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Abstract

Current problem solving methodology by comput-
ers requires application domain expert to develop
programs in a programming language. Software
tools designed to ease this task and the expansion
of computer use in practically all aspects of human
life lead to an increasing software complexity. In
this paper we present a solution to the problems
resulting from increasing software complexity by
developing a methodology for problem solving with
the computer where problem solving process is split
between application domain expert and software
expert as follows: (1) AD expert develops solution
algorithms using the natural language of the appli-
cation domain; (2) IT expert implements universal
algorithms that characterize the application domain;
(3) the AD is provided with an interpreter that
implements AD algorithms in terms of the processes
implementing the components of the AD algorithms.
This is realized by Computational Emancipation of
the Application Domain, (CEAD). Here we illustrate
these ideas using linear algebra as application do-
main.

1. Application-driven problem solving
methodology

Throughout the problem solving process, problem
solvers manipulate concepts from their domain of in-
terest (problem domain) to form problem solutions.
The invention of computers allowed the problem
solving process to evolve so that computers could
be used as problem solving tools [Scr97], [LM97].
We now see problem solutions as complex processes
which can be carried out by the digital computer. But
current methodology of computer use for problem

solving has also created a gap within the problem
solving process between problem domain experts
(who formulate problems and their solutions) and
information technology (IT) domain experts (who
implement solutions).

Domain experts use languages specific to their
application domains (AD) to represent problems and
their solutions [Jon00]. These AD languages are very
different from the languages used to represent ma-
chine computations (programming languages). The
vocabulary of an AD language is built on concep-
tual abstractions that characterize the domain and
the AD language is used in the cognition process.
That is, AD language expressions represent AD
knowledge. For any domain each term in its AD
language has a well-defined meaning for all domain
experts within that domain. The vocabulary of a
programing language is built on concepts represent-
ing computer resources (memory, processor, disk,
etc.) and their expressions represent computations
to be carried out by the machine. That is, pro-
gramming language expressions (i.e., programs) rep-
resent machine-encoded computations so that they
can be performed by the machine on which that
programming language is implemented. The differ-
ences among the languages of an AD and the IT
are related to the computational differences between
the human brain and digital computers. Comput-
ers perform operations based on syntax, differing
from the human brain which performs operations
cognitively, based on semantic relations between
terms used [Sea90]. While a computer can perform
complex computation much faster than the brain, the
language that problem solvers use to express their
solutions is not necessarily the language that is used
to implement these solutions in the IT domain. This
gives the problem solver two options:

1) Gain enough knowledge about the IT domain
to implement their problem solutions. The



concern here is that the domain expert must
become an expert in the IT domain or risk
poor implementations.

2) Employ the help of an IT expert and attempt
to express the problem solution in a common
solution representation understood by both the
domain expert and the IT expert. With this
option the problem solver views the implemen-
tation as a black box that delivers the problem
solution.

Computer-based problem solving methodology has
evolved thus far following mostly the first option
mentioned above. Problem solving process is helped
by appropriate software (high-level programming
languages and tools that map these languages into
machine computations, such as compilers and inter-
preters) developed by IT experts. But the expansion
of computer use in practically all aspects of human
life led to the development of complex software,
whose complexity grows with the application do-
main, that can hardly be manipulated by applica-
tion domain experts. Some IT experts believe that
ubiquitous computing [LY02] implies the extension
of computational thinking [Win06] to all AD char-
acterizing human activity. Since one cannot expect
that all humans become IT experts, the IT domain is
stressed by the requirement to produce appropriate
problem solving tools for all aspects of human life.

A viable solution to the problem created by
growing software complexity with problem domain
expansion has been sought from the very infancy
of software development. The most notable such
solutions have been developed by using domain-
specific programming languages (DSL) which tailor
programming language to the application domain
[MJS05]. DSL offers gains in expressiveness and
ease of use compared with general-purpose pro-
gramming languages, but DSL are still programming
languages that require their users to have famil-
iarity with computational thinking and computer
platforms implementing them. In other words DSL
(as generals-purpose programming languages) are
problem-solving tools that handle computer abstrac-
tions, not AD abstractions, and thus are natural
for IT experts, not for AD experts. On the other
hand looking at other technologies put in the human
service one may observe that their evolution does
not require their user to become their expert. For
example, a car driver is not required to become a
mechanical engineer. This means that for further
developments in computer technology we need to
approach the second option for computer use to
solve human problems and to develop an alterna-
tive computer-based problem solving methodology

which does not require the computer user to become
an IT expert.

The premise of such a new computer-based prob-
lem solving methodology is the bridging of the
semantic gap between AD experts and IT experts
created by the current methodology. To understand
why this gap cannot be bridged by the programming
language semantics used so far, we sketch here the
three main mechanism used to assign meaning to
programming language constructs: operational se-
mantics, denotational semantics, and axiomatic se-
mantics.

