
Chapter 6
ISBN: Print ISBN: 978-81-969497-0-9, eBook ISBN: 978-81-969497-5-4

Computer Integration within Problem
Solving Process

Teodor Rus a∗

DOI:10.9734/bpi/ratmcs/v8/7105E

Peer-Review History:
This chapter was reviewed by following the Advanced Open Peer Review policy. This chapter was
thoroughly checked to prevent plagiarism. As per editorial policy, a minimum of two peer-reviewers
reviewed the manuscript. After review and revision of the manuscript, the Book Editor approved the
manuscript for final publication. Peer review comments, comments of the editor(s), etc. are available
here: https://peerreviewarchive.com/review-history/7105E

Abstract

The complexity of current software tools increases with the complexity of problem
solving tasks they are designed to assist and are mainly dedicated to computer
educated people. On the other hand current computer technology is deeply
involved in people’s everyday life. This gap deepens and stresses software technology
and computer education. By computational emancipation the natural language
becomes a family of non-ambiguous languages. This means that every problem
solver uses a non-ambiguous natural language, termed here as Domain Algorithmic
Language, DAL. Here we show how to develop software tools dedicated to the
problem domain and illustrate the methodology we propose with the software
tools required by teaching high school algebra.

Keywords: Computer; ontology; problem-solving; problem-domain; software-tool.

1 Preamble

The concept of computational emancipation of problem domain has been coined in
the paper [1] It denotes the process of a problem domain formalization by means
of a domain ontology. The goal was the development of software tools that would
simplify computer usage in problem solving process and would allow computer
users to computationally emancipate their problem domains, thus eliminating
the fear of jobless society by automation. But these ideas did not reach the
targeted computer community. During the last 5 years the usage of ontology
as a computation mechanism in software development has taken a different path

aDepartment of Computer Science, The University of Iowa, Iowa City, USA.
*Corresponding author: E-mail: rus@uiowa.edu;



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

[2] which does not help making computer usage simpler. In addition, some of
the articles in the viewpoint section of Communications of the ACM show that
confusion about what is and what is not computer science deepens, and the
misunderstanding of artificial intelligence threatens to derail further developments
of computer usage as a problem solving tool. Therefore I decided to republish this
paper thus hoping that its main ideas will reach computer community. The basis of
these ideas is the assumption that computer is a brain tool and computer science
is simple the science of computer use during problem solving process. Problem
solving is characteristic to all humans and the human brain is the human organ
in charge of performing it. Hence, the computer needs to be seen as a brain
assistant and natural language should be the language a problem solver uses.
In addition, any problem solver should be able to employ the computer during
problem solving process according to her computation needs. That is, because all
humans solve problems, all humans use the natural language of their problems
domains and consequently all humans should be able to use their brain assistant,
that is the computer, as a problem solving tool. Computational emancipation
of problem domain, that is using the problem domain ontology, enables these
desiderata because:

1. All concepts of problem domain can be stored in a file whose records are
both concept terms and term meanings.

2. Computational emancipation mimics the human learning process, where
knowledge are stored, both by terms and by meanings in a file, exactly like
natural learning stores concepts by terms and by meaning in the brain.

3. Problem domain ontology allows us to disambiguate natural language and
thus to develop software tools that make computer use as easy as the usage
of any other tool developed by humans to strengthen them during problem
solving activity.

4. Hence, computational emancipation is simple the process of natural learning
using current computer technology.

This paper presents the methodology sketched in [3] towards this endeavor and
therefore deserves to be largely known.

2 Introduction

The problem we address in this paper is the integration of the computer as a brain
assistant within the human problem solving process. Original computers have
not been developed as problem solving tools. Rather, computers were developed
as number crunching tools to be used by mathematicians and engineers. The
computer based problem solving methodology provided by the creators of the
original computer consists of:

• Formulate the problem;

103



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

• Develop a solution algorithm;

• Encode the algorithm and its data into a program in the language of the
computer;

• Let the computer execute the program;

• Decode the result and extract the solution of your problem.

This problem solving methodology offers computer programming as an “one-size-
fits-all” pattern for computer use as a problem solving tool, independent of the
problem domain. Therefore one may say that this paradigm of computer use
integrates the problem solving process within the computer.

Successes of computer use during problem solving process have evolved software
tools at the level of information processing services [4]. Moreover, currently the
networking technology allows software tools to be exchanged as standalone pieces
of composeable tools called Web Services (WS). A new problem solving paradigm
based on WSs emerges, where computer based problem solving process is split
between problem domain expert and computer expert according to their expertise
as follows:

• Domain expert formulates the problem and the solution algorithm in terms
of problem domain concepts;

• Computer expert implements software tools and domain concepts as web
services using computer languages;

• Computer user acquires and manipulates WSs in order to solve her problems.

The architecture of the problem solving software resulted depends upon the problem
domain and evolves as a Service Oriented Architecture (SOA). The computer
platform that runs it is transparent to the problem solver. Therefore, one may
say that with this problem solving methodology computer is integrated within the
human problem solving process. The problems raised by the interoperability of
WS-s components of SOA-s are resolved using new standards. XML technology led
to the development of three main standards that are used for the implementation
of SOA-s:

1. Standard (Small) Object Access Protocol (SOAP), a standard that allows
applications to invoke WS-s irrespective of the computer architecture on
which they run.

2. Web Service Description Language (WSDL), a standard that allows software
developers to describe WSs such that they can be discovered and used by
other developers.

3. Universal Description, Discovery, and Integration (UDDI), a standard registry
that allows software developers to advertise, sell, and buy WSs.

These standards transform computer based problem solving process into a computer
business where the exchange unit is the WS. Unfortunately this computer business

104



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

is not targeted to the computer user. By the contrary, in addition to the language
of the software tools, now computer user needs also to learn the intricacies of Web
Programming, the language of the WSs and SOAs.

The recent hype about Cloud Computing (CC) promises to bring computers as
problem solving tools to the masses. However, so far the main research on CC [5]
concerns mostly cloud infrastructure management, expressed in terms of Virtual
Machines (VMs) populating the cloud at a given time. But current VMs in
the cloud context are abstractions of computer architectures not abstractions of
problem domains. Therefore CC is addressed to computer experts not to problem
domain experts. Moreover, the goal of CC is stated mostly in terms of computer
resource optimization and efficiency, not in terms of how computer use can be
addressed to masses. We believe that populating the cloud with domain dedicated
virtual machines CC becomes a problem solving tool dedicated to masses.

