restnum(10,Lc2) Lc2 = []

name(N,[57|Lc])
where Lc = [48|Lc1] = [48,53|Lc2] = [48,53]

name(N,[57,48,53]) gives N=905.

Figure 2.2: Reading the Numeral 905

The predicates used in the scanner are described informally below, following
the convention that input variables are marked by “+” and output variables
by “–”. Although most predicates in Prolog are invertible, meaning that vari-
ables can act as input or output parameters in different applications, the
scanner needs to act in one direction only since it involves the side effect of
reading a text file. The marking of parameters by “+” and “–” below will help
the reader understand the execution of the scanner. Observe that some of
the predicates have two variables for characters, one for the current lookahead
character and one for the next lookahead character.

scan(Lt)

– Construct a list of tokens Lt.

restprog(T,D,Lt)

+ T is the previous token.

+ D is the lookahead character.

– Construct a list of tokens Lt from the rest of the program.

getch(C)

– Get the next character C and echo the character.

2.1 SCANNING

36 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

gettoken(C,T,D)

+ C is the lookahead character.

– Construct the next token T and

– find the next lookahead character D.

restnum(C,[C|Lc],E)

+ C is the lookahead character.

– Construct the tail of the number Lc and

– find the next lookahead character E.

restid(C,[C|Lc],E)

+ C is the lookahead character.

– Construct the tail of the identifier or reserved word string Lc and

– find the next lookahead character E.

To enable the scanner to recognize the different classes of characters, we
define predicates, each representing a particular set of characters.

lower(C) :- 97=<C, C=<122. % a-z
upper(C) :- 65=<C, C=<90. % A-Z
digit(C) :- 48 =< C, C=< 57. % 0-9
space(32). tabch(9). period(46). slash(47).
endline(10). endfile(26). endfile(-1).
whitespace(C) :- space(C) ; tabch(C) ; endline(C).
idchar(C) :- lower(C) ; digit(C).

At the top level of the scanner, scan gets the first character, calls gettoken to
find the first token, and then uses restprog to construct the rest of the token
list. Each line of the program listing is indented four spaces by means of
tab(4). Both scan and restprog invoke gettoken with a lookahead character C.
When the end of the file is reached, gettoken returns a special atom eop sym-
bolizing the end of the program. Note that getch performs special duties if the
current character represents the end of a line or the end of the file.

scan([T|Lt]) :- tab(4), getch(C), gettoken(C,T,D), restprog(T,D,Lt).
getch(C) :- get0(C), (endline(C),nl,tab(4) ; endfile(C),nl ; put(C)).
restprog(eop,C,[]). % end of file reached with previous character
restprog(T,C,[U|Lt]) :- gettoken(C,U,D), restprog(U,D,Lt).

To classify symbolic tokens, we need to identify those that are constructed
from a single symbol and those that are constructed from two characters.
Unfortunately, the first character in the two-character symbols may also stand
alone. Therefore we classify symbols as single or double and provide a predi-
cate to recognize the two-character symbols. Symbols specified by the predi-

37

cate single consist of a single character. This predicate associates a token
name with the ascii code of each character.

single(40,lparen). single(41,rparen). single(42,times).
single(43,plus). single(44,comma). single(45,minus).
single(47,divides). single(59,semicolon). single(61,equal).

Characters that may occur as a symbol by themselves or may be the first
character in a string of length two are recognized by the predicate double. The
second argument for double names the token given by the one-character sym-
bol.

double(58,colon). double(60,less). double(62,grtr).

If, however, the symbol is two characters long, pair succeeds and provides the
name of the token.

pair(58,61,assign). % :=
pair(60,61,lteq). % <=
pair(60,62,neq). % <>
pair(62,61,gteq). % >=

We also need to recognize the reserved words in Wren. The predicate reswd
defines the set of reserved words.

reswd(program). reswd(is). reswd(begin). reswd(end).
reswd(var). reswd(integer). reswd(boolean). reswd(read).
reswd(write). reswd(while). reswd(do). reswd(if).
reswd(then). reswd(else). reswd(skip). reswd(or).
reswd(and). reswd(true). reswd(false). reswd(not).

Figure 2.3 displays a transition diagram for analyzing the kinds of tokens in
Wren. The Prolog code for scanning tokens is given below. Numerals are
handled in the manner we discussed earlier. Although the productions for
identifiers permit reserved words to be treated as identifiers, the scanner will
first check each character string to see whether it is an identifier or a re-
served word. Identifier tokens take the form ide(sum) while reserved words
stand for themselves as Prolog atoms.

gettoken(C,num(N),E) :- digit(C), getch(D), restnum(D,Lc,E), name(N,[C|Lc]).

restnum(C,[C|Lc],E) :- digit(C), getch(D), restnum(D,Lc,E).

restnum(C,[],C). % end of number if C is not a digit

gettoken(C,T,E) :- lower(C), getch(D), restid(D,Lc,E),

name(Id,[C|Lc]), (reswd(Id),T=Id ; T=ide(Id)).

