
443

Chapter 12
ALGEBRAIC SEMANTICS

The formal semantic techniques we have studied so far include
denotational semantics, whose mathematical foundations lie in re-
cursive function theory, and axiomatic semantics, whose foundations

depend on predicate logic. In this chapter we study algebraic semantics, an-
other formalism for semantic specification whose foundations are based on
abstract algebras. Algebraic semantics involves the algebraic specification of
data and language constructs. The basic idea of the algebraic approach to
semantics is to name the different sorts of objects and the operations on the
objects and to use algebraic axioms to describe their characteristic proper-
ties.

The methodology of algebraic semantics is customarily used to specify ab-
stract data types (ADTs). The basic principle in specifying an ADT involves
describing the logical properties of data objects in terms of properties of op-
erations (some of which may be constants) that manipulate the data. The
actual representation of the data objects and the implementations of the
operations on the data are not part of the specification. For instance, we
specify the abstract type whose values are stacks by defining the properties
of the operations that push or pop items from the stacks, avoiding a descrip-
tion of a physical representation of the objects that serve as stacks.

In this chapter we introduce the basic ideas of algebraic specifications (syn-
tax) and the corresponding algebras (semantics) that serve as models of speci-
fications. As we will see, algebraic specifications extend from low-level ob-
jects, such as truth values with Boolean operations, through high-level ob-
jects, such as programs with operations to perform type checking and to
interpret source code. Algebraic semantics is a broad field of study, and in
this brief overview we can only suggest the underlying mathematical founda-
tions. Some of the fundamental notions developed here will be used in the
next chapter when we investigate our final approach to semantics, action
semantics.

444 CHAPTER 12 ALGEBRAIC SEMANTICS

12.1 CONCEPTS AND EXAMPLES

Before exploring examples, we introduce some of the vocabulary of algebraic
specification. The types in a programming language serve to classify the data
processed by programs. Here we refer to types as sorts . An algebraic specifi-
cation defining one or more sorts contains two parts: the signatur e and the
equations (or axioms).

Definition : A signatur e Σ of an algebraic specification is a pair <Sorts, Op-
erations> where Sorts is a set containing names of sorts and Operations is a
family of function symbols indexed by the functionalities of the operations
represented by the function symbols. ❚

We use the terms “functions” and “operations” interchangeably, but when
considering specifications, these terms refer to formal function symbols. The
set of operations in a specification provides the syntax of the functions that
are defined on the sorts of data. Suppose we want to specify an abstract type
whose values are lists of integers. We provide three sorts in the specification:

Sorts = { Integer, Boolean, List }.

The elements of Sorts are only names; we can assume nothing about the
properties of these sorts. The set of operations may include the function
symbols given below with their signatures:

zero : Integer
one : Integer
plus (_ , _) : Integer, Integer → Integer
minus (_ , _) : Integer, Integer → Integer
true : Boolean
false : Boolean
emptyList : List
cons (_ , _) : Integer, List → List
head (_) : List → Integer
tail (_) : List → List
empty? (_) : List → Boolean
length (_) : List → Integer

The family of operations can be decomposed into eight sets of function sym-
bols indexed by the domain-codomain constraints on the functions. We list
several of the sets of operations in the family:

OprBoolean = { true, false }

OprInteger,Integer→Integer = { plus, minus }

OprList→Integer = { head, length }

44512.1 CONCEPTS AND EXAMPLES

Other sets of operations are indexed by Integer, List, (Integer,List→List),
(List→List), and (List→Boolean). Observe that operations with no domain rep-
resent constants of a particular sort—for example, zero, one, true, false, and
emptyList. The signature of a specification can be compared with the declara-
tions in a program—a specification defines the kinds of objects to which
names will refer. The signature shown above tells us how we may use identi-
fiers such as List, cons, and length but does not describe the behavior of the
corresponding functions.

The equations in a specification act to constrain the operations in such a way
as to indicate the appropriate behavior for the operations. They serve as
axioms specifying an algebra, similar to the properties of associativity and
commutativity of operations that we associate with abstract algebras in math-
ematics. Equations may involve variables representing arbitrary values from
the various sorts in the specification. The variables in an equation are uni-
versally quantified implicitly. Listed below are several equations (axioms) that
may appear in a specification of lists.

head (cons (m, s)) = m

empty? (emptyList) = true

empty? (cons (m, s)) = false

The first equation stands for the closed assertion:

∀m:Integer, ∀s:List [head (cons (m, s)) = m].

Since indexed sets can challenge our tolerance of notation, algebraic specifi-
cations are commonly represented using a module-like syntactic structure
that encapsulates the pertinent information concerning the signature and
the equations of the specification. We have already seen how the family of
operations will be specified when we used the “function header” notation
above:

cons (_ , _) : Integer,List → List.

The syntax of the function symbol is spelled out as a pattern, with under-
scores representing the parameter positions and the Cartesian product indi-
cated by a comma forming the domain. These notational conventions have
become common practice in algebraic specifications.

Another advantage of the module representation of algebraic specifications
is that it lends itself to decomposing definitions into relatively small compo-
nents. We break the specification of lists of integers into three smaller mod-
ules for integers, Boolean values, and then lists, using a mechanism to im-
port the signature and equations of one module into another. We view an
algebraic specification as a sequence of modules, so that when one module
imports another module, the sorts and functions in the signature can be
used in the importing module. Relative to this importing mechanism, we

446 CHAPTER 12 ALGEBRAIC SEMANTICS

define sorts and functions to be either exported or hidden. Hidden symbols
are visible only in the module where they are first defined. Later we see that
modules can be parameterized to define generic abstract data types. With
parameterized specifications, certain portions of the module are left unspeci-
fied until the module is instantiated by specifying values for the formal pa-
rameters.

A Module for Truth Values

We now turn our attention to a module that gives an algebraic specification
of truth values.

module Booleans
exports

sorts Boolean
operations

true : Boolean
false : Boolean
errorBoolean : Boolean
not (_) : Boolean → Boolean
and (_ , _) : Boolean, Boolean → Boolean
or (_ , _) : Boolean, Boolean → Boolean
implies (_ , _) : Boolean, Boolean → Boolean
eq? (_ , _) : Boolean, Boolean → Boolean

end exports

operations
xor (_ , _) : Boolean, Boolean → Boolean

variables
b, b1, b2 : Boolean

equations
[B1] and (true, b) = b
[B2] and (false, true) = false
[B3] and (false, false) = false
[B4] not (true) = false
[B5] not (false) = true
[B6] or (b1, b2) = not (and (not (b1), not (b2)))
[B7] implies (b1, b2) = or (not (b1), b2)
[B8] xor (b1, b2) = and (or (b1, b2), not (and (b1, b2)))
[B9] eq? (b1, b2) = not (xor (b1, b2))

end Booleans

447

The sort Boolean has two “normal” constant values, true and false, and an
error value errorBoolean. We discuss the handling of errors in conjunction
with the next module that specifies natural numbers. The functions not, and,
or, and eq? are exported, whereas the function xor (exclusive or) is hidden.
The module has no hidden sorts. Remember that the variables in equations
are universally quantified implicitly, so that equation [B1] represents the
axiom:

∀b:Boolean [and (true, b) = b].

The equations in a specification may allow several variations that result ulti-
mately in the same definition. For example, the semantics of or can be speci-
fied directly by

or (true, true) = true

or (true, false)= true

or (false, b) = b.

Although these different definitions often suggest different evaluation strate-
gies, the equations in a specification are purely declarative and do not imply
any particular evaluation order. The xor is defined in terms of and, or, and not.
In order to illustrate hidden functions, we have elected not to make xor pub-
lic. The eq? function is defined as the logical negation of xor. A direct defini-
tion of eq? is also possible.

Module Syntax

Before turning our attention to more sample modules, we examine the struc-
ture of a typical module. Each of the components specified below may be
omitted in defining a particular module.

module <module-name>
imports

<list of modules>

parameters <parameter name>
sorts <sort names>
operations <function symbols with their signatures>
variables <list of variables and their sorts>
equations <unconditional and conditional equations>

end <parameter name>

exports
sorts <list of public sorts>
operations <list containing signatures of public function symbols>

end exports

12.1 CONCEPTS AND EXAMPLES

448 CHAPTER 12 ALGEBRAIC SEMANTICS

sorts <hidden sort names>

operations
<hidden function symbols with their signatures>

variables
<list of variables and their sorts>

equations
<unconditional and conditional equations>

end <module-name>

The second section contains parameters that are defined in terms of formal
parameter symbols. The actual values (arguments) are supplied when the
module is instantiated by naming the parameterized module and supplying
already defined sorts and operations for each of the formal sort names and
function symbols in the parameter. The functionality (syntax) of the actual
operations must agree with the formal parameters, and the argument func-
tions must satisfy the equations in the parameters section that specify prop-
erties of the formal parameters. We have shown the format for a single pa-
rameter, but multiple parameters are also possible. When modules are im-
ported, items in them may be renamed. We show the syntax for renaming
later in the section.

The syntax of function application may be represented using several forms,
but in this chapter we rely on ordinary prefix notation with parentheses de-
limiting the arguments. This notation eliminates the need for precedence
rules to disambiguate the order of execution of the corresponding opera-
tions. In the next chapter we consider some variations on this notation for
function application. Functions can also return multiple values as tuples—
for example:

h : S1 → S2,S3.

Tupled outputs are a notational convenience and can be replaced by a single
sort. These details are left as an exercise.

Equations specifying the properties of operations can be unconditional, as in
the Booleans module, or conditional. A conditional equation has the form

lhs = rhs when lhs1 = rhs1, lhs2 = rhs2, ..., lhsn = rhsn.

Finally, we mention that modules cannot be nested.

A Module for Natural Numbers

In the rest of this section, we give more sample modules to illustrate the
ideas introduced above, concentrating on specifications that will be needed
to define the semantics of Wren. The next module specifies the natural num-

449

bers, containing constant function symbols 0, 1, 10 and errorNatural, a func-
tion succ used to construct terms for the specification, the numeric opera-
tions add, sub, mul, div, and the predicate operations eq?, less?, and greater?.
An exercise asks the reader to add an exponentiation operation exp to Naturals.
This function is used when Naturals is imported by a module called Strings.

module Naturals
imports Booleans
exports

sorts Natural
operations

0 : Natural
1 : Natural
10 : Natural
errorNatural : Natural
succ (_) : Natural → Natural
add (_ , _) : Natural, Natural → Natural
sub (_ , _) : Natural, Natural → Natural
mul (_ , _) : Natural, Natural → Natural
div (_ , _) : Natural, Natural → Natural
eq? (_ , _) : Natural, Natural → Boolean
less? (_ , _) : Natural, Natural → Boolean
greater? (_ , _) : Natural, Natural → Boolean

end exports

variables
m, n : Natural

equations
[N1] 1 = succ (0)
[N2] 10 = succ (succ (succ (succ (succ (succ (

 succ (succ (succ (succ (0))))))))))
[N3] add (m, 0) = m
[N4] add (m, succ (n)) = succ (add (m, n))
[N5] sub (0, succ(n)) = errorNatural
[N6] sub (m, 0) = m
[N7] sub (succ (m), succ (n)) = sub (m, n)
[N8] mul (m, 0) = 0 when m≠errorNatural
[N9] mul (m, 1) = m
[N10] mul (m, succ(n)) = add (m, mul (m, n))
[N11] div (m, 0) = errorNatural
[N12] div (0, succ (n)) = 0 when n≠errorNatural

12.1 CONCEPTS AND EXAMPLES

450 CHAPTER 12 ALGEBRAIC SEMANTICS

[N13] div (m, succ (n)) = if (less? (m, succ (n)),
0,
succ(div(sub(m,succ(n)),succ(n))))

[N14] eq? (0, 0) = true
[N15] eq? (0, succ (n)) = false when n≠errorNatural
[N16] eq? (succ (m), 0) = false when m≠errorNatural
[N17] eq? (succ (m), succ (n)) = eq? (m, n)
[N18] less? (0, succ (m)) = true when m≠errorNatural
[N19] less? (m, 0) = false when m≠errorNatural
[N20] less? (succ (m), succ (n)) = less? (m, n)
[N21] greater? (m, n) = less? (n, m)

end Naturals

Each sort will contain an error value to represent the result of operations on
values outside of their normal domains. We assume that all operations propa-
gate errors, so that, for example, the following properties hold:

succ (errorNatural) = errorNatural

mul (succ (errorNatural), 0) = errorNatural

or (true, errorBoolean) = errorBoolean

eq? (succ(0), errorNatural) = errorBoolean.

Propagating errors in this manner requires that some equations have condi-
tions that restrict the operations to nonerror values. Without these condi-
tions, the entire sort reduces to the error value, as witnessed by a deduction
using [N8] and ignoring the condition:

0 = mul(succ(errorNatural),0) = mul(errorNatural,0) = errorNatural.

Without the condition on [N8], all the objects in Natural can be shown to
equal errorNatural:

succ(0) = succ(errorNatural) = errorNatural,

succ(succ(0)) = succ(errorNatural) = errorNatural,

and so on.

The equations that require conditions to avoid this sort of inconsistency—
namely, [N8], [N12], [N15], [N16], [N18], and [N19] in the Naturals module—
are those in which the variable(s) on the left disappear on the right. As a
notational convention to enhance readability, we use n≠errorNatural for eq?
(n,errorNatural) = false and similar abbreviations for the other sorts.

The module Naturals has no equation defining properties for the succ func-
tion. This operation is called a constructor , since together with the con-
stant 0, succ can be used to construct representations of the values that
form the natural numbers. In a model of this specification, we assume that

45112.1 CONCEPTS AND EXAMPLES

values are equal only when their identity can be derived from the equations.
Since there are no equations for succ, 0 does not equal succ(0), which does
not equal succ(succ(0)), and so forth. So the terms 0, succ(0), succ(succ(0)), ...
can be viewed as characterizing the natural numbers, the objects defined by
the module.

The element errorNatural can be derived from the equations in two cases:
subtracting a number from another number smaller than itself and dividing
any number by zero. Thus we say that the terms that can be generated in the
natural numbers specification consist of the values 0, succ(0), succ(succ(0),
succ(succ(succ(0))), ... and errorNatural. This set serves as the universe of val-
ues or the carrier set for one of the algebras that acts as a model of the
specification. We will define this so-called term algebra model carefully when
we discuss the mathematical foundations of algebraic specifications in the
next section.