3 Problem Solving Process

Problem and problem solving are among the few concepts computer scientists
use without defining them, under the assumption that everybody understands
them a priori. But for different domains of activity problem and problem solving
may mean different things. For example, for a high-school student solving the
equation a ∗ x2 + b ∗ x + c = 0 means the development of the formula x1, x2 =
(−b + | −

√
b2 − 4 ∗ a ∗ c)/(2 ∗ a) which when fed with the coefficients a, b, c of the

equation evaluates to the numbers x1, x2 that satisfy the equality a∗x2+b∗x+c =
0. On the other hand, for a computer expert this may mean the development of a
program that inputs the numbers a, b, c and evaluates the expression a∗x2+b∗x+c
for all x ∈ [MinR,MaxR], where MinR and MaxR are minimum and maximum
real numbers representable in machine memory, and outputs those x for which
the value of a ∗ x2 + b ∗ x + c is zero.

Teaching students the art of problem solving, Polya [6] has defined the concepts
of a problem and problem solving as follows:

To have a problem means to search consciously for some action
appropriate to attain a given aim. To solve a problem means to
find such an action.

Notice that hidden here are three things: unknown, action, purpose. These
concepts are independent of problem domain, therefore Polya’s definition is robust.
Polya’s problem solving process involves the operations: identify the unknown,
find the action that leads from the given data to the discovery of unknown,
and check that the unknown thus found satisfies the purpose, i.e., satisfies the
condition that characterizes the problem. Unknown, action, and purpose are
natural language terms used to formulate and solve problems in any problem
domain. In any scientific domain the natural language ambiguities in problem

105



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

formulation and solution algorithm development are resolved by the domain context.
That is, for a mathematician an unknown may denote a mathematical abstraction
while for a chemist it may denote a concrete chemical substance; the actions
performed by the mathematician while developing a solution algorithm perform
operations with mathematical abstractions while the actions performed by the
chemist are operations with concrete physical instruments and chemical substances.
Scientists solving problems manipulate the objects of their sciences whose meanings
are different though their natural language notations may be the same. That is,
though the natural language is infinite through the infinity of the discourse it
manipulates, in any given domain the language used by the domain expert is
unambiguous and is finitely generated by the mechanism of knowledge acquisition
and use. Consequently, the problem solving process proposed by Polya is linguisti-
cally unambiguous and domain independent. Focusing on mathematical objects,
Polya formulates it as the four steps problem solving methodology:

1. Formalize the problem;

2. Develop a plan (an algorithm) to solve the problem;

3. Perform the algorithm on the data characterizing the problem;

4. Validate the solution by checking the validity of problem conditions.

The requirement to formalize the problem means to express the three characteristic
concepts components of the problem, unknown, condition, data, as mathematical
objects. The result of “problem formalization” step depends upon mathematical
knowledge and problem understanding. The requirement to develop a solution
algorithm asks the problem solver to discover a sequence of well-coordinated
operations which when applied to the data characterizing the problem leads to the
values of the requested unknowns. The requirement to perform the algorithm asks
the problem solver to actually execute the operations involved in the algorithm
using her brain as a tool. This means to instantiate the problem by appropriate
data, conditions, and unknown and to execute the operations defining the algorithm
on the problem instance thus obtained. The requirement to validate the solution
means to shows that conditions characterizing the problem are satisfied by the
solution discovered by the algorithm execution.

Computers evolved from tools that can help performing numerical operations to
tools that can perform any kind of well-defined operation. Hence, computer can
be used to help with algorithm execution irrespective of the problem and problem
solving algorithm. To straighten the mechanism used by computers to perform
operations during an algorithm execution, we give below an algebraic specification
of a computer [7]:

beginSpec Computer
name Hardware System is
sort Memory, Processor, Devices, Control;

106



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

opns receive:Device × Control→ Memory;
transmit:Memory × Control→ Device;
store:Processor × Contro → Memory
fetch:Memory× Control→ Processor;
process:

Memory × Processor × Control→ Processor,
Memory × Processor × Control→ Memory
Processor × Control→ Processor;

vars PC:Control;
axms PC.operation is receive or transmit or store or fetchi or process;
actn PEL:whilePluggedIn and PowerOn do

l0: Perform(PC);PC:=Next(PC):l0
endSpec Computer

The essential part is the action Program Execution Loop (PEL) composed of the
functions Perform() and Next(). Perform() takes as the argument a control
register called Program Counter (PC) and evaluates the operation encoded as
its contents; Next(PC) determines the operation of the algorithm to be performed
next. Computer Based Problem Solving Process (CBPSP) uses Polya methodology
where problem solving algorithm is performed by a computer. This requires
that problem characteristic components unknown, data, condition, as well as
problem solving algorithm, be encoded in computer memory. The process of this
encoding has been called the computer programming. In addition, a mechanism
for activating the computer on a given program and for controlling computer’s
actions during program execution, must also be provided. This has been called
the program execution.

Computer programming and program execution are tedious and error prone tasks,
and they require problem solver to be a computer expert. So, to make computers
usable by the humans, an evolving collection of programming tools have been
developed as the system software. According to services provided for program
development and execution, system software tools can be classified as translators
and operators. Translators allow programmers to use high level mnemonic terms
for machine operations during programming. Operators manipulate computer
resources (memory, processor, devices, control, information) and events (interrupts
and exceptions) that occur during program execution. But it doesn’t matter the
abstraction level of the terms used to denote computer resources, events, and
system software tools, these terms represent computer elements and computer
computation concepts. Software tools are not problem domain concepts. Therefore
CBPSP actually embeds problem solving process into the computer language,
irrespective of the problem it solves. To bring computers to masses it means
to reverse this process, i.e., to embed the computer into the problem solving
process. This is achievable by letting computer user employ the computer during
the algorithm evaluation as a brain assistant that performs operations required

107



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

by the control flow of the algorithm evaluation. Current computer technology
makes this task feasible by developing software tools that allow domain experti,
computer expert, and computer network expert to share the problem solving
process according to their domains of expertise, as follows:

• Domain expert formulates problems and develops solution algorithms using
the problem domain logic;

• Computer expert develops software tools and provides them to computer
users as web service;

• Computer network experts develop tools that allow problem solvers to ask
computer networks to perform the tasks involved in their problem solving
processes.

Irrespective of their expertise, all of them can use the computer as a brain assistant
during their activity. The new software tools required by this computer based
problem solving methodology are:

• The Domain Algorithmic Language (DAL), a computational language to
be used by the problem solver to express problem solving algorithms.

• Computational Emancipation of the Application Domain (CEAD),
which provides a data-representation of the problem domain that
automates algorithm evaluation using a Domain Dedicated Virtual Machine
(DDVM);

• The DAL System that implements the DDVM (in the cloud) and offers
computer services to the computer user by subscription, without asking
her to posses computer knowledge in order to consume these services.

In this paper we illustrate these tools using the implementation of NLD System
taking the Arithmetic as the problem domain[8].