restid(C,[C|Lc],E) :- idchar(C), getch(D), restid(D,Lc,E).

restid(C,[],C). % end of identifier if C is not an id character

2.1 SCANNING

38 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

gettoken

grtrless

assign lteq neq gteq

colon

double

restnum restid
digit lower

digit or lower

si
ng

le

: < >

=>==

digit

single
character
symbol

Figure 2.3: Classifying Tokens

gettoken(C,T,D) :- single(C,T), getch(D).

gettoken(C,T,E) :- double(C,U), getch(D), (pair(C,D,T),getch(E) ; T=U,E=D).

gettoken(C,eop,0) :- endfile(C).

gettoken(C,T,E) :- whitespace(C), getch(D), gettoken(D,T,E).

gettoken(C,T,E) :- write('Illegal character: '), put(C), nl, abort.

Single-character symbols are handled directly, while the two-character sym-
bols require a decision guarded by pair. If pair succeeds, a new lookahead
character is needed; otherwise, the token name is taken from the double
predicate and the original lookahead character is used. When an end-of-file
character occurs as the lookahead character, the token eop is returned. The
predicate gettoken also allows for whitespace to be skipped, as seen in the
next to the last clause. Finally, any illegal characters are trapped in the last
clause, causing the scanner to abort with an error message.

To make the scanner easy to use, we define a predicate go that requests the
name of the text file containing the Wren program to be scanned and invokes
the scanner. Notice how it opens the text file for reading and closes it after

39

the scanning is complete. The list of tokens is displayed by means of the
predefined predicate write.

go :- nl, write('>>> Scanning Wren <<<'), nl, nl,
write('Enter name of source file: '), nl, getfilename(fileName), nl,
see(fileName), scan(Tokens), seen, write('Scan successful'), nl, nl,
write(Tokens), nl.

The predicate for reading the file name is patterned on the code for scanning
a numeral or an identifier. A priming read (get0) is followed by a predicate
that accumulates a list of ascii values for the characters in the file name. We
permit both uppercase and lowercase letters as well as digits, period, and
slash in our file names. That enables the scanner to handle file names such
as “gcd.wren” and “Programs/Factorial”. Other symbols may be added at the
user’s discretion.

getfilename(W) :- get0(C), restfilename(C,Cs), name(W,Cs).
restfilename(C,[C|Cs]) :- filechar(C), get0(D), restfilename(D,Cs).
restfilename(C,[]).

filechar(C) :- lower(C) ; upper(C) ; digit(C) ; period(C) ; slash(C).

The transcript at the beginning of this chapter shows an execution of the
scanner on a Wren program.

Exercises

1. Modify the scanner for Wren so that it accepts and recognizes the follow-
ing classes of tokens:

a) Character strings of the form "abcde".

b) Character constants of the form 'a' or #\a.

c) Fixed point numerals of the form 123.45.

2. Change the scanner for Wren so that “/=” is recognized instead of “<>”.

3. Change the scanner for Wren so that “<=” and “>=” can also be entered
as “=<” and “=>”.

4. Add a repeat-until command to Wren and change the scanner appropri-
ately.

5. Write a scanner for English using the alphabet of uppercase and lower-
case letters and the following punctuation symbols: period, comma, ques-

2.1 SCANNING

40 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

tion mark, semicolon, colon, and exclamation. Each word and punctua-
tion symbol in the text will be a token in the scanner.

6. Write a scanner that constructs a token list for a Roman numeral. Ig-
nore any characters that are not part of the Roman numeral.

7. Write a scanner for the language of list expressions described in exercise
9 at the end of section 1.2.

2.2 LOGIC GRAMMARS

The parser forms the second part of the front end of our language processing
system. It receives a token list from the scanner, and, following the BNF
definition of the language, produces an abstract syntax tree. Prolog provides
a mechanism, definite clause grammars , that makes the parser particu-
larly easy to construct. Although the resulting system cannot compare in
efficiency to present-day compilers for parsing, these grammars serve admi-
rably for our prototype systems. Definite clause grammars are also called
logic grammars , and we use these terms interchangeably.

 Concrete Syntax

<sentence> ::= <noun phrase> <verb phrase> .

<noun phrase> ::= <determiner> <noun>

<verb phrase> ::= <verb> | <verb> <noun phrase>

<determiner> ::= a | the

<noun> ::= boy | girl | cat | telescope | song | feather

<verb> ::= saw | touched | surprised | sang

Abstract Syntax

Sentence ::= NounPhrase Predicate

NounPhrase ::= Determiner Noun

Predicate ::= Verb | Verb NounPhrase

Determiner ::= a | the

Noun ::= boy | girl | cat | telescope | song | feather

Verb ::= saw | touched | surprised | sang

Figure 2.4: An English Grammar

First, we motivate and explain the nature of parsing in Prolog with an ex-
ample based on a subset of the English grammar found in Figure 1.1. To

41

simplify the problem, we consider an English grammar without prepositional
phrases. The BNF and abstract syntax are displayed in Figure 2.4. The ab-
stract syntax closely resembles the concrete syntax with a slight change in
names for syntactic categories and the deletion of the period.

