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Appendix B
FUNCTIONAL PROGRAMMING
WITH SCHEME

The languages usually studied in computer science—namely, Pascal, C,
Modula-2, and Ada—are considered imperative languages because the
basic construct is a command. These languages are heavily influenced

by the “von Neumann architecture” of computers, which includes a store
(memory) and an instruction counter used to identify the next instruction to
be fetched from the store. The computation model has control structures
that determine the sequencing of instructions, which use assignments to
make incremental modifications to the store.

Imperative languages are characterized by the following properties:

• The principal operation is the assignment of values to variables.

• Programs are command oriented, and they carry out algorithms with state-
ment level sequence control, usually by selection and repetition.

• Programs are organized as blocks, and data control is dominated by scope
rules.

• Computing is done by effect, namely by changes to the store.

The computing by effect intrinsic to imperative programming plays havoc
with some of the mathematical properties that are essential to proving the
correctness of programs. For example, is addition commutative in an im-
perative program? Does “write(a+b)” always produce the same value as
“write(b+a)”? Consider the following Pascal program:

program  P (output);
var b : integer;
function  a : integer;

begin  b := b+2; a := 5 end;
begin

b := 10
write(a+b)  or   write(b+a)

end.

In fact, implementations of Pascal will most likely give different results for
the two versions of this program, depending on the order of evaluation of
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expressions. This anomaly is caused by the side effect in the expression be-
ing evaluated, but programming by effect lies at the heart of imperative pro-
gramming. If we depend on imperative programs, we must discard many of
the basic properties of mathematics, such as associative and commuative
laws of addition and multiplication and the distributive law for multiplica-
tion over addition.

The functional programming paradigm provides an alternative notion of pro-
gramming that avoids the problems of side effects. Functional languages are
concerned with data objects and values instead of variables. Values are bound
to identifiers, but once made, these bindings cannot change. The principal
operation is function application. Functions are treated as first-class objects
that may be stored in data structures, passed as parameters, and returned
as function results. A functional language supplies primitive functions, and
the programmer uses function constructors to define new functions. Pro-
gram execution consists of the evaluation of an expression, and sequence
control depends primarily on selection and recursion. A pure functional lan-
guage has no assignment command; values are communicated by the use of
parameters to functions. These restrictions enforce a discipline on the pro-
grammer that avoids side effects. We say that functional languages are refer-
entially transparent.

Principle of Refer ential T ranspar ency : The value of a function is deter-
mined by the values of its arguments and the context in which the function
application appears, and it is independent of the history of the execution. ❚

Since the evaluation of a function with the same argument produces the
same value every time that it is invoked, an expression will produce the same
value each time it is evaluated in a given context. Referential transparency
guarantees the validity of the property of substituting equals for equals.

Lisp

Work on Lisp (List processing) started in 1956 with an artificial intelligence
group at MIT under John McCarthy. The language was implemented by
McCarthy and his students in 1960 on an IBM 704, which also had the first
Fortran implementation. Lisp was an early example of interactive comput-
ing, which played a substantial role in its popularity. The original develop-
ment of Lisp used S-expressions (S standing for symbolic language) with the
intention of developing an Algol-like version (Lisp 2) with M-expressions (M
for metalanguage). When a Lisp interpreter was written in Lisp with S-ex-
pressions, Lisp 2 was dropped. The principal versions, which are based on
Lisp 1.5, include Interlisp, Franz Lisp, MacLisp, Common Lisp, and Scheme.



589

Lisp has a high-level notation for lists. Functions are defined as expressions,
and repetitive tasks are performed mostly by recursion. Parameters are passed
to functions by value. A Lisp program consists of a set of function definitions
followed by a list of expressions that may include function evaluations.

Scheme Syntax

The Scheme version of Lisp has been chosen here because of its small size
and its uniform treatment of functions. In this appendix we introduce the
fundamentals of functional programming in Scheme. When we say Scheme,
we are referring to Lisp. The basic objects in Scheme, called S-expressions,
consist of atoms and “dotted pairs”:

<S-expr> ::= <atom> | ( <S-expr> . <S-expr> )

The only terminal symbols in these productions are the parentheses and the
dot (period). The important characteristic of an S-expression is that it is an
atom or a pair of S-expressions. The syntactic representation of a pair is not
crucial to the basic notion of constructing pairs.

Atoms serve as the elementary objects in Scheme. They are considered indi-
visible with no internal structure.

<atom> ::= <literal atom> | <numeric atom>

<literal atom> ::= <letter> | <literal atom> <letter> | <literal atom> <digit>

<numeric atom> ::= <numeral> | – <numeral>

<numeral> ::= <digit> | <numeral> <digit>

Literal atoms consist of a string of alphanumeric characters usually starting
with a letter. Most Lisp systems allow any special characters in literal atoms
as long as they cannot be confused with numbers. The numeric atoms de-
fined here represent only integers, but most Lisp systems allow floating-point
numeric atoms.