This method of interpreting the meaning of the equations is known as initial
algebraic semantics . In an initial model, the equality of items can be proved
only as a direct result of equations in the module; otherwise they are never
considered to be the same. This characteristic is called the no confusion
property. The no junk property of the initial model says that all terms in the
carrier set of a model of the specification correspond to terms generated from
the signature of the module. We will examine the no confusion and no junk
properties again in the next section when we discuss the construction of an
initial algebra and describe its properties.

The constant functions 1 and 10 are convenient renamings of particular natu-
ral numbers for easy reference outside of the module. Addition is defined
recursively with the second operand being decremented until it eventually
reaches 0, the base case. The other operations, sub, mul, and div are defined
recursively in similar ways. The rule [N9] is redundant since its values are
included in [N10]. The div equations introduce the built-in polymorphic func-
tion if, which is used to determine when div has reached the base case (the
dividend is less than the divisor).

div (m, succ (n)) = if (less? (m, succ (n)),
0,
succ (div (sub (m, succ (n)), succ (n))))

A generic if operation cannot be specified by an algebraic specification itself
since its arguments range over all possible sorts. However, it is always pos-
sible to eliminate the if by writing multiple conditional equations. For ex-
ample,

452 CHAPTER 12 ALGEBRAIC SEMANTICS

div (m, succ (n)) = 0 when less? (m, succ (n)) = true
div (m, succ (n)) = succ (div (sub (m, succ (n)), succ (n))))

when less? (m, succ (n)) = false
div (m, succ (n)) = errorNatural when less? (m, succ (n)) = errorBoolean.

Given this equivalence, we will continue to use if as a notational convenience
without sacrificing the underlying foundations of algebraic semantics. Ob-
serve that using if requires that the module Booleans be imported to provide
truth values.

A Module for Characters

The Characters module presented below defines an underlying character set
adequate for Wren identifiers. Although this character set is limited to digits
and lowercase characters, the module can be easily extended to a larger
character set.

module Characters
imports Booleans, Naturals
exports

sorts Char
operations

eq? (_ , _) : Char, Char → Boolean
letter? (_) : Char → Boolean
digit? (_) : Char → Boolean
ord (_) : Char → Natural
char-0 : Char
char-1 : Char
 : :
char-9 : Char
char-a : Char
char-b : Char
char-c : Char
 : :
char-y : Char
char-z : Char
errorChar : Char

end exports

variables
c, c1, c2 : Char

equations
[C1] ord (char-0) = 0

453

[C2] ord (char-1) = succ (ord (char-0))
[C3] ord (char-2) = succ (ord (char-1))
 : : :
[C10] ord (char-9) = succ (ord (char-8))
[C11] ord (char-a) = succ (ord (char-9))
[C12] ord (char-b) = succ (ord (char-a))
[C13] ord (char-c) = succ (ord (char-b))
 : : :
[C35] ord (char-y) = succ (ord (char-x))
[C36] ord (char-z) = succ (ord (char-y))
[C37] eq? (c1, c2) = eq? (ord (c1), ord (c2))
[C38] letter? (c) = and (not (greater? (ord (char-a), ord (c))),

not (greater? (ord (c), ord (char-z))))
[C39] digit? (c) = and (not (greater? (ord (char-0), ord (c))),

not (greater? (ord (c) ord (char-9))))
end Characters

Observe that the equation “ord (char-9) = 9” cannot be derived from the equa-
tions in the module, since 9 is not a constant defined in Naturals. Rather
than add the constants 2 through 9 and 11 through 35 to Naturals (for this
character set), we rely on the repeated application of the successor function
to define the ordinal values. The ord function here does not produce ascii
codes as in Pascal but simply gives integer values starting at 0. Note that eq?
refers to two different operations in [C37]. The first represents the equality
operation on the characters currently being defined, and the second symbol-
izes equality on the natural numbers imported from Naturals. The sorts of
the arguments determine which of the overloaded eq? operations the func-
tion symbol represents.

A Parameterized Module and Some Instantiations

The next example shows a parameterized module for homogeneous lists where
the type of the items in the lists is specified when the module is instantiated.

module Lists
imports Booleans, Naturals

parameters Items
sorts Item
operations

errorItem : Item
eq? : Item, Item → Boolean

12.1 CONCEPTS AND EXAMPLES

454 CHAPTER 12 ALGEBRAIC SEMANTICS

variables
a, b, c : Item

equations
eq? (a,a) = true when a≠errorItem
eq? (a,b) = eq? (b,a)
implies (and (eq? (a,b), eq? (b,c)), eq? (a,c)) = true

when a≠errorItem, b≠errorItem, c≠errorItem
end Items

exports
sorts List
operations

null : List
errorList : List
cons (_ , _) : Item, List → List
concat (_ , _) : List, List → List
equal? (_ , _) : List, List → Boolean
length (_) : List → Natural
mkList (_) : Item → List

end exports

variables
i, i1, i2 : Item
s, s1, s2 : List

equations
[S1] concat (null, s) = s
[S2] concat (cons (i, s1), s2) = cons (i, concat (s1, s2))
[S3] equal? (null, null) = true
[S4] equal? (null, cons (i, s)) = false when s≠errorList, i≠errorItem
[S5] equal? (cons (i, s), null) = false when s≠errorList, i≠errorItem
[S6] equal? (cons (i1, s1), cons (i2, s2)) = and (eq? (i1, i2), equal? (s1, s2))
[S7] length (null) = 0
[S8] length (cons (i, s)) = succ (length (s)) when i≠errorItem
[S9] mkList (i) = cons (i, null)

end Lists

The three parameters for Lists define the type of items that are being joined,
an error value, and an equality test required for comparing the items. The
equations in the parameter section ensure that the operation associated with
the formal symbol eq? is an equivalence relation. The symbols that act as
parameters are unspecified until the module is instantiated when imported
into another module. The operation null is a constant that acts as a construc-
tor representing the empty list, and cons is a constructor function, having no

455

defining equations, that builds nonempty lists. The structures formed by
applications of the constructor functions represent the values of the sort List.

The length function is defined recursively with the base case treating the null
list and the other case handling all other lists. The operation mkList is a
convenience function to convert a single item into a list containing only that
item. Since cons and null are exported, the user can do this task directly, but
having a named function improves readability.

The process of renaming is illustrated in the following example of a list of
integers, called Files, that will be used for input and output in the specifica-
tion of Wren. Sometimes sorts and operations are renamed purely for pur-
poses of documentation. Items that are not renamed on import retain their
original names. For example, the constructor for Files will still be cons. See
the further readings at the end of this chapter for more on these issues.

module Files
imports Booleans, Naturals,

instantiation of Lists
bind Items using Natural for Item

using errorNatural for errorItem
using eq? for eq?

rename using File for List
using emptyFile for null
using mkFile for mkList
using errorFile for errorList

exports
sorts File
operations

empty? (_) : File → Boolean
end exports

variables
f : File

equations
[F1] empty? (f) = equal? (f, emptyFile)

end Files

The identifiers created by renaming are exported by the module as well as
the identifiers in the exports section. Note that we extend the instantiated
imported module Lists with a new operation empty?. The Strings module,
which is used to specify identifiers in Wren, also contains an instantiation of
Lists.

12.1 CONCEPTS AND EXAMPLES

456 CHAPTER 12 ALGEBRAIC SEMANTICS

module Strings
imports Booleans,Naturals, Characters,

instantiation of Lists
bind Items using Char for Item

using errorChar for errorItem
using eq? for eq?

rename using String for List
using nullString for null
using mkString for mkList
using strEqual for equal?
using errorString for errorList

exports
sorts String
operations

string-to-natural (_) : String → Boolean, Natural
end exports
variables

c : Char
b : Boolean
n : Natural
s : String

equations
[Str1] string-to-natural (nullString) = <true,0>
[Str2] string-to-natural (cons (c, s))=

if (and (digit? (c), b),
<true, add (mul (sub (ord (c), ord (char-0)),

exp (10, length (s))), n)>,
<false, 0>)

when <b,n> = string-to-natural (s)
end Strings

The string-to-natural function returns a pair: The first value is a truth value
that indicates whether the conversion was successful, and the second value
is the numeric result. We introduced the constant 10 in Naturals to make
this specification more readable. The operation exp is added to Naturals in
an exercise.

A Module for Finite Mappings

The final modules of this section are Mappings and an instantiation of Map-
pings. A mapping associates a domain value of some sort with an item taken
from some range (codomain) sort. Both the domain and range sorts are speci-
fied by parameters and determined at the time of instantiation. We use two

457

mappings later in an algebraic specification of Wren. The type checking mod-
ule associates Wren types with variable names modeling a symbol table, and
the evaluation (or execution) module associates numeric values with variable
names, modeling a store. Both of these sorts result from instantiations of
Mappings.

module Mappings
imports Booleans
parameters Entries

sorts Domain, Range
operations

equals (_ , _) : Domain, Domain → Boolean
errorDomain : Domain
errorRange : Range

variables
a, b, c : Domain

equations
equals (a, a) = true when a≠errorDomain
equals (a, b) = equals (b, a)
implies (and (equals (a, b), equals (b, c)), equals (a, c)) = true

when a≠errorDomain, b≠errorDomain, c≠errorDomain
 end Entries

exports
sorts Mapping
operations

emptyMap : Mapping
errorMapping : Mapping
update (_ , _ , _) : Mapping, Domain, Range → Mapping
apply (_ , _) : Mapping, Domain → Range

end exports
variables

m : Mapping
d, d1, d2 : Domain
r : Range

equations
[M1] apply (emptyMap, d) = errorRange
[M2] apply (update (m, d1, r), d2) = r

when equals (d1, d2) = true, m≠errorMapping
[M3] apply (update (m, d1, r), d2) = apply (m, d2)

when equals (d1, d2) = false, r≠errorRange
end Mappings

12.1 CONCEPTS AND EXAMPLES

458 CHAPTER 12 ALGEBRAIC SEMANTICS

The operation emptyMap is a constant, and the update operation adds or
changes a pair consisting of a domain value and a range value in a mapping.
The operation apply returns the range value associated with a domain value
or returns errorRange if the mapping has no value for that domain element.
Observe the similarity between terms for this specification and the Prolog
terms we used in implementing environments and stores earlier in the text.
The finite mapping [a|→8,b|→13] corresponds to the term

update (update (emptyMap, a, 8), b, 13),
which represents an object of sort Mapping.

A store structure that associates identifiers represented as strings with natural
numbers can be defined in terms of Mappings. The following module instan-
tiates Mappings using the types String and Natural for the domain and range
sorts of the mappings, respectively. The operations are renamed to fit the
store model of memory.

module Stores
imports Strings, Naturals,

instantiation of Mappings
bind Entries using String for Domain

using Natural for Range
using strEqual for equals
using errorString for errorDomain
using errorNatural for errorRange

rename using Store for Mapping
using emptySto for emptyMap
using updateSto for update
using applySto for apply

end Stores

We have introduced enough basic modules to develop an algebraic specifica-
tion of Wren in section 12.4. However, the notation is sometimes less conve-
nient than desired—for example,

succ (succ (succ (0))) stands for the natural number written as 3 (base-ten)

and

cons (char-a, cons (char-b, nullString)) represents the string literal “ab”.

Additional specification modules can be developed to provide a more conven-
tional notation (see Chapter 6 of [Bergstra89]), but these notational issues
are beyond the scope of this book. We also ignore the problem of conflict
resolution when several imported modules extend some previously defined
module by defining operations with the same name in different ways. Since
this topic is dealt with in the references, our presentation will concentrate on
semantic rather than syntactic issues. We take a brief look at the mathemati-
cal foundations of algebraic semantics in the next section.

459

Exercises

1. Give the equation(s) for a direct definition of eq? in the module Booleans.

2. Show how the output of tuples can be eliminated by introducing new
sorts. Develop a specific example to illustrate the technique.

3. Add function symbols lesseq? and greatereq? to the module Naturals
and provide equations to specify their behavior.

4. Add a function symbol exp representing the exponentiation operation to
Naturals and provide appropriate equations to specify its behavior.

5. Extend the module for Naturals to a module for Integers by introducing
a predecessor operator.

6. Consider the module Mappings. No equations are provided to specify
the sort Mapping, so two mappings are equal if they are represented by
the same term. Does this notion of equality agree with the normal meaning
of equal mappings? What equation(s) can be added to the module to
remedy this problem?

7. Define a module that specifies binary trees with natural numbers at its
leaf nodes only. Include operations for constructing trees, selecting parts
from a tree, and several operations that compute values associated with
binary trees, such as “sum of the values at the leaf nodes” and “height of
a tree”.

8. Redo exercise 7 for binary trees with natural numbers at interior nodes
in addition to the leaf nodes.

9. Consider the signature defined by the module Mixtures. List five terms of
sort Mixture. Suggest some equations that we may want this specification
to satisfy. Hint: Consider algebraic properties of the binary operation.
module Mixtures

exports
sorts Mixture
operations

flour : Mixture
sugar : Mixture
salt : Mixture
mix (_ , _) : Mixture, Mixture → Mixture

end exports
end Mixtures

12.1 CONCEPTS AND EXAMPLES

460 CHAPTER 12 ALGEBRAIC SEMANTICS

12.2 MATHEMATICAL FOUNDATIONS

Some very simple modules serve to illustrate the mathematical foundations
of algebraic semantics. We simplify the module Booleans to include only the
constants false and true and the function not. In a similar way, we limit Naturals
to the constant 0, the constructor succ, and the function symbol add. By
limiting the operations in this way, we avoid the need for error values in the
sorts. See the references, particularly [Ehrig85], for a description of error
handling in algebraic specifications.

module Bools
exports

sorts Boolean
operations

true : Boolean
false : Boolean
not (_) : Boolean → Boolean

end exports

equations
[B1] not (true) = false
[B2] not (false) = true

end Bools

module Nats
imports Bools
exports

sorts Natural
operations

0 : Natural
succ (_) : Natural → Natural
add (_ , _) : Natural, Natural → Natural

end exports

variables
m, n : Natural

equations
[N1] add (m, 0) = m
[N2] add (m, succ (n)) = succ (add (m, n))

end Nats

461

Ground Terms

In the previous section we pointed out function symbols that act as con-
structors provide a way of building terms that represent the objects being
defined by a specification. Actually, all function symbols can be used to con-
struct terms that stand for the objects of the various sorts in the signature,
although one sort is usually distinguished as the type of interest. We are
particularly interested in those terms that have no variables.