With operational semantics the meaning of a lan-
guage construct is described in terms of an abstract
machine which has a set of states and primitive
operations. One of the most notable such abstract
machines is a “Turing Machine”. The benefit of
this approach is that computational contents of a
language construct can be represented in such a
simple manner that the meaning of such a construct
cannot be misunderstood. However, this method does
not bridge the gap between the AD and IT domains.
Rather, it adds a new level of abstraction in the com-
munication which requires both domain experts to be
familiar with. AD expert needs to handle both pro-
gramming language and abstract machine language,
IT expert is required to translate the programming
language and the abstract machine language into the
language of the machine performing computations.
Denotational semantics provides a similar approach
where language meaning is obtained by associating
language constructs with well defined mathematical
objects called denotations. So, rather than describe
the computational contents of language constructs in
terms of machine operations performing them, de-
notational semantics associates language constructs
with functions which convert syntactical constructs
to the abstract values they represent [Sto77]. Again,
though this approach provides an accurate way to
represent meaning, it now requires both AD and
IT domain experts to become experts of the mathe-
matical domain used as denotations. Axiomatic se-
mantics associates axioms with language constructs
where axioms are assertions about the state before
and after the computation represented by the con-
struct is performed [Hoa69]. However, to handle
axiomatic semantics AD and IT experts are required
to handle mathematical logic. The use of axiomatic
semantics suffers from the same symptoms as opera-
tional and denotational semantics, requiring the user
to learn the logical language used to specify these
axioms. Hence, in all cases programming language
semantics augment expert communication with a
new layer of abstraction which can only deepen the



semantic gap.
With the new problem-solving methodology we

envision [RC06] the AD expert and IT expert col-
laborate to solve problems with a computer by a new
protocol:

1) AD experts formulate problems and develop
solution algorithms using the natural language
of their application domain;

2) IT experts implement computation processes
represented by universal stand-alone algo-
rithms that characterize application domains;

3) AD concepts are associated with universal
stand-alone algorithms characteristic to the ap-
plication domain, called components.

Note: because concepts used in AD algorithms are
associated with universal algorithms they can be
implemented by IT experts independent of their us-
age in solution algorithms. Moreover, because these
algorithms are stand-alone components characteristic
to the application domain, AD algorithms using
them can be executed by interpretation rather than
by translation thus avoiding the communication gap
between AD and IT experts.

The implementation of this protocol of commu-
nication allows AD and IT to evolve independently
and in parallel. The association of AD concepts with
computer artifacts that complies with the collabora-
tion protocol sketched above and facilitates software
development that supports algorithm implementa-
tions by interpretation requires that both AD and
IT be appropriately organized. With the application
driven software that demonstrates this idea [RC06]
we used the domain ontology to structure AD and
Semantic Web Languages to develop the software
that implements AD algorithms. Consequently we
introduce the term Computational Emancipation of
the Application Domain (CEAD) where each term
representing a domain abstraction is associated with
the computer artifact implementing it in the IT
domain providing process semantics. CEAD is not
a programming language and consequently is not a
DSL. CEAD implies the following tasks:

(i) Structure the application domain using an ap-
propriate ontology.

(ii) Associate each concept in the ontology ob-
tained at (i) with appropriate computer artifact
implementing it on a computer platform.

(iii) Interpret the AD algorithms expressed in the
natural language of the domain by composing
the processes associated with the components
of the algorithms.

The evolutionary nature of the domain ontology and
the potential distribution of the computer resources

used to implement the components of AD algorithms
on computer network support the implementation
of AD algorithms by mapping them first into an
appropriate interpretable language. The language
SADL [RC06] has been designed with this goal
in mind. The unit of computation in SADL is the
process associated with the ontology concepts used
in the algorithm; the structure of the AD algorithm
in SADL is a composed process whose components
are either processes associated with algorithm com-
ponents or are processes used by SADL interpreter
to compose processes. Since computer artifacts used
in CEAD as semantics are resources identifiable by
URI-s [TFIM98] we express processes in SADL
using XML elements whose tags are process compo-
nents and whose attributes specify completely these
processes in terms of their input/output behavior.
Thus SADL can be seen as a DSL where the
domain is similar to RDF [McB04]. In Section 2 we
illustrate CEAD with the linear algebra and SADL
with the SADL expression of Gaussian elimination
algorithm for solving systems of linear equations. To
increase the readability of a SADL-expression we
assume that software artifacts used to emancipate
a domain ontology are collected into an URI-table
and are referenced in the SADL expressions of
the domain expert algorithms using the notation
URI(ontology-concept). For example, if A
is a matrix then URI(A) is the URI of a file that
implement the matrix A.