Since S-expressions can have arbitrary nesting when pairs are constructed,
Scheme programmers rely on a graphical representation of S-expressions to
display their structure. Consider the following diagrams illustrating the S-
expression (a . (b. c)):

a

b c

Lisp tree (or L-tree):

SCHEME SYNTAX
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a b c

Cell diagram (or box notation): 

We prefer using the box notation for S-expressions. Atoms are represented
as themselves, and if the same atom is used twice in an S-expression, a
single value can be shared since atoms have unique occurrences in S-ex-
pressions.

Functions on S-expressions

The simplicity of Scheme (and Lisp) derives from its dependence on several
basic functions for constructing pairs and selecting components of a pair.
Two selector functions are used to investigate a pair:

car Applied to a nonatomic S-expression, car returns the left part.

cdr Applied to a nonatomic S-expression, cdr returns the right part.

On the IBM 704, car stood for “contents of address register” and cdr for “con-
tents of decrement register”. Some authors have suggested that “head” and
“tail” or “first” and “rest” are more suggestive names for these functions, but
most Lisp programmers still use the traditional names.

The following examples that use brackets [ ] to delimit arguments do not
follow correct Scheme syntax, which will be introduced shortly:

car [ ((a . b) . c) ] = (a . b)

cdr [ ((a . b) . c) ] = c

An error results if either function is applied to an atom.

An abstract implementation of the selector functions can be explained in
terms of a box diagram:

car returns the left pointer.

cdr returns the right pointer.

a b

c
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A single constructor function cons builds a pair given two S-expressions:

cons Applied to two S-expressions, cons returns a dotted pair contain-
ing them.

For example:

cons[ p , q ] = (p . q)

cons[ (a . b) , (a . c) ] = ((a . b) . (a . c))

As an abstract implementation, we allocate a new cell and set its left and
right components to point to the two arguments. Observe that the atom a is
shared by the two pairs.

c

a b

(a . b)

(a . c)

cons [ (a . b) , (a . c) ]

Lists in Scheme

The notion of an S-expression is too general for most computing tasks, so
Scheme primarily deals with a subset of the S-expressions. A list in Scheme
is an S-expression with one of two forms:

1. The special atom ( ) is a list representing the empty list. Note that ( ) is the
only S-expression that is both an atom and a list.

2. A dotted pair is a list if its right (cdr) element is a list.

S-expressions that are lists use special notation:

(a . ( )) is represented by (a)

(b . (a . ( ))) is represented by (b a)

(c . (b . (a . ( )))) is represented by (c b a)

Cell diagrams for lists are usually drawn with a horizontal “spine” that
stretches from left to right. The spine contains as many boxes as the list has
elements at its top level.

LISTS IN SCHEME
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(a b c)

a b c ( )

b ca

d

((a . (b . ( ))) . ((c . ( )) . (d . ( ))))

((a b) (c) d)  =

Observe the abbreviation of a slash through the cell at the end of a list to
represent a pointer to an empty list ( ).

The elementary constructor and selectors for S-expressions have special prop-
erties when applied to lists.

car When applied to a nonempty list, car returns the first element of
the list.

cdr When applied to a nonempty list, cdr returns a copy of the list
with the first element removed.

cons When applied to an arbitrary S-expression and a list, cons re-
turns the list obtained by appending the first argument onto the
beginning of the list (the second argument).

For example:

car [ (a b c) ] = a cdr [ (a b c) ] = (b c)

car [ ((a)) ] = (a) cdr [ ((a)) ] = ( )

cons [(a) , (b c) ] = ((a) b c) cons [ a , ( ) ] = (a)

Syntax for Functions

In Scheme, the application of a function to a set of arguments is expressed as
a list:

(function-name   sequence-of-arguments)

This prefix notation is known as Cambridge Polish For m since it was devel-
oped at MIT in Cambridge. We illustrate the notation by introducing many of
the predefined Scheme numeric functions.
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Unary functions:
(add1 5) returns 6
(sub1 0) returns -1
(abs (add1 -5)) returns 4

Binary functions:
(- 6 9) returns -3
(quotient 17 5) returns 3
(/ 17 5) returns 3.4
(*  10 12) returns 120
(- (*  10 2) (+ 13 3)) returns 4
(modulo 53 5) returns 3

N-ary functions:
(+ 1 2 3 4 5) returns 15
(*  1 2 3 4 5) returns 120
(max 2 12 3 10) returns 12
(min (*  4 6) (+ 4 6) (- 4 6)) returns -2

Miscellaneous functions:
(expt 2 5) returns 32
(expt 5 -2) returns 0.04
(sqrt 25) returns 5
(sqrt 2) returns 1.4142135623730951

Functions that return Boolean values are called predicates. In Scheme predi-
cates return either the atom #t, which stands for true, or #f, the value for
false. Scheme programmers usually follow the convention of naming a predi-
cate with identifiers that end in a question mark.