Definition : For a given signature Σ = <Sorts,Operations>, the set of ground
terms TΣ for a sort S is defined inductively as follows:

1. All constants (nullary function symbols) of sort S in Operations are ground
terms of sort S.

2. For every function symbol f : S1,…,Sn → S in Operations, if t1,…,tn are
ground terms of sorts S1,…,Sn, respectively, then f(t1,…,tn) is a ground
term of sort S where S1,…,Sn,S∈Sorts. ❚

Example : The ground terms of sort Boolean for the Bools module consist of
all those expressions that can be built using the constants true and false and
the operation symbol not. This set of ground terms is infinite.

true, not(true), not(not(true)), not(not(not(true))), ...
false, not(false), not(not(false)), not(not(not(false))), …. ❚

Example : The ground terms of sort Natural in the Nats module are more
complex, since two constructors build new terms from old; the patterns are
suggested below:

0, add(0,0),
succ(0), add(0,succ(0)), add(succ(0),0),
succ(succ(0)), add(0,succ(succ(0))), add(succ(succ(0)),0),

add(succ(0),succ(0)),
succ(succ(succ(0))), add(0,succ(succ(succ(0)))), add(succ(succ(succ(0))),0),

add(succ(0),succ(succ(0))), add(succ(succ(0)),succ(0)),
: : : ❚

If we ignore the equations in these two modules for now, the ground terms
must be mutually distinct. On the basis of the signature only (no equations),
we have no reason to conclude that not(true) is the same as false and that
add(succ(0),succ(0)) is the same as succ(succ(0)).

Σ-Algebras

Algebraic specifications deal only with the syntax of data objects and their
operations. Semantics is provided by defining algebras that serve as models

12.2 MATHEMATICAL FOUNDATIONS

462 CHAPTER 12 ALGEBRAIC SEMANTICS

of the specifications. Homogeneous algebras can be thought of as a single
set, called the carrier , on which several operations may be defined—for ex-
ample, the integers with addition and multiplication form a ring. Computer
science applications and some mathematical systems, such as vector spaces,
need structures with several types. Heterogeneous or many-sorted alge-
bras have a number of operations that act on a collection of sets. Specifica-
tions are modeled by Σ-algebras, which are many-sorted.

Definition : For a given signature Σ, an algebra A is a Σ-algebra under the
following circumstances:

• There is a one-to-one correspondence between the carrier sets of A and the
sorts of Σ.

• There is a one-to-one correspondence between the constants and func-
tions of A and the operation symbols of Σ so that those constants and
functions are of the appropriate sorts and functionalities. ❚

A Σ-algebra contains a set for each sort in S and an actual function for each
of the function symbols in Σ. For example, let Σ = <Sorts, Operations> be a
signature where Sorts is a set of sort names and Operations is a set of func-
tion symbols of the form f : S1,…,Sn → S where S and each Si are sort names
from Sorts. Then a Σ-algebra A consists of the following:

1. A collection of sets { SA | S∈Sorts }, called the carrier sets .

2. A collection of functions { fA | f∈Operations } with the functionality

fA : (S1)A,…,(Sn)A → SA

for each f : S1,…,Sn → S in Operations.

Σ-algebras are called heterogeneous or many-sorted algebras because they
may contain objects of more than one sort.

Definition : The term algebra T Σ for a signature Σ = <Sorts, Operations> is
constructed as follows. The carrier sets { STΣ

 | S∈Sorts } are defined induc-
tively.

1. For each constant c of sort S in Σ we have a corresponding constant
“c” in STΣ

.

2. For each function symbol f : S1,...,Sn → S in Σ and any n elements
t1∈(S1)TΣ

, …,tn∈(Sn)TΣ
, the term “f(t1,...,tn)” belongs to the carrier set (S)TΣ

.

The functions in the term algebra, corresponding to the function sym-
bols in Operations, are defined by simply forming the literal term that
results from applying the function symbol to terms. For each function
symbol f : S1,...,Sn → S in Σ and any n elements t1∈(S1)TΣ

, …,tn∈(Sn)TΣ
, we

define the function fTΣ
 by fTΣ

(t1, ..., tn) = “f(t1, ..., tn)”. ❚

463

The elements of the carrier sets of TΣ consist of strings of symbols chosen
from a set containing the constants and function symbols of Σ together with
the special symbols “(”, “)”, and “,”. For example, the carrier set for the term
algebra TΣ constructed from the module Bools contains all the ground terms
from the signature, including

“true”, “not(true)”, “not(not(true))”, ...
“false”, “not(false)”, “not(not(false))”,

Furthermore, the function notTΣ
 maps “true” to “not(true)”, which is mapped to

“not(not(true))”, and so forth.

This term algebra clearly does not specify the intended meaning of Bools
since the carrier set is infinite. Also, “false” ≠ “not(true)”, which is different
from our understanding of the not function in Boolean logic. So far we have
not accounted for the equations in a specification and what properties they
enforce in an algebra.

Definition : For a signature Σ and a Σ-algebra A, the evaluation function
evalA : TΣ → A from ground terms to values in A is defined as:

evalA (“c”) = cA for constants c and

evalA(“f(t1,..,tn)”) = fA(evalA(t1),..,evalA(tn))
where each term ti is of sort Si for f : S1,…,Sm→S in Operations. ❚

For any Σ-algebra A, the evaluation function from TΣ must always exist and
have the property that it maps function symbols to actual functions in A in a
conformal way to be defined later. The term algebra TΣ is a symbolic alge-
bra—concrete but symbolic.

A Congruence from the Equations

As the function symbols and constants create a set of ground terms, the
equations of a specification generate a congruence ≡ on the ground terms. A
congruence is an equivalence relation with an additional “substitution” prop-
erty.

Definition : Let Spec = <Σ,E> be a specification with signature Σ and equa-
tions E. The congruence ≡E deter mined by E on T Σ is the smallest relation
satisfying the following properties:

1. Variable Assignment: Given an equation lhs = rhs in E that contains vari-
ables v1,..,vn and given any ground terms t1,..,tn from TΣ of the same sorts
as the respective variables,

lhs[v1|→ t1, …, vn|→ tn] ≡E rhs[v1|→ t1, ..., vn|→ tn]

12.2 MATHEMATICAL FOUNDATIONS

464 CHAPTER 12 ALGEBRAIC SEMANTICS

where vi |→ ti indicates substituting the ground term ti for the variable vi.
If the equation is conditional, the condition must be valid after the vari-
able assignment is carried out on the condition.

2. Reflexive: For every ground term t∈TΣ, t ≡E t.

3. Symmetric: For any ground terms t1, t2∈TΣ, t1 ≡E t2 implies t2 ≡E t1.

4. Transitive: For any terms t1, t2, t3∈TΣ,
(t1 ≡E t2 and t2 ≡E t3) implies t1 ≡E t3.

5. Substitution Property: If t1 ≡E t1',…,tn ≡E tn' and f : S1,…,Sn→S is any
function symbol in Σ, then f(t1,…,tn) ≡E f(t1',…,tn'). ❚

Normally, we omit the subscript E and rely on the context to determine which
equations apply. To generate an equivalence relation from a set of equations,
we take every ground instance of all the equations as a basis, and allow any
derivation using the reflexive, symmetric, and transitive properties and the
rule that each function symbol preserves equivalence when building ground
terms.

For the Bools module, all ground terms are congruent to true or to false.

true ≡ not(false) ≡ not(not(true)) ≡ not(not(not(false))) ≡
false ≡ not(true) ≡ not(not(false)) ≡ not(not(not(true))) ≡

These congruences are easy to prove since no variables are involved. For the
Nats module, all ground terms are congruent to one of 0, succ(0), succ(succ(0)),
succ(succ(succ(0))), and so forth. For example, the following four terms are
congruent:

succ(succ(0)) ≡ add(0,succ(succ(0))) ≡
add(succ(succ(0)),0) ≡ add(succ(0),succ(0)).

We show the proof for add(succ(0),succ(0)) ≡ succ(succ(0)).

add(succ(0),succ(0))
≡ succ(add(succ(0),0)) using [N2] from Nats and a variable

assignment with [m|→ succ(0), n|→ 0]
≡ succ(succ(0)) using [N1] from Nats and a variable

assignment with [m|→ succ(0)].

Definition : If Spec is a specification with signature Σ and equations E, a Σ-
algebra A is a model of Spec if for all ground terms t1 and t2, t1 ≡E t2 implies
evalA(t1) = evalA(t2). ❚

Example : Consider the algebra A = <{off, on}, {off, on, switch}>,
where off and on are constants and switch is defined by

switch(off) = on and switch(on) = off.

465

Then if Σ is the signature of Bools, A is a Σ-algebra that models the specifica-
tion defined by Bools.

BooleanA = {off, on} is the carrier set corresponding to sort Boolean.

Operation symbols of Σ Constants/functions of A
 true : Boolean trueA = on : BooleanA
 false : Boolean falseA = off : BooleanA
 not : Boolean → Boolean notA = switch : BooleanA → BooleanA

For example, not(true) ≡ false and in the algebra A,

evalA(not(true)) = notA(evalA(true)) = notA(trueA) = switch(on) = off, and
evalA(false) = off. ❚

There may be many models for Spec. We now construct a particular Σ-alge-
bra, called the initial algebra , that is guaranteed to exist. We take this initial
algebra to be the meaning of the specification Spec.

The Quotient Algebra

The term algebra TΣ serves as the starting point in constructing an initial
algebra. We build the quotient algebra Q from the term algebra TΣ of a speci-
fication <Σ,E> by factoring out congruences.

Definition : Let <Σ,E> be a specification with Σ = <Sorts, Operations>. If t is a
term in TΣ, we represent its congruence class as [t] = { t' | t ≡E t' }. So [t] = [t']
if and only if t ≡E t'. These congruence classes form the members of the
carrier sets { STΣ

 | S∈Sorts } of the quotient algebra , one set for each sort S
in the signature. We translate a constant c into the congruence class [c]. The
functions in the term algebra define functions in the quotient algebra in the
following way:

Given a function symbol f : S1,...,Sn → S in Σ, fQ([t1],…,[tn]) = [f(t1,..,tn)] for
any terms ti : Si, with 1≤i≤n, from the appropriate carrier sets.

The function fQ is well-defined, since t1 ≡E t1', ..., tn ≡E tn' implies fQ(t1,..,tn) ≡E
fQ(t1',..,tn') by the Substitution Property for congruences. ❚

Consider the term algebra for Bools. There are two congruence classes, which
we may as well call [true] and [false]. From our previous observation of the
congruence of ground terms, we know that the congruence class [true] con-
tains

“true”, “not(false)”, “not(not(true))”, “not(not(not(false)))”, ...

and the congruence class [false] contains
“false”, “not(true)”, “not(not(false))”, “not(not(not(true)))”,

12.2 MATHEMATICAL FOUNDATIONS

466 CHAPTER 12 ALGEBRAIC SEMANTICS

The function notQ is defined in the following way:

notQ([false]) = [not(false)] = [true], and
notQ([true]) = [not(true)] = [false].

So the quotient algebra has the carrier set { [true], [false] } and the function
notQ. This quotient algebra is, in fact, an initial algebra for Bools. Initial alge-
bras are not necessarily unique. For example, the algebra

A = <{off, on}, {off, on, switch}>

is also an initial algebra for Bools.

An initial algebra is “finest-grained” in the sense that it equates only those
terms required to be equated, and, therefore, its carrier sets contain as many
elements as possible. Using the procedure outlined above for developing the
term algebra and then the quotient algebra, we can always guarantee that at
least one initial algebra exists for any specification.

Homomorphisms

Functions between Σ-algebras that preserve the operations are called Σ-ho-
momorphisms. See Chapter 9 for another description of homomorphisms.
These functions are used to compare and contrast algebras that act as mod-
els of specifications.

Definition : Suppose that A and B are Σ-algebras for a given signature Σ =
<Sorts, Operations>. Then h is a Σ-homomorphism if it maps the carrier
sets of A to the carrier sets of B and the constants and functions of A to the
constants and functions of B, so that the behavior of the constants and func-
tions is preserved. In other words, h consists of a collection { hS | S∈Sorts } of
functions hS : SA → SB for S∈Sorts such that

hS(cA) = cB for each constant symbol c : S, and

hS(fA(a1,…,an)) = fB(hS1
(a1),…,hSn

(an)) for each function symbol

f : S1,...,Sn → S in S and any n elements a1∈(S1)A,…,an∈(Sn)A. ❚

If there is a Σ-homomorphism h from A to B and the inverse of h is a Σ-
homomorphism from B to A, then h is an isomorphism and—apart from
renaming carrier sets, constants, and functions—the two algebras are ex-
actly the same.

The notion of Σ-homomorphism is used to define the concept of initial alge-
bra formally.

467

Definition : A Σ-algebra I in the class of all Σ-algebras that serve as models of
a specification with signature Σ is called initial if for any Σ-algebra A in the
class, there is a unique homomorphism h : I → A. ❚

The quotient algebra Q for a specification is an initial algebra. Therefore for
any Σ-algebra A that acts as a model of the specification, there is a unique
Σ-homomorphism from Q to A. The function evalA : TΣ → A induces the Σ-
homomorphism h from Q to A using the definition:

h([t]) = evalA(t) for each t∈TS.

The homomorphism h is well defined because if t1 ≡ t2, h([t1]) = evalA(t1) =
evalA(t2) = h([t2]).

Any algebra isomorphic to Q is also an initial algebra. So since the quotient
algebra Q and the algebra A = <{off, on}, {off, on, switch}> are isomorphic, A is
also an initial algebra for Bools. We can now formally define the terms junk
and confusion, introduced earlier in this chapter.