4 Domain Algorithmic Language

Polya’s problem solving methodology is centered around problem formalization
and problem solving algorithm development, using problem domain concepts.
This is easily done for mathematical problems because mathematical well defined
concepts are implicitly formalized. But for other problem domains, problem
formalization and algorithm development may not be so obvious. However, whatever
problem domain may be, problem formalization means define problem concepts
and methods in terms of well-understood concepts and methods. Using
a mathematical say, “one cannot expect to be able to solve a problem one does
not understand”. Our conjecture here is that solvable problems of any problem
domain are expressible in terms of a finite number of well defined concepts. This
is trivially true for the common sense problems raised by the usual real-life. A
formal proof of this conjecture can actually be sought using decidability theory
[9].

108



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

We assume further that for a problem solver, the problem domain consists of a set
of well defined domain characteristic concepts, and is modeled by a tree as shown
in Fig. 1.

Primitive Defined Primitive Defined

Data Concepts
�� HH

Action Concepts
�� HH

Concept1 . . . Concepti . . .
�� HH

Conceptn

Domain Tree Modeling
������

XXXXXX

Fig. 1. Tree modeling of a problem domain

The Primitive leaves of the modeling tree represent domain characteristic concepts
that are common to all domain experts. Primitive data are expressed by the
concepts of variable and value. Primitive actions are expressed by the simple

phrases of the form: Subject
Action−→ Object, Subject

Property−→ Object where Subject

and Object are data or actions (as appropriate), and
Action−→ and

Property−→ are
operations to perform or predicates to check, expressed by the common linguistic
jargon of the domain. The Defined leaves of the modeling tree represent concepts
created by problem solving and are specific to the problem solver. However, the
mechanisms used to define new data and action concepts during problem solving
are specific to the domain. We assume here that data definition mechanisms
are formalized by mathematical concepts of pair, vector, table, list, set, function.
Linguistic expressions of these definitions are domain characteristic, are tailored
to the problem and, as appropriate, are formulated by the problem solver. The
action definition mechanisms are formalized by mathematical rules that define
the action-composition operations by expression-well-formation, concatenation,
choice, iteration. The linguistic expressions of these definitions are domain specific
phrases. Fig. 2 shows the example of tree modeling of arithmetic.

This domain modeling implies that the solution (algorithm) of any problem domain
defines a new characteristic concept of that problem domain. Consequently,
by problem solving, a problem domain becomes a potentially infinite collection
of concepts usable to solve other potential problems of that domain. Problem
solutions (algorithms) are expressed in terms of concepts and operations characteris-
tic to the domain. These are actually valid expressions in the natural language
of the problem solvers, which are understood by all domain experts because these
expressions use only concepts familiar to the domain experts.

For example, for a high-school student learning arithmetic, the problem domain
may be characterized by the set I of integer numbers with the operations + :
I × I → I, − : I × I → I, ∗ : I × I → I. Then, solving the equation a ∗ x + b = 0,

109



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

Integer,I
R:∀x, y ∈ I

y 6= 0⇒ ”x/y” ∈ R
{+,−, ∗, /}

divide(x, y) is ”x/y”
x, y ∈ N, y 6= 0

Primitive Defined Primitive Defined

Number,N
�� HH

Operator
�� HH

Arithmetic Modeling Tree
����

PPPP

Fig. 2. Arithmetic modeling tree

a, b ∈ I, a 6= 0 means finding c ∈ I such that a ∗ c+ b = 0. Using the properties of
equality, the problem solver develops the formula c = −b/a. But one can easily
observe that b/a is not always an integer. Therefore, problem solver concludes
that a ∗ x + b = 0 is not always solvable over the set of integers. However, if she
extends I to R, the set of all real numbers, then the equation a ∗ x + b = 0 is
solvable and its solution is x = −b/a. Since division by zero is not defined, the
problem solver requires the condition a 6= 0.Thus, by solving the problem a new
well-defined concept, the set R of real numbers, has been developed and problem
domain was enlarged with the new concept, Fig. 2.

The specification of the Domain Algorithmic Language (DAL) can be done using a
vocabulary that contains language terms used for few characteristic concepts of the
domain, and very simple rules for sentence formation. The potential ambiguity
of these terms is eliminated by their meaning in the domain. In other words,
though phrases containing these terms may be ambiguous as natural language
expressions, these ambiguities are transparent for a domain expert. That is, for a
problem domain D, DAL(D) is the language spoken by an expert of the domain D.

The problem solving process expands the vocabulary of DAL(D)
with the terms used to name problem solutions. In addition, problem
solution expressions (algorithms) expand the sentence formation rules with the
rules provided by the solution expression. This mimics the natural learning
process that characterizes the problem domain. We should observe here the
difference between computer languages and DAL. Computer languages have a
fixed vocabulary (lexicon) and a fixed set of algorithm well formation rules.
DAL’s vocabulary (lexicon) and the concept terms well formation rules evolves
dynamically with the domain learning process.

Formally DAL may be specified using a pattern similar to the pattern used to
specify computer languages, which consists of given a finite set of BNF rules
specifying terms denoting domain characteristic concepts and few simple BNF
rules for statement formation. Further, DAL specification mechanism allows both

110



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

its vocabulary and formation rules to grow dynamically with domain learning
process. We call this the process of DAL’s evolution. Since DAL terms and
algorithms are natural language concepts (though they may have machine
representations) domain experts can freely reuse them as components of the new
concepts and solution algorithms developed during problem solving process, while
preserving the unambiguity of DAL.

Grammatically, the initial terms of the DAL vocabulary would be categorized as
nouns, verbs, adjectives, and adverbs. Here we choose the statement formation
rules to fit the Resource Description Framework (RDF) used by the Semantic Web

[10, 11], Subject
Action−→ Object, Subject

Property−→ Object, where Subject, Object,
Action, Property are elements of the DAL vocabulary. But for any problem
domain these rules can be chosen by domain expert collaborating with computer
expert to fit the advances of their domain evolution. Of course, solution algorithms
developed by the problem solving process are seen as statement formation rules
expressed in terms of the already defined statement formation rules. The evolving
DAL specification defined above could be best illustrated by any of the formal
systems provided by the axiomatic specification of set theory [12].

Computational nature of DAL is obtained by DAL’s semantics specification using
a description logic [13] whose model is defined as follows:

• Implement every concept C of the DAL terminology as a web service
WS(C). Let URI(C) be the URL of the WS(C).

• Implement formation rules Subject
Action−→ Object by web services WS(Action)

whose input and output are elements of Subject×Object.

• Implement formation rules Subject
Property−→ Object by web services WS

(Property) that input tuples of Subject×Object and return true or false.