(negative? -6) returns #t (= 6 2) returns #f

(zero? 44) returns #f (< 0.5 0.1) returns #f

(positive? -33) returns #f (>= 3 30) returns #f

(number? 5) returns #t (<= -5 -3) returns #t

(integer? 3.7) returns #f (odd? 5) returns #t

(real? 82) returns #f (even? 37) returns #f

(> 6 2) returns #t

Scheme Evaluation

When the Scheme interpreter encounters an atom, it evaluates the atom:

• Numeric atoms evaluate to themselves.

SCHEME EVALUATION
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• The literal atoms #t and #f evaluate to themselves.

• Each other literal atom evaluates to the value, if any, that has been bound
to it.

The define operation may be used to bind a value to an atom. The operation
makes the binding and returns a value:

(define a 5) returns a

(define b 3) returns b

a returns 5

(+ a b) returns 8

(+ a c) returns an error since c has no value bound to it.

Although the value returned by define is unspecified in the Scheme standard,
most Schemes return the name of the identifier that has just been bound.

When the Scheme interpreter evaluates a list, it expects the first item in the
list to be an expression that represents a function. The rest of the items in
the list are evaluated and given to the function as argument values.

(*  a (add1 b)) returns 20

Suppose now that we want to apply car to the list (a b c). Evaluating the
expression (car (a b c)) means that a must represent a function, which will be
applied to the values of b and c, and the resulting value is passed to car.
Since we want to apply car to the list (a b c) without evaluating the list, we
need a way to suppress that evaluation. Scheme evaluation is inhibited by
the quote operation.

(quote a) returns the symbol a

(quote (a b c)) returns (a b c) unevaluated

(car (quote (a b c))) returns a

(cdr (quote (a b c))) returns (b c)

(cons (quote x) (quote (y z))) returns the list (x y z)

The quote operation may be abbreviated by using an apostrophe.

(cdr '((a) (b) (c))) returns ((b) (c))

(cons 'p '(q)) returns (p q)

(number? 'a) returns #f

'a returns a

'(1 2 3) returns (1 2 3)

The car and cdr functions may be abbreviated to simplify expressions. (car
(cdr '(a b c))) may be abbreviated as (cadr '(a b c)). Any combination of a’s and
d’s between c and r (up to four operations) defines a Scheme selector func-
tion.



595

Now that we have a mechanism for suppressing evaluation of a literal atom
or a list, several more fundamental functions can be described.

pair? When applied to any S-expression, pair? returns #t if it is a dotted
pair, #f otherwise.

(pair? 'x) returns #f

(pair? '(x)) returns #t

atom? When applied to any S-expression, atom? is the logical negation of
pair?. (atom? is not standard in Scheme.)

null? When applied to any S-expression, null? returns #t if it is the empty
list, #f otherwise.

(null? '( )) returns #t

(null? '(( ))) returns #f

eq? When applied to two literal atoms, eq? returns #t if they are the
same, #f otherwise.

(eq? 'xy 'x) returns #f

(eq? (pair? 'gonzo) #f) returns #t

(eq? '(foo) '(foo)) returns #f

The reader may find the equality function eq? somewhat confusing since it
may appear that the expression (foo) should be equal to itself. To explain this
unusual version of equality, we develop a short example. We use the define
operation to create two bindings.

(define x '(a b))

(define y '(a b))

To explain why (eq? x y) returns #f, consider the cell diagram below. Each time
the Scheme interpreter processes an S-expression, such as (define x '(a b)), it
creates a new copy of the structure being processed.

x

y

ba

Although the values appear to be the same, they are two different copies of
the same S-expression. The test (eq? x y) returns #f because x and y point to
two different objects. We can view eq? as testing pointer equality. On atoms
eq? acts as an equality test since atoms are treated as unique objects. The

SCHEME EVALUATION
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equality of numeric atoms can be tested using the = function. The equality of
general S-expressions will be considered later.

Special Forms

All the operations considered so far do not act in the same way. Scheme
functions, such as +, car, null?, =, and user-defined functions, always evalu-
ate their arguments. In fact, when (+ (car '(2 4 6)) 5) is submitted to the inter-
preter, each of the expressions +, (car '(2 4 6)), and 5 are evaluated:

+ evaluates to the predefined addition operation,

(car '(2 4 6)) evaluates to the number 2, and

5 evaluates to the number 5.