Definition : Let <Σ,E> be a specification, let Q be the quotient algebra for
<Σ,E>, and let B be an arbitrary model of the specification.

1. If the homomorphism from Q to a Σ-algebra B is not onto (not surjective),
then B contains junk since B contains values that do not correspond to
any terms constructed from the signature.

2. If the homomorphism from Q to B is not one-to-one (not injective), then B
exhibits confusion since two different values in the quotient algebra cor-
respond to the same value in B. ❚

Consider the quotient algebra for Nats with the infinite carrier set [0], [succ(0)],
[succ(succ(0))], and so on. Suppose that we have a 16-bit computer for which
the integers consist of the following set of values:

{ -32768, -32767, ..., -1, 0, 1, 2, 3, ..., 32766, 32767 }.

The negative integers are junk with respect to Nats since they cannot be
images of any of the natural numbers. On the other hand, all positive inte-
gers above 32767 must be confusion. When mapping an infinite carrier set
onto a finite machine, confusion must occur.

Consistency and Completeness

Consistency and completeness are two issues related to junk and confusion.
The following examples illustrate these notions. Suppose we want to add a
predecessor operation to naturals by importing Naturals (the original ver-
sion) and defining a predecessor function pred.

12.2 MATHEMATICAL FOUNDATIONS

468 CHAPTER 12 ALGEBRAIC SEMANTICS

module Predecessor1

imports Booleans, Naturals
exports

operations
pred (_) : Natural → Natural

end exports

variables
n : Natural

equations
[P1] pred (succ (n)) = n

end Predecessor1

We say that Naturals is a subspecification of Predecessor1 since the signa-
ture and equations of Predecessor1 include the signature and equations of
Naturals. We have added a new congruence class [pred(0)], which is not con-
gruent to 0 or any of the successors of 0. We say that [pred(0)] is junk and that
Predecessor1 is not a complete extension of Naturals. We can resolve this
problem by adding the equation [P2] pred(0) = 0 (or [P2] pred(0) = errorNatural).

Suppose that we define another predecessor module in the following way:

module Predecessor2

imports Booleans, Naturals

exports
operations

pred (_) : Natural → Natural
end exports

variables
n : Natural

equations
[P1] pred (n) = sub (n, succ (0))
[P2] pred (0) = 0

end Predecessor2

The first equation specifies the predecessor by subtracting one, and the sec-
ond equation is carried over from the “fix” for Predecessor1. In the module
Naturals, we have the congruence classes:

[errorNatural], [0], [succ(0)], [succ(succ(0))],

With the new module Predecessor2, we have pred(0) = sub(0,succ(0)) =
errorNatural by [P1] and [N5], and pred(0) = 0 by [P2]. So we have reduced the
number of congruence classes, since [0] = [errorNatural]. Because this has

469

introduced confusion, we say that Predecessor2 is not a consistent exten-
sion of Naturals.

Definition : Let Spec be a specification with signature Σ = <Sorts, Opera-
tions> and equations E. Suppose SubSpec is a subspecification of Spec with
sorts SubSorts (a subset of Sorts) and equations SubE (a subset of E). Let T
and SubT represent the terms of Sorts and SubSorts, respectively.

• Spec is a complete extension of SubSpec if for every sort S in SubSorts
and every term t1 in T, there exists a term t2 in SubT such that t1 and t2
are congruent with respect to E.

• Spec is a consistent extension of SubSpec if for every sort S in SubSorts
and all terms t1 and t2 in T, t1 and t2 are congruent with respect to E if and
only if t1 and t2 are congruent with respect to SubE. ❚

Exercises

1. Describe an initial algebra for the simplified Nats module given in this
section.

2. Use the specification of Booleans in section 12.1 to prove the following
congruences:

a) and(not(false),not(true)) ≡ false

b) or(not(false),not(true)) ≡ true

3. Use the specification of Naturals in section 12.1 to prove the following
congruences:

a) sub (10, succ (succ (succ (succ (succ (succ(0)))))))
≡ succ (succ (succ (succ (0))))

b) mul (succ (succ (0)), succ (succ (0))) ≡ succ (succ (succ (succ (0))))

c) less? (succ (0), succ (succ (succ (0)))) ≡ true

4. Each of the following algebras are Σ-algebras for the signature of Nats.
Identify those that are initial and define the homomorphisms from the
initial algebras to the other algebras. Do any of these algebras contain
confusion or junk?

a) A = <{ 0, 1, 2, 3, … }, {0A, succA, addA}> where 0A = 0, succA = λn . n+1,
and addA = λm . λn . m+n.

b) B = <{ 0, 1, 2 }, {0B, succB, addB}> where 0B = 0, succB(0)= 1, succB(1)=
2, succB(2)= 0, and addB = λm . λn . m+n (modulo 3).

12.2 MATHEMATICAL FOUNDATIONS

470 CHAPTER 12 ALGEBRAIC SEMANTICS

c) C = <{ …, -2, -1, 0, 1, 2, 3, … }, {0C, succC, addC}> where 0C = 0, succC
= λn . n+1, and addC = λm . λn . m+n.

d) D = <{ zero, succ(zero), succ(succ(zero)), … }, {0D, succD, addD}> where
0D = zero, succD = λn . succ(n), addD(m,zero) = m, and addD(m,succD(n))
= succ(addD(m,n)).

5. List five different terms in the term algebra TΣ for the specification of
stores in the module at the end of section 12.1. Describe the quotient
algebra for Mappings, including two additional equations:

[M4] update (update (m, d1, r1), d2, r2) = update (update (m, d2, r2), d1, r1)
when d1≠d2

[M5] update (update (m, d1, r1), d1, r2) = update (m, d1, r2).

6. Consider the following module that defines a specification <Σ,E> with
signature Σ and equations E. Ignore the possibility of an errorBoolean
value in the sort.

module Booleans
exports

sorts Boolean
operations

true : Boolean
false : Boolean
not (_) : Boolean → Boolean
nand (_ , _) : Boolean, Boolean → Boolean

end exports
variables

b : Boolean
equations

[B1] nand (false, false) = true
[B2] nand (false, true) = false
[B3] nand (true, false) = false
[B4] nand (true, true) = false
[B5] not (b) = nand (b, b)

end Booleans

a) Give an induction definition of the carrier set of the term algebra TΣ
for this Σ.

b) Carefully describe the quotient algebra Q for this specification.

c) Describe another algebra A whose carrier set has only one element
and that models this specification. Define a homomorphism from Q
to A.

d) Describe another algebra B whose carrier set has three elements and
that models this specification. Define a homomorphism from Q to B.

471

12.3 USING ALGEBRAIC SPECIFICATIONS

Before considering the algebraic semantics for Wren, we take a detour to
discuss several other uses of algebraic specifications. Defining abstract data
types has proved to be the most productive application of these specification
methods so far. In the first part of this section we develop and discuss the
specification of abstract data types using algebraic methods. Then in the
second part of this section we return to the concept of abstract syntax and
see that it can be put on a more formal foundation by exploiting algebraic
specifications and their corresponding algebras.

Data Abstraction

The main problem in creating large software systems is that their complexity
can exceed the programmers’ powers of comprehension. Using abstraction
provides a fundamental technique for dealing with this complexity. Abstrac-
tion means that a programmer concentrates on the essential features of the
problem while ignoring details and characteristics of concrete realizations in
order to moderate the magnitude of the complexity.

Abstraction aids in the constructing, understanding, and maintaining of sys-
tems by reducing the number of details a programmer needs to understand
while working on one part of the problem. The reliability of a system is en-
hanced by designing it in modules that maintain a consistent level of ab-
straction, and by permitting only certain operations at each level of abstrac-
tion. Any operation that violates the logical view of the current level of ab-
straction is prohibited. A programmer uses procedural and data abstrac-
tions without knowing how they are implemented (called infor mation hid-
ing). Unnecessary details of data representation or of an operation’s imple-
mentation are hidden from those who have no need to see them.

Data abstraction refers to facilities that allow the definition of new sorts of
data and operations on that data. Once the data and operations have been
defined, the programmer forgets about the implementation and simply deals
with their logical properties. The goal of data abstraction is to separate the
logical properties of the data and operations from the implementation. Pro-
grammers work with abstract data types when they use the predefined types
in a programming language. The objects and operations of integer type are
used in a program based solely on their logical characteristics; programmers
need know nothing of the representation of integers or of the implementation
of the arithmetic operations. This information hiding allows them to consider
problems at a higher level of abstraction by ignoring implementation details.
High-level strategies should not be based on low-level details.

12.3 USING ALGEBRAIC SPECIFICATIONS

472 CHAPTER 12 ALGEBRAIC SEMANTICS

The full power of abstraction becomes evident only when programmers can
create abstract data types for themselves. Many modern programming lan-
guages provide support for the specification of ADTs. Three facilities are de-
sirable in a programming language for the creation of ADTs:

1. Information Hiding : The compiler should ensure that the user of an ADT
does not have access to the representation (of the values) and implemen-
tation (of the operations) of an ADT.

2. Encapsulation : All aspects of the specification and implementation of an
ADT should be contained in one or two syntactic unit(s) with a well-de-
fined interface to the users of the ADT. The Ada package, the Modula-2
module, and the class feature in object-oriented programming languages
are examples of encapsulation mechanisms.

3. Generic types (parameterized modules): There should be a way of defin-
ing an ADT as a template without specifying the nature of all its compo-
nents. Such a generic type will be instantiated when the properties of its
missing component values are instantiated.

Instead of delving into the definition of ADTs in programming languages, we
return now to a more formal discussion of data abstraction in the context of
algebraic specification as already examined in the first two sections of this
chapter.

A Module for Unbounded Queues

We start by giving the signature of a specification of queues of natural num-
bers.

module Queues
imports Booleans, Naturals
exports

sorts Queue
operations

newQ : Queue
errorQueue : Queue
addQ (_ , _) : Queue, Natural → Queue
deleteQ (_) : Queue → Queue
frontQ (_) : Queue → Natural
isEmptyQ (_) : Queue → Boolean

end exports
end Queues

473

Given only the signature of Queues, we have no justification for assuming
any properties of the operations other than their basic syntax. Except for the
names of the operations, which are only meaningless symbols at this point,
this module could be specifying stacks instead of queues. One answer to this
ambiguity is to define the characteristic properties of the queue ADT by de-
scribing informally what each operation does—for example:

• The function isEmptyQ(q) returns true if and only if the queue q is empty.

• The function frontQ(q) returns the natural number in the queue that was
added earliest without being deleted yet.

• If q is an empty queue, frontQ(q) is an error value.

Several problems arise with this sort of informal approach. The descriptions
are ambiguous, depending on terms that have not been defined—for example,
“empty” and “earliest”. The properties depend heavily on the names used for
the operations and what they suggest. The names will be of no use with a
completely new data type. On the other hand, a programmer may be tempted
to define the meaning of the operations in terms of an implementation of
them, say as an array with two index values identifying the front and rear of
the queue, but this defeats the whole intent of data abstraction, which is to
separate logical properties of data objects from their concrete realization.

A more formal approach to specifying the properties of an ADT is through a
set of axioms in the form of module equations that relate the operations to
each other. We insert the following sections into the module Queues:

variables
q : Queue
m : Natural

equations

[Q1] isEmptyQ (newQ) = true

[Q2] isEmptyQ (addQ (q,m)) = false when q≠errorQueue, m≠errorNatural

[Q3] delete (newQ) = newQ

[Q4] deleteQ (addQ (q,m)) = if (isEmptyQ(q), newQ, addQ(deleteQ(q),m))
when m≠errorNatural

[Q5] frontQ (newQ) = errorNatural

[Q6] frontQ (addQ (q,m)) = if (isEmptyQ(q), m, frontQ(q))
when m≠errorNatural

The decision to have delete(newQ) return newQ is arbitrary. Some other time
we might want delete(newQ) to be errorQueue when describing the behavior of
a queue.

12.3 USING ALGEBRAIC SPECIFICATIONS

474 CHAPTER 12 ALGEBRAIC SEMANTICS

Implementing Queues as Unbounded Arrays

Assuming that the axioms correctly specify the concept of a queue, they can
be used to verify that an implementation is correct. A realization of an ab-
stract data type will consist of a representation of the objects of the type,
implementations of the operations, and a representation function Φ that
maps terms in the model onto the abstract objects in such a way that the
axioms are satisfied. For example, say we want to represent queues as arrays
with two pointers, one to the front of the queue and one to the rear. Note that
the implementation is simplified by defining unbounded arrays, since the
queues that have been described are unbounded.

To enhance the readability of this presentation, we use abbreviations such
as “m=n” for eq?(m,n) and “m≤n” for not(greater?(m,n)) from now on. The notion
of an unbounded array is presented as an abstract data type in the following
module:

module Arrays
imports Booleans, Naturals
exports

sorts Array
operations

newArray : Array
errorArray : Array
assign (_ , _ , _) : Array, Natural, Natural → Array
access (_ , _) : Array, Natural → Natural

end exports

variables
arr : Array
i, j, m : Natural

equations
[A1] access (newArray, i) = errorNatural
[A2] access (assign (arr, i, m), j) = if (i = j, m, access(arr,j))

when m≠errorNatural
end Arrays

The implementation of the ADT Queue using the ADT Array has the following
set of triples as its objects:

ArrayQ = { <arr,f,e> | arr : Array and f,e : Natural and f≤e }.

The operations over ArrayQ are defined as follows:

[AQ1] newAQ = <newArray,0,0>

[AQ2] addAQ (<arr,f,e>, m) = <assign(arr,e,m),f,e+1>

475

[AQ3] deleteAQ (<arr,f,e>) = if (f = e, <newArray,0,0>, <arr,f+1,e>)

[AQ4] frontAQ (<arr,f,e>) = if (f = e, errorNatural, access(arr,f))

[AQ5] isEmptyAQ (<arr,f,e>) = (f = e) when arr≠errorArray

The array queues are related to the abstract queues by a homomorphism,
called a representation function,

Φ : { ArrayQ,Natural,Boolean } → { Queue,Natural,Boolean },

defined on the objects and operations of the sort. We use the symbolic
terms “Φ(arr,f,e)” to represent the abstract queue objects in Queue.