• Implement every solution algorithm by a web service obtained by the
composition of the web services employed in the algorithm using the following
rules:

1. Implement concept concatenation C1;C2 by service concatenation
WS(C1);WS(C2);

2. Implement concept composition C1(C2) by service composition
WS(C1)(WS(C2));

3. For each domain specific operator, rator, implement concept composi-
tion C1 rator C2 by a domain specific web service composition operator
WS(rator)(WS(C1),WS(C2)).

In order to allow algorithm evaluation by the problem solver using the computer
as a brain assistant, we further structure DAL and its model using a domain
ontology represented by a file in the Web Ontology Language, (OWL) [14]. For a
problem domain D, let OWL(D) be the OWL file representing the DAL(D). A

111



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

solution algorithm in the domain D is then executed by the problem solver using an
approach similar to the usage of a calculator to evaluate an expression. However,
data and operations of the DAL algorithm are evaluated using computers available
on the Internet and the OWL(D) as follows. Let A be a solution algorithm to be
executed.

1. Map the expression of A into an expression tree. A Polish-form (prefix or
postfix) can be used to express this tree. Let PF (A) be the postfix form
of the DAL algorithm.

2. Evaluate PF (A) using a stack and OWL(D), by the following rules:

(a) Examine the PF (A) from left to write.

(b) If a data concept d is examined, search d in the OWL(D). Let URL(d)
be the web service implementing the concept d. Call the web service
at URL(d) and push the result on the stack;

(c) If an action a (operation or property) is examined, search a in the
OWL(D) and let URL(a) be the web service implementing a. Call
URL(a) taking as input arguments the elements on top of the stack.
Let r be the result. Delete the arguments taken as input by URL(a)
from the top of the stack and push r on the stack;

(d) The result of the DAL algorithm evaluation is on top-of the stack
when the PF (A) is completely examined.

This algorithm is well-known in compiler construction [15] and does not require
any computer knowledge in order to perform it by a domain-expert. However,
in this context the PF (A) algorithm interpretation assumes that: (a) problem
domain is represented as a data structure (the OWL file) that can be searched
by the computer user, and (b) domain concepts are implemented as web services
available on the Internet. Since computer user handles only domain concepts, this
paradigm of computer use integrates the computer within the problem solving
process.

Note: though the DAL algorithm evaluation described above follows a sequential
approach, it can be implemented by a distributed system, as we shall see in
Section 6.

5 Computational Emancipation of a Problem
Domain

The DAL algorithm execution discussed in Section 4 demonstrates that current
software technology allows computer integration within the problem solving process,
as a brain assistant. But this integration lacks the efficiency because computer
user spends all the time searching for web services in the OWL(D). In addition,

112



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

it imposes new complexities during problem solving determined by the structure
of the OWL(D) and by the web service calling mechanism. Therefore, in order to
be effective, this integration must be automated. How can this be done?

CEAD is the process that transforms the DAL from a fragment of natural language
used by the problem solver into a computational language used to automate the
problem solving process. Therefore CEAD can actually be seen as a new step
towards domain formalization described in Section 4 and can be achieved by:

1. Software tools to automate the process of domain ontology creation and
implementations;

2. Software tools that automate WS generation and optimize the search for the
concept implementation in the domain ontology during the DAL algorithm
execution;

3. Software tools that automate the process of WS evaluation during DAL
algorithm execution;

4. Software tools that expand domain ontology with the terms denoting new
algorithms developed during problem solving process and with the formation
rules provided by these algorithms.

Many such software tools are already provided by current software technology.
However, these tools have not been designed with this goal in mind. Therefore,
while computer research creates tools dedicated to the goal set forth by the CEAD
process, the challenge is to use the existing software as appropriate, in the context
of the new problem solving methodology, which integrate the computer in the
human problem solving process, further referred to as the Web Based Problem
Solving Process (WBPSP).

5.1 Domain ontology

In this paper, domain ontology is a mechanism that facilitates the goal of domain
algorithm execution, by the domain expert, employing the computer as a brain
assistant, which uses web services to perform algorithm’s operations. Therefore,
while much of current work on ontology focuses on development and modeling
[16, 17, 18, 19, 20, 21, 22] we concentrate on a domain ontology structuring
and representation that supports the automation of concept identification in the
domain ontology and the execution of the web services implementing domain
concepts. Since WBPSP ensures domain evolution by the problem solving process,
our ontology structuring must be automatically updated with the new concepts
representing problems and solution algorithms. Hence, the ontology structuring
we assume here is similar to that described in [23]. That is:

1. The domain ontology is specified by a taxonomy that is representable by a
collection of disjoint trees whose nodes are primitive concepts of the domain
and whose edges are relationships interpreted as logical subsumptions, that
is to say that if concept C1 subsumes concepts C2 then ∀x.C1(x)→ C2(x).

113



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

2. Ontology trees are of two kinds: DataConcept trees and ActionConcept
trees. The relations among them are explicitly specified by their definitions.
Examples of such definitions are the references to the input and the output
of actions used in the domain algorithms.

3. New concepts are constructed by domain specific tree constructors which
represent problem solving algorithms.

The methodology we use to build a domain ontology is similar to the “adaptive
methodology” reported in [24] tailored to the goal of WBPSP. That is, the domain
ontology reflects the problem solving process which evolves the ontology by the
user learning process, and thus consists of two parts: a part that represents the
user own ontology and a part that represents the domain expert ontology. Domain
Expert Ontology (DEO) is built by hand, using a small taxonomy chosen from a
textbook, is evolved by the process of domain expert education, and is updated
during problem solving process. This is performed by a collaboration between
domain expert and computer expert as shown in Fig. 3.

Define terms

Declare axioms

DAL algorithms

Domain expert

Execute

DAL algorithms

Web expert

Implement WS

Develop DAL

Ontology

Computer expert

-
�
Update

DAL

-
�
Update

Ontology

Fig. 3. Domain Ontology Implementation and Use

The User Own Ontology (UOO) is built automatically by tools from the DEO,
thus extending automatically the TBox and the ABox during algorithm execution
by the DDVMs. That is, initially UOO coincides with the DEO. Then, during
problem solving process UOO is automatically expanded with new concepts repre-
senting problems and solution algorithms developed by the particular user. Hence,
at a given time, the domain ontology consists of the core DEO, that is available
to all domain users, and a private part (UOO) which is specific to a given domain
user. The DEO may be extended by the system to represent the domain evolution
containing the new domain discoveries developed by the activity of the collection
of domain users. This may be illustrated with the evolution of arithmetic ontology
to a vector space.