On the other hand, several of the operations described so far do not and
cannot evaluate all of their operands. (quote a) simply returns its operand
unevaluated. (define x (+ 5 6)) evaluates its second argument, but leaves its
first argument unevaluated.

These operations are called special for ms to distinguish them from normal
Scheme functions. A complete list of the special forms in Scheme follows:

and delay let quasiquote
begin do let* quote
case if letrec set!
cond lambda or while
define

For some of these special forms, the determination of which arguments are
evaluated is made on a dynamic basis using the results of evaluations per-
formed so far. We will not take the time to describe all of the special forms in
Scheme. The description of those not used in this appendix can be found in
the references for Scheme.

Defining Functions in Scheme

The special form define returns the name of the function (or other object)
being defined; more importantly, it has the side effect of binding an object
that may be a function to the name.

(define name (lambda (list-of-parameters) expression))

The use of lambda here will be explained later. The basic idea is that execut-
ing the function defined by the expression (lambda (list-of-parameters) ex-
pression) involves evaluating the expression in an environment that contains
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binding of the parameters in the list to actual arguments. We give examples
to illustrate user-defined Scheme functions below.

• Calculate the hypotenuse given the legs of a right triangle.

(define hypotenuse (lambda (a b) (sqrt (+ (*  a a) (*  b b))) ))

(hypotenuse 3 4) returns  5.0

(hypotenuse 10 20) returns  22.360679774997898

• Find the first item in a list (a synonym for car).

(define  first  (lambda (L)  (car L)))

(first '((a b c)))  returns  (a b c)

• Find the second item in a list.

(define  second  (lambda (L)  (cadr L) ))

(second '((a) (b) (c)))  returns  (b)

What if the value bound to L does not have a first or second element? We use
revisions to these two functions to illustrate conditional expressions in
Scheme. We plan to change the definition so that

If L is empty, both functions return #f.

If L has only one element, second returns #f.

A mechanism for making decisions is needed to carry out these revisions.
Decisions in Scheme are represented as conditional expressions using the
special form cond:

(cond  (c1 e1)  (c2 e2)  …  (cn en)  (else en+1) ),

which is equivalent to if c1 then return e1

else if c2 then return e2

:

else if cn then return en

else return en+1

If all of c1, c2, …, cn are false and the else clause is omitted, the cond result is
unspecified, although many implementations return an empty list. The func-
tion cond is a special form since it does not evaluate all its arguments. For
the purposes of testing, any non-#f value represents true.

Now we use cond to revise the definitions of the functions first and second.

(define  first  (lambda (L)
(cond ((null? L)  #f)

(else  (cdr L))  )))

DEFINING FUNCTIONS IN SCHEME
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(define  second  (lambda (L)
(cond ((null? L)  #f)

((null? (cdr L))  #f)
(else  (cadr L))  )))

Both cond and the body of function definitions allow more generality, allow-
ing a sequence of expressions. Each expression is evaluated and the value of
the last one is the result returned. The other expressions are evaluated for
their side effects (a non-functional aspect of Scheme).

(define  categorize  (lambda (n)
(cond ((= n 0)  (display 'zero) 0)

((positive? n)  (display 'positive) 1)
(else  (display 'negative) -1)) ))

Another special form for decision making is the if operation:

(if test then-expression else-expression)

For example, (define  safe-divide  (lambda (m n)
(if (zero? n)

0
(/ m n)) ))

Recursive Definitions

The main control structure in Scheme is recursion. Functions that require
performing some sequence of operations an arbitrary number of times can
be defined inductively. These definitions translate directly into recursive
definitons in Scheme. In the next two examples, we define a function using
mathematical induction and then translate that definition using recursion.

• Exponentiation (assume m≠0)

m0 = 1
mn = m • mn-1 for n>0

(define  power  (lambda (m n)
(if (zero? n)

1
(*   m (power m (sub1 n))) )))

A sample execution of the power function demonstrates how the recursion
unfolds. In reality, the induction hypothesis inherent in a recursion defini-
tion ensures that the result computes what we want.

(power  2  3)

=  2 • (power  2  2)

=  2 • [2 • (power  2  1)]
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=  2 • [2 • [2 • (power  2  0)]]

=  2 • [2 • [2 • 1]]

= 2 • [2 • 2]   =   2 • 4   =   8
• Fibonacci

fib(0) = 1

fib(1) = 1

fib(n) = fib(n-1) + fib(n-2) for n>1

(define  fib  (lambda (n)
(cond ((zero? n)  1)

((zero? (sub1 n))  1)
(else  (+  (fib (sub1 n))  (fib (- n 2)) )) )))

Lambda Notation

Scheme contains a mechanism for defining anonymous functions, as was the
case in the lambda calculus (see Chapter 5). The lambda expression λx,y . y2+x
becomes the S-expression (lambda  (x y)  (+ (*  y y) x)) in Scheme. An anony-
mous function can appear anywhere that a function identifier is allowed. For
example, we can apply the previous function as follows:

((lambda  (x y)  (+ (*  y y) x))  3 4)  returns  19.