For arr : Array, m : Natural, and b : Boolean,

Φ (<arr,f,e>) = Φ(arr,f,e) when f≤e

Φ (<arr,f,e>) = errorQueue when f>e

Φ (m) = m

Φ (b) = b

Φ (newAQ) = newQ

Φ (addAQ) = addQ

Φ (deleteAQ) = deleteQ

Φ (frontAQ) = frontQ

Φ (isEmptyAQ) = isEmptyQ

Under the homomorphism, the five equations that define operations for the
array queues map into five equations describing properties of the abstract
queues.

[D1] newQ = Φ(newArray,0,0)

[D2] addQ (Φ(arr,f,e), m) = Φ(assign(arr,e,m),f,e+1)

[D3] deleteQ (Φ(arr,f,e)) = if (f = e, Φ(newArray,0,0), Φ(arr,f+1,e))

[D4] frontQ (Φ(arr,f,e)) = if (f = e, errorNatural, access(arr,f))

[D5] isEmptyQ (Φ(arr,f,e)) = (f = e)

As an example, consider the image of [AQ2] under Φ.

Assume [AQ2] addAQ (<arr,f,e>,m) = <assign (arr,e,m),f,e+1>.

Then addQ (Φ(arr,f,e),m) = Φ(addAQ) (Φ(<arr,f,e>),Φ(m)>)

= Φ(addAQ (<arr,f,e>,m))

= Φ(assign(arr,e,m),f,e+1),

which is [D2].

12.3 USING ALGEBRAIC SPECIFICATIONS

476 CHAPTER 12 ALGEBRAIC SEMANTICS

The implementation is correct if its objects can be shown to satisfy the queue
axioms [Q1] to [Q6] for arbitrary queues of the form q = Φ(arr,f,e) with f≤e and
arbitrary elements m of Natural, given the definitions [D1] to [D5] and the
equations for arrays. First we need a short lemma.

Lemma : For any queue Φ(a,f,e) constructed using the operations of the imple-
mentation, f≤e.

Proof: The only operations that produce queues are newQ, addQ, and deleteQ,
the constructors in the signature. The proof is by induction on the number of
applications of these operations.

Basis : Since newQ = Φ(newArray,0,0), f≤e.

Induction Step : Suppose that Φ(a,f,e) has been constructed with n applica-
tions of the operations and that f≤e.

Consider a queue constructed with one more application of these functions,
for a total of n+1.

Case 1 : The n+1st
 operation is addQ.

But addQ (Φ(a,f,e),m) = Φ(assign (a,f,m), f, e+1) has f≤e+1.

Case 2 : The n+1st
 operation is deleteQ.

But deleteQ (Φ(a,f,e)) = if (f = e, Φ(arr,f,e), Φ(arr,f+1,e)).
If f=e, then f≤e, and if f<e, then f+1≤e. ❚

The proof of the lemma is an example of a general principle, called structural
induction because the induction covers all of the ways in which the objects
of the data type may be constructed (see the discussion of structural induc-
tion in Chapter 8). The goal is to prove a property that holds for all the values
of a particular sort, and the induction applies to those operations (the con-
structors) that produce elements of the sort. For the lemma, the constructors
for Queue consist of newQ, addQ, and deleteQ. The general principle can be
described as follows:

Structural Induction : Suppose f1, f2, …, fn are the operations that
act as constructors for an abstract data type S, and P is a property of
values of sort S. If the truth of P for all arguments of sort S for each fi
implies the truth of P for the results of all applications of fi that satisfy
the syntactic specification of S, it follows that P is true of all values of
the data type. The basis case results from those constructors with no
arguments—namely, the constants of sort S.

To enable the verification of [Q4] as part of proving the validity of this queue
implementation, it is necessary to extend Φ for the following values:

For any f : Natural and arr : Array, Φ(arr,f,f) = newQ.

This extension is consistent with definition [D1].

477

Verification of Queue Axioms

Let q = Φ(a,f,e) be an arbitrary queue and let m be an arbitrary element of
Natural.

[Q1] isEmptyQ (newQ) = isEmptyQ (Φ(newArray,0,0)) by [D1]
= (0 = 0) = true by [D5].

[Q2] isEmptyQ (addQ (Φ(arr,f,e),m))
= isEmptyQ (Φ(assign(arr,e,m),f,e+1) by [D2]
= (f = e+1) = false, since f≤e by [D5] and the lemma.

[Q3] deleteQ (newQ) = deleteQ (Φ(newArray,0,0)) by [D1]
= Φ(newArray,0,0) = newQ by [D3] and [D1].

[Q4] deleteQ (addQ (Φ(arr,f,e), m))
= deleteQ (Φ(assign(arr,e,m),f,e+1)) by [D2]
= Φ(assign(arr,e,m),f+1,e+1) by [D3].

Case 1 : f = e, that is, isEmptyQ (Φ(arr,f,e)) = true.
Then Φ(assign(arr,e,m),f+1,e+1) = newQ by [D1].

Case 2 : f < e, that is, isEmptyQ (Φ(arr,f,e)) = false.
Then Φ(assign(arr,e,m),f+1,e+1) = addQ (Φ(arr,f+1,e), m) by [D2]

= addQ (deleteQ (Φ(arr,f,e)), m) by [D3].

[Q5] frontQ (newQ) = frontQ (Φ(newArray,0,0)) by [D1]
= errorNatural since 0 = 0 by [D4].

[Q6] frontQ (addQ (Φ(arr,f,e), m)) = frontQ (Φ(assign(arr,e,m),f,e+1)) by [D2]
= access (assign(arr,e,m), f) by [D4].

Case 1 : f = e, that is, isEmptyQ (Φ(arr,f,e)) = true.
So access (assign(arr,e,m), f) = access (assign (arr,e,m), e) = m by [A2].

Case 2 : f < e, that is, isEmptyQ (Φ(arr,f,e)) = false.
Then access (assign (arr,e,m), f)= access (arr,f)

= frontQ (Φ(arr,f,e)) by [A2] and [D4].

Since the six axioms for the unbounded queue ADT have been verified, we
know that the implementation via the unbounded arrays is correct. ❚

ADTs As Algebras

In the previous section we defined Σ-algebras, the many-sorted algebras that
correspond to specifications with signature Σ. Now we apply some of the
results to the queue ADT. Recall that any signature Σ defines a Σ-algebra TΣ
of all the terms over the signature, and that by taking the quotient algebra Q
defined by the congruence based on the equations E of a specification, we get

12.3 USING ALGEBRAIC SPECIFICATIONS

478 CHAPTER 12 ALGEBRAIC SEMANTICS

an initial algebra that serves as the finest-grained model of a specification
<Σ,E>.

Example : An instance of the queue ADT has operations involving three sorts
of objects—namely, Natural, Boolean, and the type being defined, Queue. Some
authors designate the type being defined as the type of inter est. In this
context, a graphical notation has been suggested (see Figure 12.1) to define
the signatur e of the operations of the algebra.

newQ

addQdeleteQ

frontQisEmptyQ

NaturalQueueBoolean

Figure 12.1: Signature of Queues

The signature of the queue ADT defines a term algebra TΣ, sometimes called
a free word algebra , formed by taking all legal combinations of operations
that produce queue objects. The values in the sort Queue are those produced
by the constructor operations. For example, the following terms are elements
of TΣ (we use common abbreviations for natural numbers now, such as 5 for
succ(succ(succ(succ(succ(0))))):

newQ,

addQ (newQ,5), and

deleteQ (addQ (addQ (deleteQ (newQ),9),15)).

The term free for such an algebra means that the operations are combined in
any way satisfying the syntactic constraints, and that all such terms are
distinct objects in the algebra. The properties of an ADT are given by a set E
of equations or axioms that define identities among the terms of TΣ.

So the queue ADT is not a free algebra, since the axioms recognize certain
terms as being equal. For example:

deleteQ (newQ) = newQ and

deleteQ (addQ (addQ (deleteQ (newQ), 9), 15)) = addQ (newQ, 15).

479

The equations define a congruence ≡E on the free algebra of terms as de-
scribed in section 12.2. That equivalence relation defines a set of equivalence
classes that partition TΣ.

[t]E = { u∈TΣ | u ≡E t }

For example, [newQ]E = { newQ, deleteQ(newQ), deleteQ(deleteQ(newQ)), … }.

The operations of the ADT can be defined on these equivalence classes as in
the previous section:

For an n-ary operation f∈S and t1,t2,…,tn∈TΣ,
let fQ([t1],[t2],…,[tn]) = [f(t1,t2,…,tn)].

The resulting (quotient) algebra, also called TΣ,E, is the abstract data type
being defined. When manipulating the objects of the (quotient) algebra TΣ,E
the normal practice is to use representatives from the equivalence classes.

Definition : A canonical or normal for m for the terms in a quotient algebra
is a set of distinct representatives, one from each equivalence class. ❚

Lemma : For the queue ADT TΣ,E each term is equivalent to the value newQ or
to a term of the form addQ(addQ(…addQ(addQ(newQ,m1),m2),…),mn–1),mn) for
some n≥1 where m1,m2,…,mn : Natural.

Proof: The proof is by structural induction.

Basis : The only constant in TΣ is newQ, which is in normal form.

Induction Step : Consider a queue term t with more than one application of
the constructors (newQ, addQ, deleteQ), and assume that any term with fewer
applications of the constructors can be put into normal form.

Case 1 : t = addQ(q,m) will be in normal form when q, which has fewer con-
structors than t, is in normal form.

Case 2 : Consider t = deleteQ(q) where q is in normal form.

Subcase a : q = newQ. Then deleteQ(q) = newQ is in normal form.

Subcase b : q = addQ(p,m) where p is in normal form.

Then deleteQ(addQ(p,m)) = if (isEmptyQ(p), newQ,addQ(deleteQ(p),m)).

If p is empty, deleteQ(q) = newQ is in normal form.

If p is not empty, deleteQ(q) = addQ(deleteQ(p),m). Since deleteQ(p)
has fewer constructors than t, it can be put into normal form, so
that deleteQ(q) is in normal form. ❚

A canonical form for an ADT can be thought of as an “abstract implementa-
tion” of the type. John Guttag [Guttag78b] calls this a direct implementa-
tion and represents it graphically as shown in Figure 12.2.

12.3 USING ALGEBRAIC SPECIFICATIONS

480 CHAPTER 12 ALGEBRAIC SEMANTICS

addQ (addQ (addQ (newQ, 3), 5), 8) =

newQ = newQ

addQ

3

5

8

newQ

addQ

addQ

Figure 12.2: Direct Implementation of Queues

The canonical form for an ADT provides an effective tool for proving proper-
ties about the type.

Lemma : The representation function Φ that implements queues as arrays is
an onto function.

Proof: Since any queue can be written as newQ or as addQ(q,m), we need to
handle only these two forms. By [D1], Φ(newArray,0,0) = newQ.

Assume as an induction hypothesis that q = Φ(arr,f,e) for some array.
Then by [D2], Φ(assign(arr,e,m),f,e+1) = addQ (Φ(arr,f,e),m).

Therefore any queue is the image of some triple under the representation
function Φ. ❚

Given an ADT with signature Σ, operations in Σ that produce an element of
the type of interest have already been called constructors . Those operations
in Σ whose range is an already defined type of “basic” values are called selec-
tors . The operations of Σ are partitioned into two disjoint sets, Con the set of
constructors and Sel the set of selectors. The selectors for Queues are frontQ
and isEmptyQ.

Definition : A set of equations for an ADT is sufficiently complete if for each
ground term f(t1,t2,…,tn) where f∈Sel, the set of selectors, there is an element
u of a predefined type such that f(t1,t2,…,tn) ≡E u. This condition means there
are sufficient axioms to make the derivation to u.

Theorem: The equations in the module Queues are sufficiently complete.

Proof:
1. Every queue can be written in normal form as newQ or as addQ(q,m).

481

2. isEmptyQ(newQ) = true, isEmptyQ(addQ(q,m)) = false, frontQ(newQ) =
errorNatural, and frontQ(addQ(q,m)) = m or frontQ(q) (use induction). ❚

Abstract Syntax and Algebraic Specifications

Throughout the text we have emphasized the importance of abstract syntax
in the definition of programming language semantics. In particular, we have
stressed several points about abstract syntax:

• In a language definition we need to specify only the meaning of the syntac-
tic forms given by the abstract syntax, since this formalism furnishes all
the essential syntactic constructs in the language. Details in the concrete
syntax (BNF) may be ignored. No harm arises from an ambiguous abstract
syntax since its purpose is not syntactic analysis (parsing). Abstract syn-
tax need only delineate the structure of possible language constructs that
can occur in the programs to be analyzed semantically.

• The abstract syntax of a programming language may take many different
forms, depending on the semantic techniques that are applied to it. For
instance, the abstract syntax for structural operational semantics has little
resemblance to that for denotational semantics in its format.

The variety of abstract syntax and its tolerance of ambiguity raises questions
concerning the nature of abstract syntax and its relation to the language
defined by the concrete syntax. Answers to these questions can be found by
analyzing the syntax of programming languages in the context of algebraic
specifications.

To illustrate how a grammar can be viewed algebraically, we begin with a
small language of integer expressions whose concrete syntax is shown in
Figure 12.3.

<expr> ::= <term>

<expr> ::= <expr> + <term>

<expr> ::= <expr> – <term>

<term> ::= <element>

<term> ::= <term> * <element>

<element> ::= <identifier>

<element> ::= (<expr>)

Figure 12.3: Concrete Syntax for Expressions

To put this syntactic specification into an algebraic setting, we define a sig-
nature Σ that corresponds exactly to the BNF definition. Each nonterminal

12.3 USING ALGEBRAIC SPECIFICATIONS

482 CHAPTER 12 ALGEBRAIC SEMANTICS

becomes a sort in Σ, and each production becomes a function symbol whose
syntax captures the essence of the production. The signature of the concrete
syntax is given in the module Expressions.

module Expressions
exports

sorts Expression, Term, Element, Identifier
operations

expr (_) : Term → Expression
add (_ , _) : Expression, Term → Expression
sub (_ , _) : Expression, Term → Expression
term (_) : Element → Term
mul (_ , _) : Term, Element → Term
elem (_) : Identifier → Element
paren (_) : Expression → Element

end exports
end Expressions

Observe that the terminal symbols in the grammar are “forgotten” in the
signature since they are embodied in the unique names of the function sym-
bols. Now consider the collection of Σ-algebras following this signature. Since
the specification has no equations, the term algebra TΣ is initial in the collec-
tion of all Σ-algebras, meaning that for any Σ-algebra A, there is a unique
homomorphism h : TΣ → A. The elements of TΣ are terms constructed using
the function symbols in Σ. Since this signature has no constants, we assume
a set of constants of sort Identifier and represent them as structures of the
form ide(x) containing atoms as the identifiers. Think of these structures as
the tokens produced by a scanner. The expression “x * (y + z)” corresponds to
the following term in TΣ:

t = expr (mul (term (elem (ide(x))),

paren (add (expr (term (elem (ide(y)))),

term (elem (ide(z))))))).