CEAD opens the door for domain experts to work
in their own language using domain terminology
while developing solutions that represent compu-
tational process which can thus be performed by
using the computer as a tool. Using the concept of
computational emancipation we revisit the problem
solving process and consider a new methodology:

1) Domain experts develop problem solutions us-
ing domain terms which can be interpreted
directly from their domain expressions.

2) IT experts develop tools which map domain
expressions to IT implementations using the
computationally emancipated domains.

3) There is a beneficial feedback between AD
and IT where AD benefits from IT advances in
persistent information structuring and IT ben-
efits from AD enriching its problem solving
environments with universal algorithms that
characterize the AD.

2. Computational emancipation of AD

Ontology is the philosophical study of what is
[Qui69], concerned with identifying and categorizing



those things which exist and how those things relate
to each other. Ontology found its way into computer
science as the “specification of a conceptualization”
through the work of Gruber [Gru93].

Description logics (DL) is a formalism that
evolved from knowledge representations used in
Artificial Intelligence research. More recently this
formalism is used for formal specification of on-
tologies used with the semantic web [MvH]. That is,
DL provides the mathematical machinery to formally
represent ontologies in such a way that they can
be computationally reasoned about. Using a DL
language we can define formally the ontology of
an AD as follows. For a given domain we have
a collection of terms D = {t1, t2, . . . } represent-
ing basic (or primitive) concepts of the domain, a
set of relations R = {R1, R2, . . . } (called roles)
representing fundamental properties of the domain
concepts, and a set of constructors that can be
used to define terms representing new concepts of
the domain, C = {C1, C2, . . . }. Constructors al-
low domain concepts and roles to be layered on a
sub-class/super-class hierarchy, thus providing the
framework for inductive and compositional specifi-
cation of the domain ontology. For a set-theoretic
model of the DL, terms are associated with unary
predicates satisfied by the sets of objects in the
universe of discourse (UoD), roles are associated
with binary relations representing properties of the
(UoD), and constructors are associated with logic
operators on the UoD. In addition, by computational
emancipation of the domain, terms are associated
with computer artifacts (representing computational
processes) implementing them, roles are associated
with properties of such process, and constructors are
associated with process composition operators. Thus,
the set-theoretic model of the DL allows us to reason
about domain objects while the process-model of the
DL allows us to implement computation algorithms
representing problem domain solutions by process
composition rather than language translation. Fig-
ures 2,3,4 illustrate this idea using linear algebra as
the AD and tree representation of the ontology.
Notations: ∇ denotes the operator that maps a
matrix into its diagonal form, ∆ denotes the operator
that computes the determinant of a square non-
singular matrix, and ◦ denotes matrix concatenation
with a vector.

In real applications, the computational emancipa-
tion of an application domain is an operation per-
formed on knowledge represented using description
logics where we augment each term t ∈ D with
a uniform resource identifier (URI) that points to
the computer artifact which implements the concept

represented by that term. We denote an emancipation
of a domain D as ED where if (t, u) ∈ ED then
t ∈ D and u is the URI of the computer artifact
implementing the concept t. We say that a domain
is fully emancipated iff for all t ∈ D, there is a
computer artifact a such that (t, a) ∈ Ed. Each
computer artifact is one of the following;

1) a persistent data representation, such as a files
2) a transient process that implements a domain

concept by an expert solution thus solving a
problem;

3) the value produced by a process that imple-
ment a domain concept;

4) the expression of a repeatable process that rep-
resents the implementation of a new concept
thus evolving the domain ontology.

Computational emancipation allows the domain ex-
pert to perform problem solutions by process com-
position without requiring translation into computer
implementations. That is, computational emancipa-
tion allows us to map domain expressions into pro-
cesses that execute their IT implementations [RC06].
Consider a sequential solution S in the fully eman-
cipated domain D, S = P (t1, . . . , tn), where P is
a DL expression and ti ∈ D for 1 ≤ i ≤ n. In
other words, the solution S is a process resulting
from the composition of processes associated with
ti, 1 ≤ i ≤ n, according to the composition of
the operators specified by P . Because D is fully
emancipated, for each ti there exists ui such that
(ti, ui) ∈ ED , for 1 ≤ i ≤ n, which can perform the
process represented by ti and thus we can execute
the solution represented by S. For example, using
the ontology in Figure 2, a mathematician expresses
the algorithm for solving linear equation systems by
Gaussian elimination as follows:

Gaussian Elimination:
Input: {Matrix A, Vector B}
Output: Vector X

M := Concatenate (A, B)
F := FowardElimination (M)
X := BackwardElimination (F)

Further, the AD (linear algebra in our example) is
provided with a translator that uses AD ontology
to map AD algorithms into SADL expressions thus
facilitating their execution by interpretation. This
is illustrated in Figure 1 by the SADL expression
of the Gaussian elimination algorithm. The SADL
expression thus obtained is further mapped by SADL
interpretor into the process that performs the AD
algorithm by interpretation.