In fact, the expression that we use to define a function is simply making a
binding of an identifier to a lambda expression representing an anonymous
function. For example, the expression (define fun (lambda  (x y)  (+ (*  y y) x)))
binds the name fun to the anonymous function (lambda  (x y)  (+ (*  y y) x))).
Scheme permits an abbreviation of such a definition using notation that
shows the pattern of a call of the function as in

(define (fun x y)  (+ (*  y y) x)).

Recursive Functions on Lists

Many functions in Scheme manipulate lists. Therefore we develop three ex-
amples that show the basic techniques of processing a list recursively.

1. Count the number of occurrences of atoms in a list of atoms. For ex-
ample, (count1 '(a b c b a)) returns 5.

Case 1 : List is empty ⇒ return 0

Case 2 :  List is not empty
⇒ it has a first element that is an atom

⇒ return (1 + number of atoms in the cdr of the list).

RECURSIVE DEFINTIONS
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In Scheme, cond can be used to select one of the two cases.

(define  count1  (lambda (L)
(cond ((null? L)  0)

(else  (add1 (count1 (cdr L)))) )))

2. Count the number of occurrences of atoms at the “top level” in an arbi-
trary list. For example, (count2 '(a (b c) d a)) returns 3.

Case 1 : List is empty ⇒ return 0

Case 2 : List is not empty.

Subcase a : First element is an atom (it not is a pair)

⇒ return (1 + number of atoms in the cdr of the list).

Subcase b : First element is not an atom

⇒ return the number of atoms in the cdr of the list.

We write this algorithm in Scheme as the function

(define  count2  (lambda (L)
(cond ((null? L)  0)

((atom? (car L))  (add1 (count2 (cdr L))))
(else  (count2 (cdr L))) )))

3. Count the number of occurrences of atoms at all levels in an arbitrary
list. For example, (count2 '(a (b c) d (a))) returns 5.

Case 1 : List is empty ⇒ return 0

Case 2 : List is not empty.

Subcase a : First element is an atom

⇒ return (1 + number of atoms in the cdr of the list).

Subcase b : First element is not an atom

⇒ return (the number of atoms in the car of the list

+ the number of atoms in the cdr of the list).

The corresponding Scheme function is defined below.

(define  count3  (lambda (L)
(cond ((null? L)  0)

((atom? (car L))  (add1 (count3 (cdr L))))
(else  (+ (count3 (car L)) (count3 (cdr L)) )) )))

Now that we have seen the basic patterns for defining functions that process
lists, we describe a number of useful list manipulation functions, most of
which are predefined in Scheme. We give them as user-defined functions as
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a means of explaining their semantics and to provide additional examples of
Scheme code. In many Scheme systems the identifiers associated with pre-
defined functions may not be redefined since they are reserved words. There-
fore the names of the following user-defined functions may have to be altered
to avoid confusion.

• Length of a list

(define  length  (lambda (L)
(if (null? L)

0
(add1 (length (cdr L)))  )))

The function length will work identically to the predefined length function in
Scheme except that the execution may be slower or a stack may overflow
for long lists since the predefined functions may be more efficiently imple-
mented.

• The nth element of a list

(define  nth  (lambda (n L)
(if (zero? n)

(car L)
(nth  (sub1 n) (cdr L)) )))

This function finds the nth element of a list using zero as the position of the
first item. So the first element is called the 0th.

• Equality of arbitrary S-expr essions

The strategy for the equality function is to use = for numeric atoms, eq? for
literal atoms, and recursion to compare the left parts and right parts of
dotted pairs. The corresponding predefined function is called equal?.

(define  equal? (lambda (s1 s2)
(cond ((number? s1)  (= s1 s2))

((atom? s1)  (eq? s1 s2))
((atom? s2)  #f)
((equal?(car s1) (car s2))  (equal? (cdr s1) (cdr s2)))
(else  #f)  )))

• Concatenate two lists

(define  concat  (lambda (L1 L2)
(cond ((null? L1)  L2)

(else  (cons (car L1) (concat (cdr L1) L2))) )))

RECURSIVE DEFINTIONS
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For example, (concat '(a b c) '(d e)) becomes
(cons 'a (concat '(b c) '(d e)))

= (cons 'a (cons 'b (concat '(c) '(d e))))
= (cons 'a (cons 'b (cons 'c (concat '( ) '(d e)))))

= (cons 'a (cons 'b (cons 'c '(d e))))
=  (cons 'a (cons 'b '(c d e)))

=  (cons 'a '(b c d e))
=  (a b c d e)

Although its name may suggest otherwise, this is a pure function, so nei-
ther argument is altered. If length(L1) = n, concat requires n applications of
cons; this is a measure of how much work is done. The predefined function
for concatenating lists is called append and allows an arbitrary number of
lists as its arguments. User functions with an arbitrary number of argu-
ments can be defined several ways, but that topic is beyond the scope of
this presentation.