Given a string from the language, say “the girl sang a song. ”, our goal is to
construct an abstract syntax tree exhibiting the structure of this sentence—
for example, the tree in Figure 2.5. This abstract syntax tree is quite similar
to a derivation tree for the sentence.

Since we plan to carry out the parsing in Prolog, the resulting abstract syn-
tax tree will be represented as a Prolog structure, with function symbols
used to tag the syntactic categories:

sent(nounph(det(the), noun(girl)), pred(verb(sang), nounph(det(a), noun(song)))).

Observe how nicely Prolog describes a tree structure in a linear form. Recall
that we view the front end for our English language grammar as a two-step
process: the scanner takes a string of characters, “the girl sang a song. ”,
and creates the token list [the, girl, sang, a, song, '.']; and the parser takes the
token list and constructs an abstract syntax tree as a Prolog structure, such
as the one above.

Sentence

NounPhrase Predicate

Determiner Noun Verb

Determiner Noun
the girl sang

a song

NounPhrase

Figure 2.5: An Abstract Syntax Tree for “the girl sang a song. ”

Motivating Logic Grammars

Although logic grammars in Prolog can be used without understanding how
they work, we choose to explain their mechanism. The reader who wants to
ignore this topic may skip to the subsection Prolog Grammar Rules .

2.2 LOGIC GRAMMARS

42 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

Assume that the token list [the, girl, sang, a, song, '.'] has been generated by the
scanner. The logic programming approach to analyzing a sentence according
to a grammar can be seen in terms of a graph whose edges are labeled by the
tokens that are terminals in the language.

the girl sang a song .

Two terminals are contiguous in the original string if they share a common
node in the graph.

girl sang

A sequence of contiguous labels constitutes a nonterminal if it corresponds
to the right-hand side of a production rule for that nonterminal in the BNF
grammar. For example, the three productions

<determiner> ::= a,

<noun> ::= song , and

<noun phrase> ::= <determiner> <noun>

tell us that “a song” can serve as a noun phrase. Since these two terminals lie
next to each other in the graph, we know they constitute a noun phrase.

a song

<determiner> <noun>

<noun phrase>

To enable these conditions to be expressed in logic, we give each node in the
graph an arbitrary label—for example, using positive integers.

1 2 3 4 5 6 7

the girl sang a song .

A predicate nounPhrase(K,L) is defined as asserting that the path from node K
to node L can be interpreted as an instance of the nonterminal <noun phrase>.
For example, nounPhrase(4,6) holds because edge <4,5> is labeled by a deter-
miner a and edge <5,6> is labeled by a noun song .

The appropriate rule for <noun phrase> is

nounPhrase(K,L) :- determiner(K,M), noun(M,L).

43

The common variable M makes the two edges contiguous. The complete BNF
grammar written in logic is listed in Figure 2.6.

sentence(K,L) :- nounPhrase(K,M), predicate(M,N), period(N,L).

nounPhrase(K,L) :- determiner(K,M), noun(M,L).

predicate(K,L) :- verb(K,M), nounPhrase(M,L).

predicate(K,L) :- verb(K,L).

determiner(K,L) :- a(K,L).

determiner(K,L) :- the(K,L).

noun(K,L) :- boy(K,L).

noun(K,L) :- girl(K,L).

noun(K,L) :- cat(K,L).

noun(K,L) :- telescope(K,L).

noun(K,L) :- song(K,L).

noun(K,L) :- feather(K,L).

verb(K,L) :- saw(K,L).

verb(K,L) :- touched(K,L).

verb(K,L) :- surprised(K,L).

verb(K,L) :- sang(K,L).

Figure 2.6: Parsing in Prolog

The graph for the sentence “the girl sang a song. ” can be created by entering
the following facts:

the(1,2). girl(2,3).

sang(3,4). a(4,5).

song(5,6). period(6,7).

The syntactic correctness of the sentence, “the girl sang a song. ” can be
determined by either of the following queries:

?- sentence(1,7).
yes

?- sentence(X,Y).
X = 1
Y = 7
yes

2.2 LOGIC GRAMMARS

44 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

The sentence is recognized by the logic program when paths in the graph
corresponding to the syntactic categories in the grammar are verified as build-
ing an instance of the nonterminal <sentence>.

1 2 3 4 5 6 7

the girl sang a song .

<determiner> <determiner><noun> <noun><verb>

<noun phrase>

<predicate>

<sentence>

<noun phrase>

Note the similarity of the structure exhibited by the paths in the graph with
the derivation tree for the sentence.

Improving the Parser

Two problems remain before this parser will be easy to use:

1. Entering the graph using predicates the(1,2), girl(2,3), … is awkward since
the scanner produces only a list of tokens—namely, [the,girl,sang a, song,'.'].