Consider an application domain modeled by a tree as shown in Fig. 1. Data
concepts represent data that can be used in a computational process such as input
and output of such a process. The three attributes of a data concept are: type,
value, literal. The type of a data concept is defined by the collection of operations
defined on that data; the value of the data concept is the abstraction it represents;
and the literal is a string representing that data value during problem solving

114



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

process. For example, Integer type is defined by the collection of operations
identified by +, -, *, / where +, -, * are total operations and / is a partial
operation; Integer values are decimal numbers and are formally defined as cardinals
of sets; Integer literals could be sequences of decimal digits (potentially prefixed
by + or -) representing integer numbers. Using appropriate definitions, one
can extend the primitive operations +, -, *, / to the operations add, subtract,
multiply, divide, which are defined on Number that subsumes both Integer and
Rational.

The CEAD process associates both data concepts and action concepts of the
domain modeled with WS-s which represent their semantics. As suggested in
Fig. 3, the WS-s are constructed by computer experts cooperating with domain
experts. For example, the concepts in the arithmetic domain in Fig. 2 are modeled
by WS-s automatically generated from Java classes as we shall see further.

Computationally domain ontology is a data base, such as a file. Further we use
the OWL file to represent a domain ontology where concepts are represented by
their properties. As seen above, a data concept such as Integer, has three main
attributes: type, value, and literal. These attributes are represented in OWL
language by three properties: hasType, hasValue, and hasLiteral. Here we use

the RDF triples to represent these properties which look like: Integer
hasType−→

URI(integerType), Integer
hasV alue−→ URI(integerValue), and Integer

hasLiteral−→
URI(integerLiteral). The action concepts like add, subtract, multiply, etc.,
are associated with WS-s which implements them via a Concept Agent. There
could be several WS instances that implement the same concept so that if one
instance is down other instances can take over. For example, the concept add

may have the agent addAgent implemented by two WS instances: addInstance1,
addInstance2. The agent maintains the list of web services which it can execute
as implementations of the action it performs. Therefore, the RDF triples that

define an action concept a in the OWL file will look like: a
hasAgent−→ aAgent and

aAgent
implementedBy−→ aInstance 1; . . .; aAgent

implementedBy−→ aInstance n. For
example, the add action of the Integer type is represented in OWL by the

RDF triples: add
hasAgent−→ addAgent, and addAgent

implementedBy−→ addInstance1,

addInstance2. The signature Integer× Integer
add−→ Integer of the add action is

represented in the OWL file using the three RDF triples: add
hasInput−→ IntegerPair,

add
hasOutput−→ Integer, and add

hasAgent−→ addAgent.

5.2 Using protegé for OWL file development

There are no software tools created to automatically generate an OWL file. Therefore
we use Protegé to create and update an OWL file reprezenting a domain ontology.
Hence, an OWL file representing a domain ontology is composed of a header
and a body. The header tells us about the namespaces used in the ontology

115



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

document and the ontology documents imported in the ontology document. Each
namespace is specified by a Prefix construct and each ontology imported is
specified by an Import construct. The body is basically composed of entity
declarations (classes, properties, objects, individuals, axioms). Such declarations
are in the form of RDF triples. We may use either XML syntax or OWL 2
Manchester Syntax [25] to express them. Though XML syntax is verbose, we
believe that it is better understood by people and therefore we use XML syntax
in the examples that follow. Since the goal of this paper is to describe a system
that allows a computer user to perform problem solving using her computer as
a brain assistant, we simplify the concept representation in OWL language and
split the activity of OWL file creation in two steps. The first step is where the
domain concepts are represented in the OWL file without being associated with
web services implementing them, and the second step is where concepts in the
OWL file are associated with their semantics. The first step is automatically
performed by domain expert using Protégé tool [26], and second step is performed
by the computer expert collaborating with domain expert. So far there are no
tools assisting this activity. However, as we shall see in the next section, such
tools can be easily developed.

Protege is an ontology editor tool which provides Graphical User Interface (GUI)
so that the process of editing OWL files is easier. The user can create the OWL
file by entering each concept as a class via the Protégé GUI. The subsumptions
relation present in the domain model is called the sub-class relation in Protégé.
The major benefit of using Protégé for the first step of the OWL file development
is automatic creation of the OWL ontology file header. An example of an OWL
file as created by Protégé is shown below. To gain space we collected all constructs
Class:concept on one line though Protégé would place each of them on its own
line.

Prefix: xml: <http://www.w3.org/XML/1998/namespace>

Prefix: xsd: <http://www.w3.org/2001/XMLSchema#>

Prefix: rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Prefix: rdfs: <http://www.w3.org/2000/01/rdf-schema#>

Prefix: owl: <http://www.w3.org/2002/07/owl#>

Prefix: <http://bula1.cs.uiowa.edu/ontologies/arithmetics.owl#>

Ontology: <http://bula1.cs.uiowa.edu/ontologies/arithmetics.owl>

Class:Integer Class:add Class:multiply Class:subtract Class:divide

5.3 Updating an OWL file with web services

The file created by Protégé in the first step of the CEAD process represents a pure
domain ontology where concepts are predefined (primitive) and are not associated
with their implementations. We denote this file by domainPURE.owl. The second

116



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

step of the CEAD process consists of creating the file domainCEAD.owl. This
is initiated by including in the domainCEAD.owl the file domainPURE.owl. Then
the entities in the file domainCEAD.owl are associated with computer artifacts
implementing them, thus performing the second step of the CEAD process. This
activity is standardized by the two kinds of knowledges we are handling: data
concepts and action concepts. The patterns used to specify data concepts and
action concepts consist of sequences of text lines where:

1. First line represents the domain term used to denote the concept;

2. Each line that follows represents a property (in the sense of OWL) of the
concept specified on its previous lines. We use indentation conventions for
the identification of the domain and range of the property, as follows:

Property term

Property Domain

Property Range

Since we use WS-s as semantics of data concepts the primitive data are supplied
by XML schema and are: xsd:int, xsd:double, xsd:boolean, xsd:string,

xsd:time, etc., (see XML schema). All the other concepts are represented in
terms of the predefined or already defined concepts.