• Reverse a list

(define  reverse  (lambda (L)
(if (null? L)

'( )
(concat (reverse (cdr L)) (list (car L))) )))

The diagram below shows the way reverse handles a list with four ele-
ments. Observe that we assume that the function works correctly on lists
of length three (the induction hypothesis).

(a  b  c  d)

a (b  c  d)

cdrcar

(d  c  b) (a)

reverselist

concat
(d  c  b  a)

• Membership (at the top level) in a list

(define  member  (lambda (e L)
(cond ((null? L)  #f)

((equal? e (car L))  L)
(else  (member e (cdr L))) )))
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We might expect this Boolean function to return #t (true) or #f (false), but it
returns the rest of the list starting with the matched element for true. This
behavior is consistent with the interpretation that any non-#f object repre-
sents true. If the item is not in the list (the first case in the cond expres-
sion), member returns #f.

• Logical operations

(define  and  (lambda (s1  s2) (if  s1  s2  #f) ))

(define  or  (lambda (s1  s2) (if  s1  s2  #t) ))

The predefined “and” and “or” operations (actually special forms) allow an
arbitrary number of S-expressions as arguments. In these functions and
in our user-defined functions, the arguments are tested from left to right
until a decision can be made. For and, the first false argument makes the
result #f. For or, the first true argument makes the result non-#f.

Since we defined and and or as regular functions, all of the arguments in a
call must be evaluated even if they are not all needed. The special forms
and and or evaluate only as many operands as are needed to make a deci-
sion.

Scope Rules in Scheme

In Lisp 1.5 and many of its successors, access to nonlocal identifiers is re-
solved by dynamic scoping: the calling chain (along dynamic links) is fol-
lowed until the identifier is found local to a program unit (a function in Lisp).
McCarthy claims that he intended for Lisp to have static scoping but that a
mistake was made in implementing the early versions of Lisp(see
[Wexelblat81]). In fact, dynamic scoping is easier to implement for Lisp.

Scheme and Common Lisp use static scoping; nonlocal references in a func-
tion are resolved at the point of function definition. Static scoping is imple-
mented by associating a closure (instruction pointer and environment pointer)
with each function as it is defined. The calling stack maintains static links
for nonlocal references.

Top-level define’s create a global environment composed of the identifiers
being defined that is visible everywhere. A new scope is created in Scheme
when the formal parameters, which are local identifiers, are bound to actual
values when a function is invoked. The following transcript shows the cre-
ation of a global identifier a and a local (to f) identifier a.

>>> (define a 22)
a

>>> a
22

SCOPE RULES IN SCHEME
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>>> (define f (lambda (a) (*  a a)))
f

>>> (f 7)
49

>>> a
22

Local scope can also be created by various versions of the let expression in
Scheme. The basic let expression, actually a special form, elaborates the bind-
ings simultaneously and then evaluates the expression expr in the current
environment augmented by these bindings.

(let  ((id1 val1) … (idn valn))  expr)

The expression (let  ((a 5) (b 8))  (+ a b)) is an abbreviation of the function
application ((lambda (a b) (+ a b)) 5 8); both expressions return the value 13.
The let expression used to illustrate static scoping in section 8.2 takes the
following form in Scheme:

>>> (let ((x 5))
(let ((f (lambda (y) (+ x y))))

(let ((x 3))
(f x))))

8

The translation into function applications is not as easy to read.

>>> ((lambda (x)
((lambda (f)

((lambda (x) (f x))
  3))

 (lambda (y) (+ x y))))
         5)
8

Scheme also has a sequential let, called let*, that evaluates the bindings from
left to right.

(let*  ((a 5) (b (+ a 3)))  (*  a b)) is equivalent to

>>> (let  ((a 5))  (let  ((b  (+ a 3)))  (*  a b)))
40.

Finally, letrec must be used to bind an identifier to a function that calls the
identifier—namely, a recursive definition. The following expression defines
fact as an identifier local to the expression.
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>>> (letrec ((fact (lambda (n)
(cond ((zero? n) 1)

(else (*  n (fact (sub1 n))))))))
(fact 5))

120

See Chapter 10 for an explanation of the meaning of letrec in terms of fixed
points.

Proving Correctness in Scheme

Reasoning about the correctness of programs in imperative languages can be
a formidable challenge (see Chapter 11).