2. So far the logic program recognizes only a syntactically valid sentence
and does not produce a representation of the abstract syntax tree for the
sentence.

The first problem can be solved and the logic program simplified by using
sublists of the token list to label the nodes of the graph. These lists are called
difference lists since the difference between two adjacent node labels is the
atom that labels the intervening edge.

[the,girl,sang,a,song,'.']

[girl,sang,a,song,'.']

[sang,a,song,'.']

[a,song,'.']

[song,'.']

['.']
[]

the girl sang a song .

45

In general, a difference list is a Prolog structure consisting of two Prolog lists,
with possibly uninstantiated components, having the property that the sec-
ond list is or can be a suffix of the first one. Together they represent those
items in the first list but not in the second list. For example,

difflist([a,b,c,d],[c,d]) represents the list [a,b], and

difflist([a,b,c|T],T) represents the list [a,b,c].

The concatenation of difference lists can be performed in constant time un-
der certain conditions. Therefore many algorithms have very efficient ver-
sions using difference lists. For more on this technique of programming in
Prolog, see the further readings at the end of the chapter.

The next version of the grammar exploits the same definitions for sentence,
nounPhrase, and predicate, but it handles the tokens using a predicate 'C' (for
“connect”), which is predefined in most Prolog implementations. The query
'C'(K,boy,L) succeeds if the edge joining the nodes K and L is labeled by the
token boy. Figure 2.7 gives the Prolog code for the improved parser. The vari-
ables in the Prolog code stand for difference lists now instead of natural
numbers.

sentence(K,L) :- nounPhrase(K,M), predicate(M,R), 'C'(R,'.',L).

nounPhrase(K,L) :- determiner(K,M), noun(M,L).

predicate(K,L) :- verb(K,M), nounPhrase(M,L).

predicate(K,L) :- verb(K,L).

determiner(K,L) :- 'C'(K,a,L).

determiner(K,L) :- 'C'(K,the,L).

noun(K,L) :- 'C'(K,boy,L).

noun(K,L) :- 'C'(K,girl,L).

noun(K,L) :- 'C'(K,cat,L).

noun(K,L) :- 'C'(K,telescope,L).

noun(K,L) :- 'C'(K,song,L).

noun(K,L) :- 'C'(K,feather,L).

verb(K,L) :- 'C'(K,saw,L).

verb(K,L) :- 'C'(K,touched,L).

verb(K,L) :- 'C'(K,surprised,L).

verb(K,L) :- 'C'(K,sang,L).

'C'([H|T],H,T). % Edge from node [H|T] to node T is labeled with atom H

Figure 2.7: Improved Parsingin Prolog

2.2 LOGIC GRAMMARS

46 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

An advantage of this approach is that the graph need not be explicitly cre-
ated when this representation is employed. The syntactic correctness of the
sentence “the girl sang a song. ” can be recognized by the following query:

?- sentence([the,girl,sang,a,song,'.'],[]).
yes

The parsing succeeds because the node labeled with [the,girl,sang,a,song,'.']
can be joined to the node labeled with [] by a path representing the sentence
predicate. Now the parsing query fits the scanner, since the arguments to
sentence are the token list and the tail that remains when the tokens in the
sentence are consumed.

By exploiting the invertibility of logic programming, it is possible to use the
logic grammar to generate sentences in the language with the following query:

?- sentence(S, []).
S = [a,boy,saw,a,boy,.] ;
S = [a,boy,saw,a,girl,.] ;
S = [a,boy,saw,a,cat,.] ;
S = [a,boy,saw,a,telescope,.] ;
S = [a,boy,saw,a,song,.] ;
S = [a,boy,saw,a,feather,.] ;
S = [a,boy,saw,the,boy,.] ;
S = [a,boy,saw,the,girl,.] ;
S = [a,boy,saw,the,cat,.]
yes

Using semicolons to resume the inference engine, we initiate the construc-
tion of all the sentences defined by the grammar. If the grammar contains a
recursive rule, say with the conjunction and,

NounPhrase ::= Determiner Noun

| Determiner Noun and NounPhrase,

then the language allows infinitely many sentences, and the sentence gen-
erator will get stuck with ever-lengthening nounPhrase phrases, such as “a
boy saw a boy. ”, “a boy saw a boy and a boy. ”, “a boy saw a boy and a boy
and a boy. ”, and so on.

Prolog Grammar Rules

Most implementations of Prolog have a preprocessor that translates special
grammar rules into regular Prolog clauses that allow the recognition of cor-
rect sentences as seen above. The BNF definition of the English subset takes

47

the form of the logic grammar in Prolog shown in Figure 2.8. Logic grammars
use a special predefined infix predicate “-->” to force this translation into
normal Prolog code.

sentence --> nounPhrase, predicate, ['.'].
nounPhrase --> determiner, noun.
predicate --> verb, nounPhrase.
predicate --> verb.
determiner --> [a].
determiner --> [the].
noun --> [boy] ; [girl] ; [cat] ; [telescope] ; [song] ; [feather].
verb --> [saw] ; [touched] ; [surprised] ; [sang].