Constructing such a term corresponds to parsing the expression. In fact, the
three algebras, the term algebra TΣ, the collection of expressions satisfying
the BNF definition, and the collection of parse (derivation) trees of expres-
sions are isomorphic. Consider the two trees in Figure 12.4. The one on the
left is the derivation tree for “x * (y + z)”, and the other one represents its
associated term in TΣ.

483

<element>

<identifier>

expr

mul

term

add

paren

expr term

term

elem

ide

x

y

z

<expression>

<term>

<element>

<expression>

<element>

<identifier>

z

<term><expression>

<term>

<element>

y

<identifier>

*

+

()

x

<term>

elem

elem

ide

ide

Figure 12.4: Derivation Tree and Algebraic Term

If the concrete syntax of a programming language coincides with the initial
term algebra of a specification with signature Σ, what does its abstract syn-
tax correspond to? Consider the following algebraic specification of abstract
syntax for the expression language.

module AbstractExpressions
exports

sorts AbstractExpr, Symbol
operations

plus (_ , _) : AbstractExpr, AbstractExpr → AbstractExpr
minus (_ , _) : AbstractExpr, AbstractExpr → AbstractExpr
times (_ , _) : AbstractExpr, AbstractExpr → AbstractExpr
ide (_) : Symbol → AbstractExpr

end exports
end AbstractExpressions

Employing the set Symbol of symbolic atoms used as identifiers in the ex-
pression language, we can construct terms with the four constructor func-
tion symbols in the AbstractExpressions module to represent the abstract
syntax trees for the language. These freely constructed terms form a term
algebra, call it A, according to the signature of AbstractExpressions. In addi-

12.3 USING ALGEBRAIC SPECIFICATIONS

484 CHAPTER 12 ALGEBRAIC SEMANTICS

tion, A also serves as a model of the specification in the Expressions module;
that is, A is a Σ-algebra as evidenced by the following interpretation of the
sorts and function symbols:

ExpressionA = TermA = ElementA = AbstractExpr

IdentifierA = { ide(x) | x : Symbol }.

Operations:

exprA : AbstractExpr → AbstractExpr
defined by exprA (e) = e

addA : AbstractExpr, AbstractExpr → AbstractExpr
defined by addA (e1,e2) = plus(e1,e2)

subA : AbstractExpr, AbstractExpr → AbstractExpr
defined by subA (e1,e2) = minus(e1,e2)

termA : AbstractExpr → AbstractExpr
defined by termA (e) = e

mulA : AbstractExpr, AbstractExpr → AbstractExpr
defined by mulA (e1,e2) = times(e1,e2)

elemA : Identifier → AbstractExpr
defined by elemA (e) = e

parenA: AbstractExpr → AbstractExpr
defined by parenA (e) = e

Under this interpretation of the symbols in Σ, the term t, shown in Figure
12.4, becomes a value in the Σ-algebra A:

tA = (expr (mul (term (elem (ide(x))),
paren (add (expr (term(elem (ide(y)))), term (elem (ide(z))))))))A

= exprA (mulA (termA (elemA (ide(x))),
parenA (addA (exprA (termA (elemA (ide(y)))), termA(elemA (ide(z)))))))

= exprA (mulA (termA (ide(x)),
parenA (addA (exprA (termA (ide(y))), termA (ide(z))))))

= exprA (mulA (ide(x), parenA (addA (exprA (ide(y)), ide(z)))))

= mulA (ide(x), addA (ide(y), ide(z)))

= times (ide(x), plus (ide(y), ide(z)))

The last term in this evaluation represents the abstract syntax tree in A that
corresponds to the original expression “x * (y + z)”.

Each version of abstract syntax is a Σ-algebra for the signature associated
with the grammar that forms the concrete syntax of the language. Further-

485

more, any Σ-algebra serving as an abstract syntax is a homomorphic image
of TΣ, the initial algebra for the specification with signature Σ. Generally, Σ-
algebras acting as abstract syntax will contain confusion; the homomorphism
from TΣ will not be one-to-one. This confusion reflects the abstracting pro-
cess: By confusing elements in the algebra, we are suppressing details in the
syntax. The expressions “x+y” and “(x+y)”, although distinct in the concrete
syntax and in TΣ, are indistinguishable when mapped to plus(ide(x),ide(y)) in A.

Any Σ-algebra for the signature resulting from the concrete syntax can serve
as the abstract syntax for some semantic specification of the language, but
many such algebras will be so confused that the associated semantics will be
trivial or absurd. The task of the semanticist is to choose an appropriate Σ-
algebra that captures the organization of the language in such a way that
appropriate semantics can be attributed to it.

Exercises

1. Define suitable canonical forms for the following ADTs, and prove their
correctness:

a) Unbounded Array

b) Stack of natural numbers

2. Define a parameterized module for queues in which the items in the
queues are unspecified until the module is instantiated. Give an
instantiation of the module.

3. Define a module that specifies the integers including operations for suc-
cessor, predecessor, addition, equality, and less than. Determine the
form of canonical terms for the (initial) quotient algebra for the specifi-
cation, proving that the forms chosen are adequate.

4. Determine the form of canonical terms for the (initial) quotient algebra
generated by the following module that specifies lists of natural num-
bers. Prove that the canonical forms are sufficient and argue that the
choice is minimal.

module NatLists
imports Booleans, Naturals
exports
sorts List
functions

emptyList : List
mkList (_) : Natural → List
concat (_ , _) : List, List → List

12.3 USING ALGEBRAIC SPECIFICATIONS

486 CHAPTER 12 ALGEBRAIC SEMANTICS

consL (_ , _) : Natural, List → List
consR (_ , _) : List, Natural → List
empty? (_) : List → Boolean
length (_) : List → Natural

end exports

variables
s, s1, s2, s3 : List
m : Natural

equations
[NL1] concat (s, emptyList) = s
[NL2] concat (emptyList, s) = s
[NL3] concat (concat (s1, s2), s3) = concat (s1, concat (s2, s3))
[NL4] consL (m, s) = concat (mkList (m), s)
[NL5] consR (s, m) = concat (s, mkList (m))
[NL6] empty? (emptyList) = true
[NL7] empty? (mkList (m)) = false when m ≠ errorNatural
[NL8] empty? (concat (s1, s2)) = and (empty? (s1), empty? (s2))
[NL9] length (emptyList) = 0
[NL10] length (mkList (m)) = 1 when m ≠ errorNatural
[NL11] length (concat (s1, s2)) = add (length (s1), length (s2))

end NatLists

5. Define alternate abstract syntax for the expression language by specify-
ing a signature with a module and an Σ-algebra for the signature Σ of
Expressions that does the following:

a) Describes only the structure of an expression, so that the abstract
syntax tree for “x * (y + z)” is opr (ide(x), opr (ide(y), ide(z))).

b) Identifies only the first identifier in an expression, so that the ab-
stract syntax tree for “x * (y + z)” is ide(x).

6. Specify modules for the concrete syntax and the abstract syntax of Wren
as described in Chapter 1 and show how its term algebra of the abstract
syntax module can be interpreted as a Σ-algebra for the signature of the
module for the concrete syntax.

487

12.4 ALGEBRAIC SEMANTICS FOR WREN

We have seen that there are many aspects in specifying the syntax and se-
mantics of a programming language. In Chapter 1 we studied BNF and its
variants; in Chapter 2 we built a lexical analyzer and parser for Wren. Con-
text checking was demonstrated using three approaches: attribute gram-
mars (Chapter 3), two-level grammars (Chapter 4), and denotational seman-
tics (Chapter 9). Programming language semantics has been handled in a
variety of ways: self-definition (Chapter 6), translational semantics (Chapter
7), structural operational semantics (Chapter 8), denotational semantics
(Chapter 9), and axiomatic semantics (Chapter 11). Each technique has its
strengths and weaknesses. For example, denotational semantics can per-
form type checking and program interpretation, but it does not stress lexical
analysis and parsing beyond the abstract production rules. Axiomatic se-
mantics does not deal with lexical analysis, parsing, or type checking. Most
techniques rely on knowledge of well-known domains, such as truth values
with logical operations or numbers with arithmetic operations.

Of the techniques studied so far, algebraic semantics is perhaps the most
versatile in its ability to perform all of the functions mentioned above. Mod-
ules can be developed to perform lexical analysis, parsing, type checking and
language evaluation. Basic domains, such as truth values, natural numbers,
and characters, are carefully specified using fundamental concepts, such as
zero and the successor function for natural numbers. The initial algebras
constructed as quotient algebras represent the meaning of these domains,
apart from the renaming of constants and functions. Because of the length of
a complete presentation, we elect not to develop the lexical analyzer and
parser for Wren using algebraic specifications. See [Bergstra89] for the miss-
ing specification techniques. Rather, we concentrate on showing how the
methodology can be used to perform type checking and program interpreta-
tion. In particular, we develop the following modules:

• WrenTypes specifies the allowed types for Wren programs.

• WrenValues specifies the permissible value domains.

• WrenASTs specifies the output of the parser, the abstract syntax trees.

• WrenTypeChecker returns a Boolean value resulting from context checking.

• WrenEvaluator interprets a Wren program given an input file.

• WrenSystem calls the evaluator if type checking is successful.

For simplicity, we have limited the domain of arithmetic values to natural
numbers. To reduce the complexity of the example, declarations allow only a
single identifier. Boolean variables can be declared, but we leave their ma-
nipulation as an exercise at the end of this section. We also leave the han-

12.4 ALGEBRAIC SEMANTICS FOR WREN

488 CHAPTER 12 ALGEBRAIC SEMANTICS

dling of runtime errors, such as division by zero and reading from an empty
file, as an exercise. Since nonterminating programs cause technical difficul-
ties in an algebraic specification, we plan to describe only computations (pro-
grams and input) that terminate. We want our equations for the Wren evalu-
ator to be sufficiently complete; that is, every program and input list can be
reduced to an equivalent term in the sort of lists of natural numbers (output
lists). We lose the property of sufficient completeness when we include con-
figurations that produce nonterminating computations.

Types and Values in Wren

The first module, WrenTypes, specifies four constant functions, naturalType,
booleanType, programType, and errorType, along with a single Boolean opera-
tion to test the equality of two types.

module WrenTypes
imports Booleans
exports

sorts WrenType
operations

naturalType : WrenType
booleanType : WrenType
programType : WrenType
errorType : WrenType
eq? (_ , _) : WrenType, WrenType → Boolean

end exports

variables
t, t1, t2 : WrenType

equations
[Wt1] eq? (t, t) = true when t≠errorType
[Wt2] eq? (t1, t2) = eq? (t2,t1)
[Wt3] eq? (naturalType, booleanType) = false
[Wt4] eq? (naturalType, programType) = false
[Wt5] eq? (naturalType, errorType) = false
[Wt6] eq? (booleanType, programType) = false
[Wt7] eq? (booleanType, errorType) = false
[Wt8] eq? (programType, errorType) = false

end WrenTypes

The next module, WrenValues, specifies three functions for identifying natu-
ral numbers, Boolean values, and an error value. These function symbols
perform the same role as the tags in a disjoint union. Two values are equal
only if they come from the same domain and if they are equal in that domain.

489

module WrenValues
imports Booleans, Naturals
exports

sorts WrenValue
operations

wrenValue (_) : Natural → WrenValue
wrenValue (_) : Boolean → WrenValue
errorValue : WrenValue
eq? (_ , _) : WrenValue, WrenValue → Boolean

end exports

variables
x, y : WrenValue
n, n1, n2 : Natural
b, b1, b2 : Boolean

equations
[Wv1] eq? (x, y) = eq? (y,x)
[Wv2] eq? (wrenValue(n1), wrenValue(n2)) = eq? (n1,n2)
[Wv3] eq? (wrenValue(b1), wrenValue(b2)) = eq? (b1,b2)
[Wv4] eq? (wrenValue(n), wrenValue(b)) = false

when m ≠ errorNatural, b ≠ errorBoolean
[Wv5] eq? (wrenValue(n), errorValue) = false when n ≠ errorNatural
[Wv6] eq? (wrenValue(b), errorValue) = false when b ≠ errorBoolean

end WrenValues

Abstract Syntax for Wren

The abstract syntax tree module specifies the form of a Wren program that
has been parsed successfully. As noted previously, we show only the struc-
ture of the abstract syntax trees, not how they are constructed.

module WrenASTs
imports Naturals, Strings, WrenTypes
exports

sorts WrenProgram, Block, DecSeq, Declaration,
CmdSeq, Command, Expr, Ident

operations
astWrenProgram (_ , _) : Ident, Block → WrenProgram
astBlock (_ , _) : DecSeq, CmdSeq → Block
astDecs (_ , _) : Declaration, DecSeq → DecSeq
astEmptyDecs : DecSeq
astDec (_ , _) : Ident, WrenType → Declaration

12.4 ALGEBRAIC SEMANTICS FOR WREN

490 CHAPTER 12 ALGEBRAIC SEMANTICS

astCmds (_ , _) : Command, CmdSeq → CmdSeq
astOneCmd (_) : Command → CmdSeq
astRead (_) : Ident → Command
astWrite (_) : Expr → Command
astAssign (_ , _) : Ident, Expr → Command
astSkip : Command
astWhile (_ , _) : Expr, CmdSeq → Command
astIfThen (_ , _) : Expr, CmdSeq → Command
astIfElse (_ , _ , _) : Expr, CmdSeq, CmdSeq → Command
astAddition (_ , _) : Expr, Expr → Expr
astSubtraction (_ , _) : Expr, Expr → Expr
astMultiplication (_ , _) : Expr, Expr → Expr
astDivision (_ , _) : Expr, Expr → Expr
astEqual (_ , _) : Expr, Expr → Expr
astNotEqual (_ , _) : Expr, Expr → Expr
astLessThan (_ , _) : Expr, Expr → Expr
astLessThanEqual (_ , _) : Expr, Expr → Expr
astGreaterThan (_ , _) : Expr, Expr → Expr
astGreaterThanEqual (_ , _) : Expr, Expr → Expr
astVariable (_) : Ident → Expr
astNaturalConstant (_) : Natural → Expr
astIdent (_) : String → Ident

end exports
end WrenASTs

If we define a module for the concrete syntax of Wren based on its BNF speci-
fication, an algebra modeling WrenASTs will be a homomorphic image of the
term algebra over that concrete syntax.