• Execution depends on the contents of each memory cell (each variable).

• Loops must be executed statically by constructing a loop invariant.

• The progress of the computation is measured by “snapshots” of the state
of the computation after every instruction.

• Side effects in programs can make correctness proofs very difficult.

Functional languages are much easier to reason about because of referential
transparency: Only those values immediately involved in a function applica-
tion need to be considered. Programs defined as recursive functions usually
can be proved correct by an induction proof. Consider a Scheme function
that computes the sum of the squares of a list of integers.

(define sumsqrs (lambda (L)
(cond ((null?  L)  0)

(else  (+  (*  (car L) (car L))  (sumsqrs (cdr L)))))

Notation: If L is a list, let Lk denote the kth element of L.

Precondition : L is a list of zero or more integers.

Postcondition : (sumsqrs  L)  =  ∑1≤k≤length(L) Lk
2

Proof of correctness: By induction on the length n of L.

Basis : n = length(L) = 0

Then ∑1≤k≤length(L) Lk
2  =  0  and  (sumsqrs  L) returns 0.

Induction step : Suppose that for any list M of length n,

(sumsqrs  M)  =  ∑1≤k≤length(M) Mk
2.

Let L be a list of length n+1. Note that (cdr  L) is a list of length n.

Therefore (sumsqrs  L) =  L1
2 + (sumsqrs  (cdr L))

=  L1
2 + ∑2≤k≤length(L) Lk

2  =  ∑1≤k≤length(L) Lk
2.

PROVING CORRECTNESS IN SCHEME
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Higher-Order Functions

Much of the expressiveness of functional programming comes from treating
functions as first-class objects with the same rights as other objects—namely,
to be stored in data structures, to be passed as parameters to subprograms,
and to be returned as function results.

In Scheme, functions can be bound to identifiers using define and may also
be stored in structures:

(define fn-list (list  add1  –  (lambda (n) (*  n n))))

or alternatively

(define fn-list  (cons add1
(cons  –

(cons (lambda (n) (*  n n)) '( )))))
defines a list of three unary functions.

fn-list returns (#<PROCEDURE add1> #<PROCEDURE –> #<PROCEDURE>).

A Scheme procedure can be defined to apply each of these functions to a
number:

(define construction
(lambda (fl x)

(cond ((null? fl) '( ))
(else (cons ((car fl) x) (construction (cdr fl) x))))))

so that
(construction fn-list 5)  returns  (6  –5  25).

The function construction is based on an operation found in FP, a functional
language developed by John Backus (see [Backus78]). It illustrates the pos-
sibility of passing functions as arguments.

Since functions are first-class objects in Scheme, they may be stored in any
sort of structure. It is possible to imagine an application for a stack of func-
tions or even a tree of functions.

Definition : A function is called higher -order if it has one or more functions
as parameters or returns a function as its result. ❚

Higher-order functions are sometimes called functional forms since they al-
low the construction of new functions from already defined functions. The
expressiveness of functional programming comes from the use of functional
forms that allow the development of complex functions from simple func-
tions using abstract patterns—for example, construction defined above. We
continue, describing several of the most useful higher-order functions.
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• Composition

(define  compose  (lambda (f g) (lambda (x) (f (g x)))))

(define  inc-sqr  (compose add1 (lambda (n) (*  n n))))

(define  sqr-inc  (compose (lambda (n) (*  n n)) add1))

Note that the two functions inc-sqr and sqr-inc are defined without the use
of parameters.

(inc-sqr 5) returns 26

(sqr-inc 5) returns 36

• Apply to all

In Scheme, map is a predefined function that applies a functional argu-
ment to all the items in a list. It takes a unary function and a list as
arguments and applies the function to each element of the list returning
the list of results.

(map  add1  '(1 2 3)) returns (2 3 4)

(map  (lambda (n) (*  n n))  '(1 2 3)) returns (1 4 9)

(map  (lambda (ls) (cons 'a ls))  '((b c) (a) ( ))) returns  ((a b c) (a a) (a))

The function map can be defined as follows:

(define map (lambda (proc lst)
(if (null? lst)

'( )
(cons (proc (car lst)) (map proc (cdr lst))))))

• Reduce

Higher-order functions are developed by abstracting common patterns from
programs. For example, consider the functions that find the sum or the
product of a list of numbers:

(define sum (lambda (ls)
(cond ((null? ls) 0)

(else (+ (car ls) (sum (cdr ls)))))))

(define product (lambda (ls)
(cond ((null? ls) 1)

(else (*  (car ls) (product (cdr ls)))))))

The common pattern can be abstracted as a higher-order function reduce
(also called foldright):

(define reduce (lambda (proc init ls)
(cond ((null? ls) init)

(else (proc (car ls) (reduce proc init (cdr ls)))))))

HIGHER-ORDER FUNCTIONS
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Reduce can be used to compute both the sum and product of a list of
numbers.