<?xml version="1.0" ?>
<sadl>

<system name="URI(GaussianElimination)" input="URI(A) URI(B)" output="URI(X)">
<component name="URI(Concatenate)" input="URI(A) URI(B)" output="URI(M)" />
<component name="URI(ForwardElimination)" input="URI(M)" output="URI(F)" />
<component name="URI(BackwardElimination)" input="URI(F)" output="URI(X)" />

</system>
</sadl>

Figure 1. SADL expression of Gaussian Elimination
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Figure 2. A fragment of linear algebra ontology
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Figure 3. A fragment of matrix algebra ontology
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Figure 4. A fragment of a vector algebra ontology



3. Impact of CEAD

Allowing domain experts to formulate and solve
problems within their domain of discourse impacts
the problem solving process both inside and outside
the computer science discipline. We look here at the
impact of this problem solving methodology on the
areas of software engineering, global collaboration
on problem solving projects, and teaching and learn-
ing computer technology. To illustrate this impact we
first examine the problem solving concerns in each
area and then show how computational emancipation
of the problem domain relaxes these concerns.

Software engineering requires the customer, prob-
lem solver, to explain their solutions to the software
engineer, IT expert. While the Internet has allowed
both parties to be separated geographically, the se-
mantic gap between the problem domain and the IT
domain remains the same. The fundamental diffi-
culties in their collaboration are still determined by
the communication [Par06]. The software engineer,
concerned only with the resulting implementation,
views the software engineering process independent
of the task performed by the tool thus developed
in the universe of discourse. On the other hand
the client expects that the tool thus developed fits
within her universe of discourse. This seldom hap-
pens. Software engineering research is dominated
by approaches aimed to bridge this gap. Two such
approaches are model driven architectures [SK97],
[GBI+04], [Coo04], [BGK+06] and domain specific
languages [GM03], [MJS05]. Model driven archi-
tectures use computerized representations [Coo04]
of elements which correspond to concepts in the
problem domain. Consequently, model driven archi-
tectures structure their implementations using these
IT representations and not the domain concepts.
Domain specific languages are designed so that the
programming language more accurately represents
the problem domain. While this makes it easier for
software engineer to handle domain concepts, it does
not directly benefit the domain expert trying to im-
plement their solution. Computational emancipation
of the problem domain addresses this problem by
relieving the dependency of the software engineer
on the problem domain and of the problem solver on
computerized representation. The software engineer
can focus her efforts on computational emancipation
of the IT domain, developing tools to help the
interpretation of AD algorithms. The problem solver
can focus her efforts on computational emancipa-
tion of application domain, supplying the software
engineering with new universal algorithms used as
components in her solutions.

Collaboration among people solving problems is
a major enterprise in modern society [CS99]. While
collaborators share domain concepts and solutions
their computer implementations often differ, leading
to a continuous process of “reinventing the wheel”.
In other words, one domain solution may get reim-
plemented numerous times by different researchers
requiring that same computer implementation. We
see this in computational chemistry where there exist
numerous quantum chemistry packages, DALTON
[DLT] and GAMESS [GMS] being two of them,
which contain completely different implementations
of the same domain solution. This means that appli-
cation directed collaboration breaks down at the IT
level and slows research progress. By computational
emancipation of the problem domain involved in
collaboration we connect domain concepts directly
to the computer artifacts which implement them.
This allows the collaboration within domains to con-
tinue independent of actual implementations. That
is, with computational emancipation of the problem
domain collaboration extends to process, not just the
language.

The problem of teaching computer technology is
directly related to the obstacle of learning. Histor-
ically we inherited text-book based teaching where
the student and teacher interact through a given text,
the textbook, that describes the domain of discourse.
But often computer gadgets are developed faster
than the textbook describing them can be available.
Thus the textbook becomes obsolete at its arrival.
With computational emancipation of the application
domain both teacher and student can share knowl-
edge by hands-on the concepts, and their computer
implementations, at the application domain level,
independent of textbook describing their implemen-
tations. Thus, learning within a domain of interest
can be concerned strictly with understanding the
concepts within that domain. With current teaching
methodology, as pupils learn a subject within an
application domain (say linear algebra) they are
simultaneously required to become familiarized with
domain concepts (such as system of equations) and
computer concepts (data structures and functions)
implementing them. As a result, students can relate
domain concepts only by expressing them in terms
of IT concepts. This requires one domain to be
prerequisite of another and thus in addition to the
difficulties created by indirect learning, this creates
delays in the process. Rather than blending AD and
IT domains together, computational emancipation
aims to separate these domains and bridge the se-
mantic gap between the subject and its implemen-



tation. Additionally, CEAD directs the design and
implementation of mindtools [JC00] toward learning
domain structuring which improves both efficiency
and effectiveness of computers as cognitive tools in
the classroom.
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