The two kind of patterns that represent the two kind of concepts are:

1. Data concepts are specified by the pattern:

DataConcept: domain term used to denote it

Individuals: concept term itself as an individual

Objects: instantiations of the DataConcept

Individuals: object’s elements

Constant: an immutable element

Variable: a mutable element

Type: Set of action concepts available on the objects

Example data concept is the Integer which when fit in the above pattern
becomes:

<owl:Class rdf:ID="Concept">

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#DataConcept" />

<owl:Class rdf:about="#ActionConcept" />

</owl:unionOf>

</owl:Class>

<owl:Class rdf:ID="ActionConcept"/>

<owl:Class rdf:ID="DataConcept"/>

<owl:Class rdf:ID="Input"/>

117



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

2. Properties of the concepts are defined as XML elements whose tags are
OWL properties ObjectProperty, DataProperty, FunctionProperty,
whose ID attribute identifies the property name, such as hasInput, hasOutput,
etc., and the XML element components define the domain, range, and the
type of the property. Example property definitions are:

<owl:ObjectProperty rdf:ID="hasInput">

<rdfs:domain rdf:resource="#ActionConcept"/>

<rdfs:range rdf:resource="#Input"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="inputName">

<rdfs:domain rdf:resource="#Input"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:FunctionalProperty rdf:ID="serviceName">

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DataProperty"/>

<rdfs:domain rdf:resource="#ServiceInstance"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:FunctionalProperty>

The description of namespaces, concepts, and properties in cead.owl follows a
standard pattern. Therefore the examples given above are sufficient to understand
the concept representation in arithmeticCEAD.owl that illustrates the domainCEAD.
owl file. Here we illustrate WS generation for domain’s primitive concepts using
the file ArithmeticsPure.owl. To simplify the matter we show only the web
services associated with the data concept Integer and action concept add, and
use XML syntax which we believe is more accessible to the reader. The rest of
the entities of the ArithmeticsPure.owl ontology are treated similarly.

<?xml version="1.0"?>

<rdf:RDF

xmlns="http://bula1.cs.uiowa.edu/ontologioes/arithmetic.owl#"

xmlns:sadl="http://bula1.cs.uiowa.edu/site/sadl.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:xs="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xml:base="http://bula1.cs.uiowa.edu/ontologies/arithmetic.owl"

xmlns:tns1="http://webservices.nld.cs.uiowa.edu/">

<sadl:DataConcept rdf:about="#Integer">

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>

<sadl:description> Integer concept of arithmetics </sadl:description>

<sadl:dataType rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

xs:int

</sadl:dataType>

</sadl:DataConcept>

<sadl:ComputationalConcept rdf:about="#Add">

<sadl:description> Returns the sum of two integers </sadl:description>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>

118



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

<sadl:hasInput>

<sadl:Input rdf:ID = "addI1">

<sadl:inputType rdf:resource="#Integer"/>

<sadl:order> 1 </sadl:order>

</sadl:Input>

</sadl:hasInput>

<sadl:hasInput>

<sadl:Input rdf:ID = "addI2">

<sadl:inputType rdf:resource="#Integer"/>

<sadl:order> 2 </sadl:order>

</sadl:Input>

</sadl:hasInput>

<sadl:hasOutput rdf:resource="#Integer"/>

<sadl:hasProfile>

<owls2:Profile rdf:ID="addProfile">

<cead:implementedBy rdf:resource="#addServiceInstance1"/>

</owls2:Profile>

</sadl:hasProfile>

</sadl:ComputationalConcept>

<sadl:ServiceInstance rdf:ID="addServiceInstance1">

<sadl:uri rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

http://localhost:8080/ArithmeticsWebServices/calculator

</sadl:uri>

<sadl:wsdlFile rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

http://localhost:8080/ArithmeticsWebServices/calculator?wsdl

</sadl:wsdlFile>

<sadl:serviceName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

Calculator Service

</sadl:serviceName>

<sadl:portName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

CalculatorServiceHttpSoap12Endpoint

</sadl:portName>

</sadl:ServiceInstance>

...

Copy all operatios

Copy concepts

</rdf:RDF>

For convenience, the domain ontology file is associated with two
dedicated namespaces: a names space called vocabulary, where all basic terms
of the domain are collected, and a name space where the URI-s of the WS-
s implementing the terms in teh vocabulary are collected. Since our example
regards arithmetic domain and the WS-s implementing its terms are performed
on the computer named bulai1 at the site cs.uiowa.edu using the sadl virtual
machine, described in section 6, the terms we used for these spaces are:
http://bula1.cs.uiowa.edu/site/arithmeticCEAD.owl and
http://bula1.cs.uiowa.edu/site/sadl.owl.

119



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

The computer artifacts used to represent concept semantics in the domain ontology
file are in general developed by computer experts collaborating with domain
experts. They can use any tools to implement them. The computer technology
abounds of such tools [27, 28, 29, 30] and many other. These tools allow computer
experts to develop WS by hand or to automatically generate them from conventional
computer artifacts such as programs written in various programming languages
as are Java, C, C++, etc. Among these tools Apache Axis is a light-weight, yet
powerful tool for automatic WS generation from plain Java classes or C functions.
We develop WS-s used to CEAD a domain of interest using two approaches:

1. WS-s associated with primitive concepts are automatically generated from
Java programs using Apache Axis technology.

2. WS-s associated with user concepts defined during problem solving process
are automatically developed by our own method as we shall see in section 6.

6 Domain Dedicated Virtual Machine

The efficiency of the DAL algorithm execution by problem solver using the computer
as a brain assistant is improved by associating each concept used in the PF (A)
with the WS that implements it. This can be easily done by hand, by the problem
solver, or by an appropriate automaton that operates on PF (A) and OWL(D).
The result can be seen as a “program” in the language of the brain assistant used
by problem solver to execute the DAL algorithm. However, since the operations
performed by this automaton (the brain assistant) are WS-s implementing the
concepts of the problem domain, we call it the Domain Dedicated Virtual Machine
(DDVM).

Formally, DDVM can be seen as a tuple DDVM = 〈ConceptC,Execute,Next〉
where:

• ConceptC is a Concept Counter, that, for a given DAL algorithm A, points
to the web service in the OWL(D), that implements the concept, to be
performed next during the algorithm execution;

• Execute() is the process that execute the computations in the WS pointed
to by ConceptC;

• Next() is a function which determines the next concept of the DAL algorithm
A to be performed by Execute() during algorithm execution.

The DDVM performs similarly with the PEL (see Section 3) and therefore the
algorithm execution by DDVM can be described by the following Domain Algorithm
Execution Loop (DAEL):

ConceptC = FirstDALConcept(DAL algorithm)

while (ConceptC is not End)

Execute (ConceptC);

120



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

ConceptC = Next(ConceptC, DAL algorithn)

Extract result + dysplay it to the user

On closer inspection one can easily see the similarity between DDVM and a
Virtual Monitor [31]. The ConceptC is an abstraction of the program counter,
the WS pointed to by the ConceptC is similar to the function executed by the
OS simulating instructions of the machine implemented by the VM, and Next()
is similar to the process that determines the next instruction of the program
run by the VM. The difference is that the memory of the machine implemented
by DDVM is the OWL(D), the processor of the DDVM is the collection of all
processors available on the Internet (in the cloud) that implement WS-s used in
the OWL(D), and the Next() is well defined by the relationship of the data and
operations in the Polish form of the DAL algorithm expression. Therefore, the
DDVM is a true domain dedicated virtual machine.