>>> (reduce + 0 '(1 2 3 4 5))
15

>>> (reduce * 1 '(1 2 3 4 5))
120

>>> (reduce concat '( ) '((1 2 3) (4 5) (6 7 8)))
(1 2 3 4 5 6 7 8)

Now sum and product can be defined in terms of reduce:

(define sum  (lambda (ls) (reduce + 0 ls)))

(define product  (lambda (ls) (reduce *  1 ls)))

• Filter

By passing a Boolean function, it is possible to “filter” in only those ele-
ments from a list that satisfy the predicate.

(define filter (lambda (proc ls)
(cond ((null? ls)  '( ))

((proc (car ls)) (cons (car ls) (filter proc (cdr ls))))
(else (filter proc (cdr ls))) )))

(filter even? '(1 2 3 4 5 6))  returns  (2 4 6).

(filter (lambda (n) (> n 3)) '(1 2 3 4 5))  returns  (4 5).

Currying

A binary function—for example, + or cons—takes both of its arguments at the
same time. For example, (+ a b) will evaluate both a and b so that their values
can be passed to the addition operation.

Having a binary function take its arguments one at a time can be an advan-
tage. Such a function is called curried  after Haskell Curry. (See the discus-
sion of currying in Chapter 5.)

(define curried+ (lambda (m) (lambda (n)  (+ m n)) ))

Note that if only one argument is supplied to curried+, the result is a function
of one argument.

(curried+ 5)  returns  #<procedure>

((curried+ 5) 8)  returns  13

Unary functions can be defined using curried+, as shown below:
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(define add2  (curried+ 2))

(define add5  (curried+ 5))

In some functional languages—for example, Standard ML and Miranda—all
functions are automatically defined in a curried form. In Scheme, curried
functions must be defined explicitly by nested lambda expressions.

• Curried Map
(define cmap (lambda (proc)

(lambda  (lst)
(if (null? lst)

'( )
(cons (proc (car lst)) ((cmap proc) (cdr lst))))))

(cmap add1)  returns  #<procedure>

((cmap add1)  '(1 2 3))  returns  (2 3 4)

((cmap  (cmap add1))  '((1) (2 3) (4 5 6)))  returns  ((2) (3 4) (5 6 7))

(((compose cmap cmap)  add1)  '((1) (2 3) (4 5 6))) returns  ((2) (3 4) (5 6 7))

The notion of currying can be applied to functions with more than two
arguments.

Tail Recursion

One criticism of functional programming centers on the heavy use of recur-
sion that is seen by some critics as overly inefficient. Scheme and some other
functional languages have a mechanism whereby implementations optimize
certain recursive functions by reducing the storage on the run-time execu-
tion stack.

Example : Factorial
(define factorial (lambda (n)

(if (zero? n)
1
(*  n (factorial (sub1 n))) )))

When (factorial 6) is invoked, activation records are needed for six invocations
of the function—namely, (factorial 6) through (factorial 0). Without each of these
stack frames, the local values of n—namely, n=6 through n=0—will be lost so
that the multiplication at the end cannot be carried out correctly.

At its deepest level of recursion all the information in the expression

(*  6 (*  5 (*  4 (*  3 (*  2 (*  1 (factorial 0)))))))

is stored in the run-time execution stack. ❚

TAIL RECURSION
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Definition : A function is tail r ecursive  if its only recursive call is the last
action that occurs during any particular invocation of the function. ❚

Example : Factorial with Tail Recursion

(define fact (lambda (n)
(letrec ((fact-help

(lambda (prod count)
(if (> count n)

prod
(fact-help (*  count prod)

(add1 count)) ))))
      (fact-help 1 1))))

Note that although fact-help is recursive, there is no need to save its local
environment when it calls itself since no computation remains after that call.
The result of the recursive call is simply passed on as the result of the cur-
rent activation.

The execution of (fact 6) proceeds as follows:

(fact 6)
(fact-help 1 1)
(fact-help 1 2)
(fact-help 2 3)
(fact-help 6 4)
(fact-help 24 5)
(fact-help 120 6)
(fact-help 720 7)

The final call is the base case, which returns 720 directly. Note that the static
scope rules make the value of n visible in the function fact-help. ❚

Scheme is a small, elegant but amazingly powerful programming language.
We have been able to present only a few of its features in this overview and
have not shown the full range of data types, mutation of data structures
(imperative programming in Scheme), object-oriented programming tech-
niques, stream processing, declaring and using macros, or continuations (as
briefly discussed in section 9.7). However, we have presented enough con-
cepts so that the reader can write simple Scheme functions and understand
the use of Scheme in this text.