Figure 2.8: A Logic Grammar

The similarity between Figure 2.8 and the concrete syntax (BNF) in Figure
2.1 demonstrates the utility of logic grammars. Note that terminal symbols
appear exactly as they do in the source text, but they are placed inside brack-
ets. Since they are Prolog atoms, tokens starting with characters other than
lowercase letters must be delimited by apostrophes. The Prolog interpreter
automatically translates these special rules into normal Prolog clauses iden-
tical to those in Figure 2.7. Each predicate is automatically given two param-
eters in the translation. For example, the logic grammar clauses are trans-
lated as shown in the examples below:

nounPhrase --> determiner, noun.

becomes nounPhrase(K,L) :- determiner(K,M),noun(M,L).

predicate --> verb. becomes predicate(K,L) :- verb(K,L).

noun --> [boy]. becomes noun(K,L) :- 'C'(K,boy,L).

Since a Prolog system generates its own variable names, listing the trans-
lated code is unlikely to show the names K, L, and M, but the meaning will be
the same.

Parameters in Grammars

The second problem, that of producing an abstract syntax tree as a sentence
is parsed, can be handled by using parameters in the logic grammar rules.
Predicates defined by using Prolog grammar rules may have arguments in
addition to the implicit ones created by the preprocessor. These additional
arguments are usually inserted by the translator in front of the implicit argu-
ments. (Some Prolog implementations insert the additional arguments after
the implicit ones.)

2.2 LOGIC GRAMMARS

48 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

For example, the grammar rule

sentence(sent(N,P)) --> nounPhrase(N), predicate(P), ['.'].

will be translated into the normal Prolog clause

sentence(sent(N,P),K,L) :- nounPhrase(N,K,M), predicate(P,M,R), 'C'(R,'.',L).

Figure 2.9 presents the complete BNF grammar with parameters added to
build a derivation tree.

sentence(sent(N,P)) --> nounPhrase(N), predicate(P), ['.'].
nounPhrase(nounph(D,N)) --> determiner(D), noun(N).
predicate(pred(V,N)) --> verb(V), nounPhrase(N).
predicate(pred(V)) --> verb(V).

determiner(det(a)) --> [a].
determiner(det(the)) --> [the].
noun(noun(boy)) --> [boy].
noun(noun(girl)) --> [girl].
noun(noun(cat)) --> [cat].
noun(noun(telescope)) --> [telescope].

noun(noun(song)) --> [song].
noun(noun(feather)) --> [feather].
verb(verb(saw)) --> [saw].
verb(verb(touched)) --> [telescope].
verb(verb(surprised)) --> [surprised].
verb(verb(sang)) --> [sang].

Figure 2.9: A Logic Grammar with Parameters

A query with a variable representing an abstract syntax tree produces that
tree as its answer:

?- sentence(Tree, [the,girl,sang,a,song,'.'], []).
Tree = sent(nounph(det(the), noun(girl)),
 pred(verb(sang), nounph(det(a), noun(song))))
yes

A subphrase can be parsed as well.

?- predicate(Tree, [sang,a,song], []).
Tree = pred(verb(sang), nounph(det(a), noun(song)))
yes

49

Executing Goals in a Logic Grammar

Prolog terms placed within braces in a logic grammar are not translated by
the preprocessor. They are executed as regular Prolog clauses unchanged.
For example, the first clause in the English grammar can be written

sentence(S) --> nounPhrase(N), predicate(P), ['.'], {S=sent(N,P)}.

The resulting Prolog clause after translation is

sentence(S,K,L) :-
nounPhrase(N,K,M), predicate(P,M,R), 'C'(R,'.',L), S=sent(N,P).

As a second example, we add a word-counting facility to the English gram-
mar in Figure 2.9 (only those clauses that need to be changed are shown):

sentence(WC,sent(N,P)) -->
nounPhrase(W1,N), predicate(W2,P), ['.'], {WC is W1+W2}.

nounPhrase(WC,nounph(D,N)) --> determiner(D), noun(N), {WC is 2}.

predicate(WC,pred(V,N)) --> verb(V), nounPhrase(W,N), {WC is W+1}.

predicate(1,pred(V)) --> verb(V).

If the word-counting feature is used, conditions may be placed on the sen-
tences accepted by the grammar; for example, if only sentences with no more
than ten words are to be accepted, the first clause can be written

sentence(WC,sen(N,P)) -->
nounPhrase(W1,N), predicate(W2,P), ['.'], {WC is W1+W2, WC <= 10}.

Any sentence with more than ten words will fail to parse in this augmented
grammar because of the condition. Computing values and testing them illus-
trates the basic idea of attribute grammar, the subject of the next chapter.