Once an application domain is CEAD-ed, the automation of DAL algorithm
execution is based on two main software components:

1. a translator that maps the DAL algorithm into an expression tree whose
nodes are labeled by domain concepts associated with the URL of the WS-s
implementing them, and

2. an interpreter operating on the expression tree generated by the translator,
executing WS-s encountered at the tree nodes.

The translator is implemented by the conventional compiler construction tools
and the interpretor is implemented by a stack machine similar to Java Virtual
Machine (JVM).

For a given DAL algorithm A the mapping of A into the expression tree ET (A) is
automatically performed by the DAL parser, that transforms A into its parse tree,
PT (A). A bottom-up traversal of the PT (A), that searches the OWL(D) for the
domain concepts used in the PT (A) and associates them with the URL of the WS-
s implementing them, maps the parse tree PT (A) into the expression tree ET (A).
The automation of the DAL algorithm execution using the WS-s available on the
Internet requires the ET (A) to be transformed into an appropriate language that
has WS-s as operations performed by DDVM. For this purpose we use the Software
Architecture Description Language (SADL) [32, 33].

6.1 Software architecture description language

Software Architecture Description Language (SADL), inspired by Armani [34],
has been conceived as a language suitable to describe functional behavior of
component-based software architectures, where components are standalone and
composeable pieces of software. Hence, its goal is similar to the goal of the
Intermediate Language (IL) used by Microsoft’s ASP.NET Framework. However,

121



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

SADL evolved as a language suitable to describe functional behavior of component-
based software architectures, where components are Web Services. Consequently
the SADL software is designed to run on the network, therefore compiler construc-
tion technology provides a suitable mechanisms to implement it.

As any language, SADL syntax has a three layer structure: vocabulary, simple
constructs, and composed constructs. SADL vocabulary is a dynamic collection of
terms used to denote problem domain concepts. Since SADL is meant as the target
for any DAL implementation, it needs to be implemented as a domain dedicated
namespace where each terms is associated with the collection of semantic properties
that defines it in the respective domain. For example the term Integer in the
SADL namespace of the High-School Arithmetic is specified by:

<cead:DataConcept rdf:about="#Integer">

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>

<cead:description>

This is the integer number concept in arithmetics domain.

</cead:description>

<cead:type rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

xs:int

</cead:type>

</cead:DataConcept>

SADL vocabulary is the collection of DAL terms used by problem solvers in their
DAL algorithms during problem solving process. Thus, from a computational
viewpoint SADL terms denote computer process names. The code executed by
these processes is associated with the term in the SADL namespaces and specifies
completely the WS implementing that term. For example, the process executing
the integer addition is associated with the term addI as follows:

<cead:ActionConcept rdf:about="#addI">

<cead:description>

This is the add operation in the arithmetics domain.

</cead:description>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>

<cead:hasInput rdf:ID = "orderedPair">

<cead:pairFirst rdf:resource ="#Integer"/>

<cead:pairSecond rdf:resource = "#Integer/>

</cead:hasInput?

<cead:hasOutput rdf:resource = "#Integer/>

<cead:hasAgent>

<cead:Agent rdf:ID = "addAgent"/>

<cead:ImplementedBy = rdf:resource = "#addServiceInstance1"/>

</cead:hasAgent>

</cead:ActionConcept>

<cead:ServiceInstance rdf:ID="addServiceInstance1">

<cead:wsdlFile rdf:datatype = "http://www.w3.org/2001/XMLSchema#string:>

122



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

http://bula1.cs.uiowa.edu:8080/axis2/services/CalculatorService?wsdl

</cead:wsdlFile>

<cead:serviceName rdf:datatype = "http:www.w3.org/2001/XMLSchema#string">

CalculatorService

</cead:serviceName>

<cead:operationName rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

add

</cead:operationName>

<cead:portName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

CalculatorServiceHttpSoap12Endpoint

</ceadPortName>

</ceadServiceInstance>

The simple constructs of the SADL are simple XML elements: <tag attributes

/> where tag is a term in the SADL namespace and each attribute is a tuples
of the form property = "value" where property is a property of the process
(data are considered here as nulary operations) represented by the term tag.
For example, the process that perform the addition of two integers is specified
by: <ari:addI input = "x, y" output = "z"/> where ari is the prefix of the
arithmetic vocabulary namespace.

The composed constructs of the SADL language are XML constructs composed
with the terms: foreach, if, ifthen, next, etc. Example, the SDAL expression
of the formula: x1 = (−b−

√
b2 − 4 ∗ a ∗ c)/(2 ∗ a) is represented by the following

XML code:

<ari:delta input="a, b, c" output="delta" />

<ari:sqrt input="delta" output="tmp1" />

<ari:unaryMinus input="b" output="tmp2" />

<ari:subtract input="tmp2, tmp1" output="tmp3" />

<ari:multiply input="2, a" output="tmp4" />

<ari:divide input="tmp3, tmp4" output="x1" />

Note that SADL composition operators are provided as tags in the SADL namespace,
as any other term of the problem domain.

SADL expressions are SADL representations of DAL algorithms.

6.2 SADL interpreter

SADL interpreter inputs a SADL expression and interprets it on a stack, in
a manner similar to the byte-code interpretation of a Java code. Since each
SADL simple element composing a SADL expression represent a process executed
on interned, the flow of control during a SADL expression evaluation requires
synchronization of these processes. Thus, the SADL interpreter performs a distribu-
ted implementation of the DAL algorithm. The simplest synchronization mechanism

123



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

used to control the flow of processes performing a DAL algorithm is provided by
Unix wait and , signal primitives inserted in the SADL expression, after each
SADL simple element. While this SADL implementation performs DAL algorithm
distributed, on Internet, the algorithm execution is restricted to being sequential,
where the computation unit is the WS. This mechanism can be extended to allow
the processes performing a DAL algorithm to perform in parallel.

6.3 Evolving domain ontology

One of the key ideas of the DAL system is to provide a method that allows domain
experts to create and extend their own CEAD-ed domain knowledge base. The
DAL system solves this problem by allowing domain experts to create new action
and data concepts.

6.3.1 Creating new action concepts

In order to create a new action concept, first of all, a domain expert expresses the
new concept by an DAL expressions which is then saved in a file. Then she adds
the concept to her UOO via an DAL Console program by executing ”add2Onto
<file>” command. This command translates the DAL expression into a SADL
expression and sends it to her private space in the cloud, to which she subscribed.
An Ontology Manager in the cloud automatically analyzes the submitted SADL
expression and creates a new domain concept in the user’s UOO with a name
specified in the DAL expression. The Ontology Manager also creates a web service
broker which wraps around the SADL code so that the concept is available on the
Internet as a standalone, composeable software component. All the information
about this concept’s web service is automatically linked back to the user’s UOO
so that newly created domain concept is CEAD-ed. From now on, the user can
use that new concept as any other CEAD-ed domain concepts such as using it
in a DAL Consoles or composing it with other CEAD-ed domain concepts in an
DAL expression to express the user’s new computation.