A Type Checker for Wren

The WrenTypeChecker module exports an overloaded function check that re-
turns a Boolean result indicating if the context conditions are satisfied. Call-
ing check with a declaration sequence performs an additional vital function:
It builds the symbol table that associates names with types.

module WrenTypeChecker
imports Booleans, WrenTypes, WrenASTs,

instantiation of Mappings
bind Entries using String for Domain

using WrenType for Range

using eq? for equals

491

using errorString for errorDomain

using errorType for errorRange

rename using SymbolTable for Mapping

using nullSymTab for emptyMap
exports

operations
check (_) : WrenProgram → Boolean
check (_ , _) : Block, SymbolTable → Boolean
check (_ , _) : DecSeq, SymbolTable → Boolean, SymbolTable
check (_ , _) : Declaration, SymbolTable → Boolean, SymbolTable
check (_ , _) : CmdSeq, SymbolTable → Boolean
check (_ , _) : Command, SymbolTable → Boolean

end exports

operations
typeExpr : Expr, SymbolTable → WrenType

variables
block : Block
decs : DecSeq
dec : Declaration
cmds, cmds1, cmds2 : CmdSeq
cmd : Command
expr, expr1, expr2 : Expr
type : WrenType
symtab, symtab1 : SymbolTable
m : Natural
name : String
b, b1, b2 : Boolean

equations
[Tc1] check (astWrenProgram (astIdent (name), block))

= check (block, update(nullSymTab, name, programType))

[Tc2] check (astBlock (decs, cmds), symtab)
= and (b1,b2)

when <b1,symtab1> = check (decs, symtab),
 b2 = check (cmds, symtab1),

[Tc3] check (astDecs (dec, decs), symtab)
= <and (b1,b2), symtab2>

when <b1,symtab1> = check (dec, symtab),
<b2,symtab2> = check (decs, symtab1)

12.4 ALGEBRAIC SEMANTICS FOR WREN

492 CHAPTER 12 ALGEBRAIC SEMANTICS

[Tc4] check (astEmptyDecs, symtab)
= <true, symtab>

[Tc5] check (astDec (astIdent (name), type), symtab)
= if (apply (symtab, name) = errorType,

<true, update(symtab, name, type)>,
<false, symtab>)

[Tc6] check (astCmds (cmd, cmds), symtab)
= and (check (cmd, symtab), check (cmds, symtab))

[Tc7] check (astOneCmd (cmd), symtab)
= check (cmd, symtab)

[Tc8] check (astRead (astIdent (name)), symtab)
= eq?(apply (symtab, name), naturalType)

[Tc9] check (astWrite (expr, symtab)
= eq? (typeExpr (expr, symtab), naturalType)

[Tc10] check (astAssign (astIdent (name), expr), symtab)
= eq? (apply(symtab, name), typeExpr (expr, symtab))

[Tc11] check (astSkip, symtab)
= true

[Tc12] check (astWhile (expr, cmds), symtab)
= if (eq? (typeExpr (expr, symtab), booleanType),

check (cmds, symtab),
false)

[Tc13] check (astIfThen (expr, cmds), symtab)
= if (eq? (typeExpr (expr, symtab), booleanType),

check (cmds, symtab),
false)

[Tc14] check (astIfElse (expr, cmds1, cmds2), symtab)
= if (eq? (typeExpr (expr, symtab), booleanType),

and (check (cmds1, symtab), check (cmds2, symtab)),
false)

[Tc15] typeExpr (astAddition (expr1, expr2), symtab)
= if (and (eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
naturalType,
errorType)

493

[Tc16] typeExpr (astSubtraction (expr1, expr2), symtab)
= if (and (eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
naturalType,
errorType)

[Tc17] typeExpr (astMultiplication (expr1, expr2), symtab)
= if (and (eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
naturalType,
errorType)

[Tc18] typeExpr (astDivision (expr1, expr2), symtab)
= if (and(eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
naturalType,
errorType)

[Tc19] typeExpr (astEqual (expr1, expr2), symtab)
= if (and (eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
booleanType,
errorType)

[Tc20] typeExpr (astNotEqual (expr1,expr2), symtab)
= if (and (eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
booleanType,
errorType)

[Tc21] typeExpr (astLessThan (expr1, expr2), symtab)
= if (and (eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
booleanType,
errorType)

[Tc22] typeExpr (astLessThanEqual (expr1, expr2), symtab)
= if (and (eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
booleanType,
errorType)

[Tc23] typeExpr (astGreaterThan (expr1,expr2),symtab)
= if (and (eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
booleanType,
errorType)

12.4 ALGEBRAIC SEMANTICS FOR WREN

494 CHAPTER 12 ALGEBRAIC SEMANTICS

[Tc24] typeExpr (astGreaterThanEqual (expr1, expr2), symtab)
= if (and (eq? (typeExpr (expr1, symtab), naturalType),

eq? (typeExpr (expr2, symtab), naturalType)),
booleanType,
errorType)

[Tc25] typeExpr (astNaturalConstant (m), symtab)
= naturalType

[Tc26] typeExpr (astVariable (astIdent(name)), symtab)
= apply (symtab, name)

end WrenTypeChecker

Most of the type-checking equations are self-evident; we point out only gen-
eral features here. Equations [Tc1], [Tc3], and [Tc5] build the symbol table
from the declarations while ensuring that no identifier is declared twice. [Tc1]
adds the program name with programType to the table. Most of the equations
for commands pass the symbol table information along for checking at lower
levels. The following equations perform the actual type checking:

[Tc5] No identifier is declared more than once.

[Tc8] The variable in a read command has naturalType.

[Tc9] The expression in a write command has naturalType.

[Tc10] The assignment target variable and expression have the same type.

[Tc12-14] The expressions in while and if commands have booleanType.

[Tc15-18] Arithmetic operations involve expressions of naturalType.

[Tc19-24] Comparisons involve expressions of naturalType.

An Interpreter for Wren

The WrenEvaluator module is used to specify semantic functions that give
meaning to the constructs of Wren. The top-level function meaning takes a
Wren program and an input file and returns the output file resulting from
executing the program. We assume that the output file is initially empty. The
declaration sequence builds a store that associates each declared variable
with an initial value, zero for naturalType and false for booleanType. Commands
use the current store, input file, and output file to compute a new store, a
new input file, and a new output file. Evaluating an expression produces a
WrenValue.

495

module WrenEvaluator

imports Booleans, Naturals, Strings, Files, WrenValues, WrenASTs,
instantiation of Mappings

bind Entries using String for Domain
using WrenValue for Range
using eq? for equals
using errorString for errorDomain
using errorValue for errorRange

rename using Store for Mapping
using emptySto for emptyMap
using updateSto for update
using applySto for apply

exports
operations

meaning (_ , _) : WrenProgram, File → File
perform (_ , _) : Block, File → File
elaborate (_ , _) : DecSeq, Store → Store
elaborate (_ , _) : Declaration, Store → Store
execute (_ , _ , _ , _) : CmdSeq, Store, File, File → Store, File, File
execute (_ , _ , _ , _) : Command, Store, File, File → Store, File, File
evaluate (_ , _) : Expr, Store → WrenValue

end exports

variables
input, input1, input2 : File
output, output1, output2 : File
block : Block
decs : DecSeq
cmds, cmds1, cmds2 : CmdSeq
cmd : Command
expr, expr1, expr2 : Expr
sto, sto1, sto2 : Store
value : WrenValue
m,n : Natural
name : String
b : Boolean

equations
[Ev1] meaning (astWrenProgram (astIdent (name), block), input)

= perform (block, input)

[Ev2] perform (astBlock (decs,cmds), input)
= execute (cmds, elaborate (decs, emptySto), input, emptyFile)

12.4 ALGEBRAIC SEMANTICS FOR WREN

496 CHAPTER 12 ALGEBRAIC SEMANTICS

[Ev3] elaborate (astDecs (dec, decs), sto)
= elaborate (decs,elaborate(dec, sto))

[Ev4] elaborate (astEmptyDecs, sto)
= sto

[Ev5] elaborate (astDec (astIdent (name), naturalType), sto)
= updateSto(sto, name, wrenValue(0))

[Ev6] elaborate (astDec (astIdent (name), booleanType), sto)
= updateSto(sto, name, wrenValue(false))

[Ev7] execute (astCmds (cmd, cmds), sto1, input1, output1)
= execute (cmds, sto2, input2, output2)
when <sto2, input2, output2> = execute (cmd, sto1, input1, output1)

[Ev8] execute (astOneCmd (cmd), sto, input, output)
= execute (cmd, sto, input, output)

[Ev9] execute (astSkip, sto, input, output)
= <sto, input, output>

[Ev10] execute (astRead(astIdent (name)), sto, input, output)
= if (empty? (input),

error case left as an exercise
<updateSto(sto, name, first), rest, output>)

when input = cons(first,rest)

[Ev11] execute (astWrite (expr), sto, input, output)
= <sto, input, concat (output, mkFile (evaluate (expr, sto)))>

[Ev12] execute (astAssign (astIdent (name), expr), sto, input, output)
= <updateSto(sto, name, evaluate (expr, sto)), input, output>

[Ev13] execute (astWhile (expr, cmds), sto1, input1, output1)
= if (eq? (evaluate (expr, sto1), wrenValue(true))

execute (astWhile(expr, cmds), sto2, input2, output2)
when <sto2, input2, output2> =

 execute (cmds, sto1, input1, output1),
<sto1, input1, output1>)

[Ev14] execute (astIfThen (expr, cmds), sto, input, output)
= if (eq? (evaluate (expr, sto), wrenValue(true))

execute (cmds, sto, input, output),
<sto, input, output>)

[Ev15] execute (astIfElse (expr, cmds1, cmds2), sto, input, output)
= if (eq? (evaluate (expr, sto), wrenValue(true))

execute (cmds1, sto, input, output)
execute (cmds2, sto, input, output))

497

[Ev16] evaluate (astAddition (expr1, expr2), sto)
= wrenValue(add (m,n))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

[Ev17] evaluate (astSubtraction (expr1, expr2), sto)
= wrenValue(sub (m,n))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

[Ev18] evaluate (astMultiplication (expr1, expr2), sto)
= wrenValue(mul (m,n))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

[Ev19] evaluate (astDivision (expr1, expr2), sto)
= wrenValue(div (m,n))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

[Ev20] evaluate (astEqual (expr1, expr2), sto)
= wrenValue(eq? (m,n))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

[Ev21] evaluate (astNotEqual (expr1, expr2), sto)
= wrenValue(not (eq? (m,n)))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

[Ev22] evaluate (astLessThan (expr1, expr2), sto)
= wrenValue(less? (m,n))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

[Ev23] evaluate (astLessThanEqual (expr1, expr2), sto)
= wrenValue(not(greater? (m,n)))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

[Ev24] evaluate (astGreaterThan (expr1, expr2), sto)
= wrenValue(greater? (m,n))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, sto)

12.4 ALGEBRAIC SEMANTICS FOR WREN

498 CHAPTER 12 ALGEBRAIC SEMANTICS

[Ev25] evaluate (astGreaterThanEqual (expr1, expr2), sto)
= wrenValue(not(less? (m,n)))
when wrenValue(m) = evaluate (expr1, sto),

wrenValue(n) = evaluate (expr2, st)

[Ev26] evaluate (astNaturalConstant (m), sto)

= wrenValue(m)

[Ev27] evaluate (astVariable (astIdent (name)), sto)
= applySto (sto, name)

end WrenEvaluator

Each equation should be self-explanatory. Observe that [Ev10] is incomplete,
as we have only indicated that error handling is needed for reading from an
empty file. Also [Ev17] might cause an error when a larger number is sub-
tracted from a smaller number, or [Ev19] when any number is divided by
zero. We have elected not to show this error handling since it requires modi-
fications to almost all equations to propagate the error to the top level, and
this introduces unwanted complexity. Two exercises deal with alternative
error-handling techniques.

A Wren System

Our final module, WrenSystem, invokes the type checker and, if it succeeds,
calls the evaluator. If type checking fails, the empty file is returned. Remem-
ber that we have assumed the program interpretation completes success-
fully to avoid technical issues relating to sufficient completeness.

module WrenSystem
imports WrenTypeChecker, WrenEvaluator
exports

operations
runWren : WrenProgram, File → File

end exports

variables
input : File
program : WrenProgram

equations
[Ws1] runWren (program, input) = if (check (program),

meaning (program, input),
emptyFile)

-- return an empty file if context violation, otherwise run program
end WrenSystem

499

This completes the development of an algebraic specification for Wren. In the
next section, we implement part of this specification in Prolog.

Exercises

1. What changes, if any, would be needed in the modules presented in this
section if an Integers module were used in place of a Naturals module?

2. Complete the syntactic and semantic functions and equations for Bool-
ean expressions. The comparisons given in this section will be only one
possible alternative for a Boolean expression.

3. One technique of error handling is to assign default values such as zero
when an item is read from an empty file. For division by zero, consider
introducing a constant representing a maximum allowed natural num-
ber. Assuming WordSize is imported from a module called
ComputerSystem, how can such a value be defined? Indicate by revising
the equations how all arithmetic operations have to guard against ex-
ceeding such a value.