The astute reader may have noticed that in the English grammar in this
chapter, each sentence has exactly five words. The condition on word count
makes more sense if applied to a grammar that includes prepositional phrases
or allows and ’s in the <noun phrase> strings.

Exercises

1. Write a definite clause grammar for an English grammar that includes
prepositional phrases as in Chapter 1. To avoid ambiguity, add preposi-
tional phrases only to noun phrases.

2.2 LOGIC GRAMMARS

50 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

2. Modify <noun phrase> to allow and according to the productions in Fig-
ure 2.4. Construct a logic grammar, and try to generate all the sen-
tences. Make sure you recognize the shortest noun phrase first.

3. This grammar is a BNF specification of the language of Roman numerals
less than 500.

<roman> ::= <hundreds> <tens> <units>

<hundreds> ::= <empty> | C | CC| CCC | CD

<tens> ::= <low tens> | XL | L <low tens> | XC

<low tens> ::= <empty> | <low tens> X

<units> ::= <low units> | IV | V <low units> | IX

<low units> ::= <empty> | <low units> I

Write a logic grammar that parses strings in this language and also
enforces a constraint that the number of X’s in <low tens> and I’s in
<low units> can be no more than three.

4. Write a logic grammar for the language of list expressions described in
exercise 9 in section 1.2.

2.3 PARSING WREN

Prolog’s definite clause grammars provide a mechanism for parsing Wren as
well as our English language fragment. Again, we start with the BNF specifi-
cation of Wren’s concrete syntax and convert the productions into logic gram-
mar clauses with as few changes as required. Parameters to the clauses
construct an abstract syntax tree for the program being parsed.

We illustrate the process with a couple of the straightforward productions.

<program> ::= program <identifier> is <block>

becomes
program(AST) --> [program], [ide(I)], [is], block(AST).

and

<block> ::= <declaration seq> begin <command seq> end

becomes
block(prog(Decs,Cmds)) --> decs(Decs), [begin], cmds(Cmds), [end].

51

Observe that the reserved words and identifiers are recognized as Prolog
atoms and ide structures inside brackets. The logic grammar needs to match
the form of the tokens produced by the scanner. Also, note how the abstract
syntax tree (AST) for a block is constructed from the two subtrees for decla-
rations and commands.

The BNF specification for commands can be converted into logic grammar
clauses with little modification.

<command> ::= <variable> := <expr>

becomes
command(assign(V,E)) --> [ide(V)], [assign], expr(E).

and

<command> ::= while <boolean expr> do <command seq> end while

becomes
command(while(Test,Body)) -->

[while], boolexpr(Test), [do], cmds(Body), [end, while].

Parsing Wren involves collecting lists of items for several of its syntactic cat-
egories: command sequences, declaration sequences, and lists of variables.
We describe the pattern for handling these lists by means of command se-
quences and leave the other two as exercises. Our approach follows the strategy
for building a list in the scanner—that is, we obtain the first object in the list
and then call a predicate to construct the (possibly empty) tail of the list. In
each case, we use Prolog lists for the representation of the subtrees in the
abstract syntax tree.

The productions

<command seq> ::= <command> | <command> ; <command seq>

become the two predicates

cmds(Cmds) --> command(Cmd), restcmds(Cmd,Cmds).

restcmds(Cmd,[Cmd|Cmds]) --> [semicolon], cmds(Cmds).

restcmds(Cmd,[Cmd]) --> [].

A variable list can be formed in exactly the same way; but remember that
declaration sequences may be empty, thereby producing an empty list [] as
the abstract syntax subtree.

2.3 PARSING WREN

52 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

Handling Left Recursion

In defining the syntax of programming languages, BNF specifications fre-
quently use left recursion to define lists and expressions; in fact, expressions
with left associative operations are naturally formulated using left recursion.
Unfortunately, parsing left recursion can lead the interpreter down an infi-
nite branch of the search tree in the corresponding logic program.

As an example, consider a language of expressions with left associative addi-
tion and subtraction of numbers:

<expr> ::= <expr> <opr> <numeral>

<expr> ::= <numeral>

<opr> ::= + | –

<numeral> ::= … % as before

Using a Prolog definite clause grammar produces the following rules:

expr(plus(E1,E2)) --> expr(E1), ['+'], [num(E2)].

expr(minus(E1,E2)) --> expr(E1), ['–'], [num(E2)].

expr(E) --> [num(E)].

which translate into the following Prolog clauses:

expr(plus(E1,E2),K,L) :- expr(E1,K,M), 'C'(M,'+',N), 'C'(N,num(E2),L).

expr(minus(E1,E2),K,L) :- expr(E1,K,M), 'C'(M,'–',N), 'C'(N,num(E2),L).

expr(E,K,L) :- 'C'(K,num(E),L).

Suppose the string “5–2” runs through the scanner, and the logic grammar is
invoked with the query

?- expr(E, [num(5), '–', num(2)], []).

The Prolog interpreter repeatedly tries expr with an uninstantiated variable
as the first argument, creating an endless search for a derivation, as shown
in Figure 2.10.

The depth-first strategy for satisfying goals makes it impossible for Prolog to
find the consequence defined by the logic program. The logic interpreter needs
to satisfy the initial goal in the goal list first. The usual way to remove left
recursion from a BNF grammar is to define a new syntactic category that
handles all but the first token:

<expr> ::= <numeral> <rest of expr>

53

<rest of expr> ::= <opr> <numeral> <rest of expr>

<rest of expr> ::= ε

expr(E, [num(5), '–', num(2)], [])

expr(E1,[num(5), '–', num(2)],M), c(M,'+',N), c(N,num(E2),[])

expr(E11,[num(5), '–', num(2)],M1), c(M1,'+',N1), c(N1,num(E21),[]) …

expr(E12,[num(5), '–', num(2)],M2), c(M2,'+',N2), c(N2,num(E22),[]) …

:

Figure 2.10: Parsing the expression “5–2”

The corresponding logic grammar has the property that each rule starts with
a goal that can be verified without going down an infinite branch of the search
tree. A careful definition of the parameters enables the grammar to construct
a left associative parse tree even though the logic grammar is right recursive.

expr(E) --> [num(E1)], restexpr(E1,E).

restexpr(E1,E) --> ['+'], [num(E2)], restexpr(plus(E1,E2),E).

restexpr(E1,E) --> ['–'], [num(E2)], restexpr(minus(E1,E2),E).

restexpr(E,E) --> [].

The predicate restexpr(E1,E) means that the expression E1 has been con-
structed from the symbols encountered so far, and the resulting parse tree
will be E once the rest of the symbols making up the expression have been
processed. The last rule “restexpr(E,E) --> [].” states that when no tokens are
left to build an expression, the result is the expression created so far—namely,
the first argument.

For Wren, we use logic grammar clauses

expr(E) --> intexpr(E).
expr(E) --> boolexpr(E).

2.3 PARSING WREN

54 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

intexpr(E) --> term(T), restintexpr(T,E).
restintexpr(T,E) --> weakop(Op), term(T1), restintexpr(exp(Op,T,T1),E).
restintexpr(E,E) --> [].
term(T) --> element(P), restterm(P,T).
restterm(P,T) --> strongop(Op), element(P1), restterm(exp(Op,P,P1),T).
restterm(T,T) --> [].
element(num(N)) --> [num(N)].
element(Ide(I)) --> [ide(I)].
weakop(plus) --> [plus]. weakop(minus) --> [minus].
strongop(times) --> [times]. strongop(divides) --> [divides].
comparison(bexp(R,E1,E2)) --> intexpr(E1), rel(R), intexpr(E2).
rel(equal) --> [equal]. rel(neq) --> [neq]. rel(less) --> [less].
rel(grtr) --> [grtr]. rel(gteq) --> [gteq]. rel(lteq) --> [lteq].

following the pattern shown above for integer expressions. Many of the BNF
rules translate directly into logic grammar clauses. For example, the BNF
productions for handling parentheses and unary minus in integer expres-
sions,

<element> ::= (<integer expr>)

<element> ::= – <element>

become the logic grammar clauses,

element(E) --> [lparen], intexpr(E), [rparen].

element(minus(E)) --> [minus], element(E).

Note that we can use the same function symbol minus for both unary minus
and subtraction since the number of parameters help define the structure.
Boolean expressions are handled in a similar manner.

Recall that we suggested two different formats for the abstract syntax of
expressions formed from binary operations:

exp(plus,E1,E2)
and

plus(E1,E2).

The choice between these two templates is largely subjective, depending on
the purpose for which the trees will be used. We elect to use the exp(plus,E1,E2)
format when we develop an interpreter for Wren in later chapters because it
eases the handling of arithmetic expressions. In this chapter we have used
both formats to emphasize that the difference is primarily cosmetic.

55

Left Factoring

Sometimes two productions have a common initial string of terminals and
nonterminals to be processed. If the first production fails, the second one
has to recognize that initial string all over again. Factoring the initial string
as a separate rule leads to a more efficient parsing algorithm.

Suppose now that expressions have right associative operators at two prece-
dence levels:

expr(plus(E1,E2)) --> term(E1), ['+'], expr(E2).

expr(minus(E1,E2)) --> term(E1), ['–'], expr(E2).

expr(E) --> term(E).

term(times(T1,T2)) --> [num(T1)], ['* '], term(T2).

term(divides(T1,T2)) --> [num(T1)], ['/'], term(T2).

term(T) --> [num(T)].