4. Halting evaluation due to a fatal runtime error, such as reading from an
empty file or division by zero, is difficult to specify. Briefly indicate how
this problem can be handled by returning a Boolean value (in addition
to other values) to indicate whether each operation is successful.

12.5 LABORATORY: IMPLEMENTING ALGEBRAIC SEMANTICS

As with other semantic definitions, algebraic specifications can be translated
directly into Prolog. In the development presented in this section, we assume
that the lexical analyzer and parser given in Chapter 2 provide input to the
interpreter. The user is asked to specify a file containing a Wren program and
an input file (a list of natural numbers). Interpreting the program produces
the output file. Numerals in the input file are translated into natural number
notation for processing, and when a write statement is encountered, values
in natural number notation are translated to base-ten numerals.

We show the implementation of three modules: Booleans, Naturals, and
WrenEvaluator. We have not translated identifier names into the Strings no-
tation based on a Characters module; these modules are left as an exercise
at the end of this section. Implementation of the modules for Files and Map-
pings is also left as an exercise. Observe that we have no mechanism for
implementing generic modules, such as Lists, in Prolog, so we simply imple-

12.5 LABORATORY: IMPLEMENTING ALGEBRAIC SEMANTICS

500 CHAPTER 12 ALGEBRAIC SEMANTICS

ment the instantiated modules directly. Finally, we have not implemented
the WrenTypeChecker; that project has also been left as an exercise.

Before examining the implementations of the modules, we inspect the ex-
pected behavior of the system, including the output of the parser to remind
us of the format produced by the language-processing system. This program
converts a list of binary digits into the corresponding decimal number using
any integer greater than 1 to terminate the list.

>>> Interpreting Wren via Algebraic Semantics <<<
Enter name of source file: frombinary.wren
 program frombinary is
 var sum,n : integer;
 begin
 sum := 0; read n;
 while n<2 do
 sum := 2*sum+n; read n
 end while;
 write sum
 end
Scan successful
Parse successful
prog([dec(integer,[sum,n])],
 [assign(sum,num(0)),read(n),
 while(exp(less,ide(n),num(2)),
 [assign(sum,exp(plus,exp(times,num(2),ide(sum)),ide(n))),
 read(n)]),
 write(ide(sum))])
Enter an input list followed by a period: [1,0,1,0,1,1,2].
Output = [43]
yes

Module Booleans

The implementation of the module Booleans includes the constants true and
false and the functions not, and, or, xor, and beq (note the name change to
avoid confusion with equality in the Naturals module).

boolean(true).
boolean(false).

bnot(true, false).
bnot(false, true).

501

and(true, P, P).
and(false, true, false).
and(false, false, false).

or(false,P,P).
or(true,P,true) :- boolean(P).

xor(P, Q, R) :- or(P,Q,PorQ), and(P,Q,PandQ),
bnot(PandQ,NotPandQ), and(PorQ,NotPandQ, R).

beq(P, Q, R) :- xor(P,Q,PxorQ), bnot(PxorQ,R).

We have followed the specifications given in the module Booleans closely
except for the direct definition of or. We misspell not as bnot to avoid conflict
with the predefined predicate for logical negation that may exist in some
Prolog implementations.

Module Naturals

The implementation of Naturals follows directly from the algebraic specifica-
tion. The predicate natural succeeds with arguments of the form

zero, succ(zero), succ(succ(zero)), succ(succ(succ(zero))), and so on.

Calling this predicate with a variable, such as natural(M), generates the natu-
ral numbers in this form if repeated solutions are requested by entering a
semicolon after each successful answer to the query.

natural(zero).
natural(succ(M)) :- natural(M).

The arithmetic functions follow the algebraic specification. Rather than re-
turn an error value for subtraction of a larger number from a smaller num-
ber or for division by zero, we print an appropriate error message and abort
the program execution. The comparison operations follow directly from their
definitions. Observe how the conditions in the specifications are handled in
the Prolog clauses. We give a definition of the exponentiation operation now
for completeness.

add(M, zero, M) :- natural(M).
add(M, succ(N), succ(R)) :- add(M,N,R).

sub(zero, succ(N), R) :- write('Error: Result of subtraction is negative'), nl, abort.
sub(M, zero, M) :- natural(M).
sub(succ(M), succ(N), R) :- sub(M,N,R).

12.5 LABORATORY: IMPLEMENTING ALGEBRAIC SEMANTICS

502 CHAPTER 12 ALGEBRAIC SEMANTICS

mul(M, zero, zero) :- natural(M).
mul(M, succ(zero), M) :- natural(M).
mul(M, succ(succ(N)), R) :- mul(M,succ(N),R1), add(M,R1,R).

div(M, zero, R) :- write('Error: Division by zero'), nl, abort.
div(M, succ(N), zero) :- less(M,succ(N),true).
div(M,succ(N),succ(Quotient)) :- less(M,succ(N),false),

sub(M,succ(N),Dividend),
div(Dividend,succ(N),Quotient).

exp(succ(M), zero, succ(zero)) :- natural(M).
exp(M, succ(zero), M) :- natural(M).
exp(M, succ(N), R) :- exp(M,N,MexpN), mul(M, MexpN, R).

eq(zero,zero,true).
eq(zero,succ(N),false) :- natural(N).
eq(succ(M),zero,false) :- natural(M).
eq(succ(M),succ(N),BoolValue) :- eq(M,N,BoolValue).

less(zero,succ(N),true) :- natural(N).
less(M,zero,false) :- natural(M).
less(succ(M),succ(N),BoolValue) :- less(M,N,BoolValue).

greater(M,N,BoolValue) :- less(N,M,BoolValue).

lesseq(M,N,BoolValue) :- less(M,N,B1), eq(M,N,B2), or(B1,B2,BoolValue).

greatereq(M,N,BoolValue) :- greater(M,N,B1), eq(M,N,B2), or(B1,B2,BoolValue).

We add two operations not specified in the Naturals module that convert
base-ten numerals to natural numbers as defined in the module Naturals
using successor notation and vice versa. Specifically, toNat converts a nu-
meral to natural notation and toNum converts a natural number to a base-
ten numeral. For example, toNat(4,Num) returns Num = succ (succ (succ (succ
(zero)))).

toNat(0,zero).
toNat(Num, succ(M)) :- Num>0, NumMinus1 is Num-1, toNat(NumMinus1, M).

toNum(zero,0).
toNum(succ(M),Num) :- toNum(M,Num1), Num is Num1+1.

503

Declarations

The clauses for elaborate are used to build a store with numeric variables
initialized to zero and Boolean variables initialized to false.

elaborate([Dec|Decs],StoIn,StoOut) :- % Ev3
elaborate(Dec,StoIn,Sto),
elaborate(Decs,Sto,StoOut).

elaborate([],Sto,Sto). % Ev4

elaborate(dec(integer,[Var]),StoIn,StoOut) :- % Ev5
updateSto(StoIn,Var,zero,StoOut).

elaborate(dec(boolean,[Var]),StoIn,StoOut) :- % Ev6
updateSto(StoIn,Var,false,StoOut).

Commands

For a sequence of commands, the commands following the first command
are evaluated with the store produced by the first command. The Prolog code
is simpler if we allow an empty command sequence as the base case.

execute([Cmd|Cmds],StoIn,InputIn,OutputIn, %Ev7
StoOut,InputOut,OutputOut) :-

execute(Cmd,StoIn,InputIn,OutputIn,Sto,Input,Output),
execute(Cmds,Sto,Input,Output,StoOut,InputOut,OutputOut).

execute([],Sto,Input,Output,Sto,Input,Output). % Ev8

The read command removes the first item from the input file, converts it to
natural number notation, and places the result in the store. The write com-
mand evaluates the expression, converts the resulting value from natural
number notation to a numeric value, and appends the result to the end of
the output file.

execute(read(Var),StoIn,emptyFile,Output,StoOut,_,Output) :- % Ev10
write(‘Fatal Error: Reading an empty file’), nl, abort.

execute(read(Var),StoIn,[FirstIn|RestIn],Output,StoOut,RestIn,Output) :- % Ev10
toNat(FirstIn,Value),
updateSto(StoIn,Var,Value,StoOut).

execute(write(Expr),Sto,Input,OutputIn,Sto,Input,OutputOut) :- % Ev11
evaluate(Expr,StoIn,ExprValue),
toNum(ExprValue,Value),
mkFile(Value,ValueOut),
concat(OutputIn,ValueOut,OutputOut).

12.5 LABORATORY: IMPLEMENTING ALGEBRAIC SEMANTICS

504 CHAPTER 12 ALGEBRAIC SEMANTICS

Assignment evaluates the expression using the current store and then up-
dates that store to reflect the new binding. The skip command makes no
changes to the store or to the files.

execute(assign(Var,Expr),StoIn,Input,Output,StoOut,Input,Output) :- % Ev12
evaluate(Expr,StoIn,Value).
updateSto(StoIn,Var,Value,StoOut).

execute(skip,Sto,Input,Output,Sto,Input,Output). % Ev9

The two forms of if commands test the Boolean expressions and then let a
predicate select carry out the appropriate actions. Observe how the one-al-
ternative if command passes an empty command sequence to select. If the
comparison in the while command is false, the store and files are returned
unchanged. If the comparison is true, the while command is reevaluated
with the store and files resulting from the execution of the while loop body.
These commands are implemented with auxiliary predicates, select and iter-
ate, to minimize the amount of backtracking the system must do.

execute(if(Expr,Cmds),StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut) :-
evaluate(Expr,StoIn,BoolVal), % Ev14
select(BoolVal,Cmds,[],StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut).

execute(if(Expr,Cmds1,Cmds2),StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut) :-
evaluate(Expr,StoIn,BoolVal), % Ev15
select(BoolVal,Cmds1,Cmds2,StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut).

select(true,Cmds1,Cmds2,StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut) :-
execute(Cmds1,StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut).

select(false,Cmds1,Cmds2,StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut) :-
execute(Cmds2,StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut).

execute(while(Expr,Cmds),StoIn,InputIn,OutputIn, StoOut,InputOut,OutputOut) :-
evaluate(Expr,StoIn,BoolVal), % Ev13
iterate(BoolVal,Expr,Cmds,StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut).

iterate(true,Expr,Cmds,StoIn,InputIn,OutputIn,StoOut,InputOut,OutputOut) :-
execute(Cmds,StoIn,InputIn,OutputIn,Sto,Input,Output),
execute(while(Expr,Cmds),Sto,Input,Output,StoOut,InputOut,OutputOut).

iterate(false,Expr,Cmds,Sto,Input,Output,Sto,Input,Output).

505

Expressions

The evaluation of arithmetic expressions is straightforward. Addition is shown
below; the other three operations are left as exercises. Evaluating a variable
involves looking up the value in the store. A numeric constant is converted to
natural number notation and returned.

evaluate(exp(plus,Expr1,Expr2),Sto,Result) :- % Ev16
evaluate(Expr1,Sto,Val1),
evaluate(Expr2,Sto,Val2),
add(Val1,Val2,Result).

evaluate(num(Constant),Sto,Value) :- toNat(Constant,Value). %Ev26

evaluate(ide(Var),Sto,Value) :- applySto(Sto,Var,Value). % Ev27

Evaluation of comparisons is similar to arithmetic expressions; the equal
comparison is given below, and the five others are left as an exercise.

evaluate(exp(equal,Expr1,Expr2),Sto,Bool) :- % Ev20
evaluate(Expr1,Sto,Val1),
evaluate(Expr2,Sto,Val2),
eq(Val1,Val2,Bool).

The Prolog implementation of the algebraic specification of Wren is similar to
the denotational interpreter with respect to command and expression evalu-
ation. Perhaps the biggest difference is in not relying on Prolog native arith-
metic to perform comparisons and numeric operations. Instead, the Naturals
module performs these operations based solely on a number system derived
from applying a successor operation to an initial value zero.

More elaborate approaches are possible in which the original specification module
is read and interpreted. These tasks are beyond the scope of this book; inter-
ested readers can consult the further readings at the end of this chapter.

Exercises

1. Complete the interpreter as presented by adding the modules Files and
Mappings and by completing the remaining arithmetic operations and
comparison operations.

2. As an extension of exercise 2 in section 12.4, implement the syntactic
and semantic functions and equations for Boolean expressions in Prolog.

3. Add modules for Characters and Strings. Translate identifiers from the
parser, such as ide(name), into Strings, such as cons(char-n, cons(char-a,
cons(char-m, cons(char-e, nullString)))).

12.5 LABORATORY: IMPLEMENTING ALGEBRAIC SEMANTICS

506 CHAPTER 12 ALGEBRAIC SEMANTICS

4. Implement the modules WrenTypeChecker and WrenSystem. If a con-
text violation is encountered, print an appropriate error message, indi-
cating where the error occurred. Process the remainder of the program
for other context violations, but do not evaluate the program.

5. Change the Naturals module to be an Integers module. Be sure to change
other parts of the program, such as removing the error on subtraction,
accordingly.

12.6 FURTHER READING

Ehrig and Mahr [Ehrig85] present the best overall discussion of algebraic
specifications and the algebras that model them with a clear presentation of
the theory. This subject matter developed from the work done on abstract
data types by the ADJ group in the 1970s [Goguen78]. Watt’s book on formal
semantics [Watt91] also serves as a good introduction to algebraic specifica-
tions supported by many examples. The short paper by Burstall and Goguen
[Burstall82] provides a concise but well-motivated discussion of specifica-
tions. For a more advanced treatment of the subject, see [Wirsing90].

The algebraic specification of data types has been developed primarily by
John Guttag and the ADJ group. The best presentations of abstract data
types can be found in [Guttag78a], [Guttag78b], [Guttag78c], and [Guttag80].
[Goguen77] and [Broy87] both discuss the use of algebraic specifications to
model abstract syntax. For more on abstract syntax, see [Noonan85] and
[Pagan83].

Using algebraic methods to specify the semantics of a programming lan-
guage is covered in considerable detail in [Bergstra89]. Our specification of
Wren is largely based on the ideas in his book. Another presentation of alge-
braic semantics can be found in [Broy87].