The problem here is that when processing a string such as “2* 3* 4* 5* 6 – 7”,
the term “2* 3* 4* 5* 6” must be recognized twice, once by the first clause that
expects a plus sign next, and once by the second clause that matches the
minus sign. This inefficiency is remedied by rewriting the grammar as fol-
lows:

expr(E) --> term(E1), restexpr(E1,E).

restexpr(E1,plus(E1,E2)) --> ['+'], expr(E2).

restexpr(E1,minus(E1,E2)) --> ['–'], expr(E2).

restexpr(E,E) --> [].

term(T) --> [num(T1)], restterm(T1,T).

restterm(T1,times(T1,T2)) --> ['* '], term(T2).

restterm(T1,divides(T1,T2)) --> ['/'], term(T2).

restterm(T,T) --> [].

Now the term “2* 3* 4* 5* 6” will be parsed only once.

Left factoring can also be used in processing the if commands in Wren.

<command> ::= if <boolean expr> then <command seq> end if

 | if <boolean expr> then <command seq> else <command seq> end if

becomes

command(Cmd) -->
[if], boolexpr(Test), [then], cmds(Then), restif(Test,Then,Cmd).

2.3 PARSING WREN

56 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

restif(Test,Then,if(Test,Then,Else)) --> [else], cmds(Else), [end], [if].

restif(Test,Then,if(Test,Then)) --> [end], [if].

Observe that we construct either a ternary structure or a binary structure
for the command, depending on whether we encounter else or not. Again, we
use a predicate go to control the system:

go :- nl,write('>>> Interpreting: Wren <<<'), nl, nl,
write(‘Enter name of source file: '), nl, getfilename(fileName), nl,
see(fileName), scan(Tokens), seen, write(‘Scan successful’), nl, !,
write(Tokens), nl, nl,
program(AST,Tokens,[eop]), write(‘Parse successful’), nl, !,
write(AST), nl, nl.

Note that cut operations “!” have been inserted after the scanning and pars-
ing phases of the language processing. This ensures that the Prolog inter-
preter never backtracks into the parser or scanner after each has completed
successfully. Such backtracking can only generate spurious error messages.
A cut acts as a one-way passage. It always succeeds once, but if the back-
tracking attempts the cut a second time, the entire query fails. Except for the
go clause, we refrain from using cuts in our Prolog code because we want to
avoid their nonlogical properties. See the references for details on the cut
operation.

Exercises

1. Write the logic grammar clauses that parse declaration sequences and
variable lists.

<declaration seq> ::= ε | <declaration> <declaration seq>

<declaration> ::= var <variable list> : <type> ;

<type> ::= integer | boolean

<variable list> ::= <variable> | <variable> , <variable list>

2. Write the logic grammar clauses that parse Boolean expressions. Use
the tag bexp for these expressions.

<boolean expr> ::= <boolean term>

| <boolean expr> or <boolean term>

<boolean term> ::= <boolean element>

| <boolean term> and <boolean element>

57

<boolean element> ::= true | false | <variable> | <comparison>

|not (<boolean expr>) | (<boolean expr>)

3. Add these language constructs to Wren and modify the parser to handle
them:

a) repeat-until commands
<command> ::= ... | repeat <command seq> until <boolean expr>

b) conditional expressions
<expression> ::= ...

 | if <boolean expr> then <integer expr> else <integer expr>

c) expressions with side effects
<expression> ::= ... | begin <command seq> return <expr> end

2.4 FURTHER READING

Many books provide a basic introduction to Prolog. Our favorites include the
classic textbook by Clocksin and Mellish that is already in its third edition
[Clocksin87]; Ivan Bratko’s book [Bratko90], which emphasizes the use of
Prolog in artificial intelligence; and the comprehensive text by Sterling and
Shapiro [Sterling94]. These books also include descriptions of the operational
semantics of Prolog with information on unification, the resolution proof strat-
egy, and the depth-first search method used by Prolog. The last book has a
good discussion of programming with difference lists in Prolog. The model for
our scanner can be found in the Clocksin and Mellish text where the lexical
analysis of an English sentence is presented.

Most Prolog texts cover the definite clause grammars that we used to build
the parsers in this chapter. In addition to [Clocksin87] and [Sterling86], see
[Kluzniak85], [Malpas87], [Covington88], and [Saint-Dizier90] for material
on logic grammars.

The roots of Prolog lie in language processing. It has been said that Prolog
was invented by Robert Kowalski in 1974 and implemented by Alain Col-
merauer in 1973. To explain this apparent contradiction, we note that Prolog
originated in Colmerauer’s interest in using logic to express grammar rules
and to formalize the parsing of natural language sentences. He developed
the mechanism of syntactic analysis in logic before the power of Prolog as a
general purpose programming language was made apparent by Kowalski.
For more information on the early development of Prolog and logic gram-
mars see [Colmerauer78] and [Kowalski79].

2.4 FURTHER READING

58 CHAPTER 2 INTRODUCTION TO LABORATORY ACTIVITIES

Some of the issues discussed in this chapter, such as left recursion and left
factoring, are handled in compiler writing texts (see [Aho86] and [Parsons92]).
Prolog was given credibility as a vehicle for language processing in 1980 by
David Warren in a paper that describes a compiler written in Prolog [War-
ren80].