The above scenario is demonstrated with the example in high school algebra that
maps the algorithm solving quadratic equations into a new concept called Solver.
We assume that the DAL expression of the algorithm that solves quadratic equations
is written as follows and saved as the file solver.nld:

algorithm "Solver";

description: "This is a quadratic equation solver.";

message: "Provide coeffs of equation ax^2 + bx + c = 0";

input: a, b, c real;

output: x1, x2 real;

local: t real;

t = b * b - 4 * a * c;

if t >= 0 then

124



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

x1 = (-b - sqrt(t)) / (2 * a);

x2 = (-b + sqrt(t)) / (2 * a);

else

print "the equation has no real solution";

endif;

Then using the DAL Console the user executes the command

add2Onto solver.nld

With the help of user’s profile, including user’s CEAD-ed ontologies and dictionaries,
the DAL Console translates the above DAL expression into the following SADL
expression:

<?xml version="1.0" encoding="UTF-8"?>

<sadl xmlns:xs="http://www.w3.org/2001/XMLSchema" name="Solver">

<imports>

<import type="ontology" uri="http://bula1.cs.uiowa.edu/owl/arithmeticPURE.owl"/>

<import type="ontology" uri="http://bula1.cs.uiowa.edu/owl/arithmeticCEAD.owl"/>

<import type="ontology" uri="http://bula1.cs.uiowa.edu:8080/NLDPortal/profile/<user>/PURE.owl"/>

<import type="ontology" uri="http://bula1.cs.uiowa.edu:8080/NLDPortal/profile/<user>/CEAD.owl"/>

</imports>

<declaration>

<inConst a, b, c type = "xs:double" />

<outVar x1, x2 type = "xs:double" />

<localVar t0 type = "xs:boolean" />

<localVar t1, t2, t3, t4, t5 type="xs:double" />

</declartion>

<perform>

<ari:delta input="a, b, c" output="t1" />

<ari:greaterOrEqual input="t1, 0" output="t0">

<ifTrue "t0">

<perform>

<ari:unaryMinus input="b" output="t2" />

<ari:sqrt input="t1" output="t3" />

<ari:add input="t2, t3" output="t4" />

<ari:subtract input "t2, t3" output = "t5" />

<ari:multiply input="2, a" output="t2" />

<ari:divide input="t4, t2" output="x1" />

<ari:divide input="t5, t2" output="x2" />

</perform>

<else>

<perform>

<print message="the equation has no real solutions" />

</perform>

</else>

</if>

</perform>

</sadl>

This SADL expression is then sent to the Ontology Manager in the cloud. The
Ontology Manager analyzes the SADL expression and create a web service broker
for this SADL expression at the URL address

http://bula1.cs.uiowa.edu:8080/NLDPortal/profiles/<user>/services/Service?wsdl

The Ontology Manager also creates a new entry in the user private ontology
(<user>PURE.owl and <user>CEAD.owl) as follows:

125



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

<cead:ActionConcept rdf:about="#Solver">

<cead:description>

This is a quadratic equation solver.

</cead:description>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>

<cead:heasInput rdf:List = "a, b, c" rdf:resource = "#Real"/>

<cead:hasOutput rdf:List = "x1, x2" rdf:fresource= "#Real"/>

<cead:hasAgent>

<cead:Agent rdf:ID="solverAgent">

<cead:implementedBy rdf:resource="#solverServiceInstance1"/>

</cead:Agent>

</cead:hasAgent>

</cead:ActionConcept>

<cead:ServiceInstance rdf:ID="solverServiceInstance1">

<cead:wsdlFile rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

http://bula1.cs.uiowa.edu:8080/NLDPortal/profiles/<user>/services/Service?wsdl

</cead:wsdlFile>

<cead:serviceName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

Solver

</cead:serviceName>

<cead:operationName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

solver

</cead:operationName>

<cead:portName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

ServiceHttpSoap12Endpoint

</cead:portName>

</cead:ServiceInstance>

Now the user can use the concept ”Solver” as any other primitive concepts by
executing the command use Solver. The user can also use this concept in another
DAL expression as shown by the following example:

x = Solver(a, b, c);

print "First solution of the equation: ";

print x.x1;

print "Second solution of the equation: ";

print x.x2;

6.3.2 Creating new data concepts

DAL System is also provided with the mechanism that allows a user to add data
concepts to her UOO. New data concepts must be defined as compositions of
other known data concepts using such definition schemes as record, vector,

set. Since all the known data concepts are represented as some XML data type,
the DAL system represents the new data concept using an appropriate constructor
record, vector, set that maps the user defined data concept into an XML data
type. The method for a user to create a new data concepts are described in the
following steps:

126



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

1. The user defines the new concept in an DAL expression as shown in the
above pattern.

2. The user use a DAL Console to submit the DAL expression to her private
space in the cloud.

3. The Ontology Manager in the cloud receives the DAL expression and
analyze it.

4. When the Ontology Manager finds a data concept definition:

(a) creates the corresponding domain data concept and add to the user’s
UOO.

(b) creates a new XML Data type which represents the data concept
following the above pattern.

(c) automatically link the newly created data concept with the corresponding
XML Data type.

5. The CEAD-ing process for creating new data concept finished.

We illustrate the mechanism of extending domain ontology with new data concepts
with the example where a user defines the data concept Complex that represents
complex numbers in the high school arithmetic domain. Since a complex number
is a record of two real numbers the user defines the concept Complex using the
following DAL expression:

concept Complex is

record

ImgPart integer;

RealPart integer;

endrecord;

endconcept,

The XML schema used to transform this DAL expression into a SADL expression
is:

<xs:schema attributeFormDefault="qualified"

elementFormDefault="qualified" targetNamespace="some-URI">

<xs:complexType name="NewDataConceptName">

<xs:sequence>

<xs:element minOccurs="0" name="fieldName1" type="fieldType1"/>

<xs:element minOccurs="0" name="fieldName2" type="fieldType2"/>

...

</xs:sequence>

</xs:complexType>

</xs:schema>

127



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

In the case of the Complex concept, we have the following concrete XML data type
definition:

<xs:schema attributeFormDefault="qualified"

elementFormDefault="qualified"

targetNamespace="some-URI">

<xs:complexType name="Complex">

<xs:sequence>

<xs:element minOccurs="0" name="imgPart" type="xs:double"/>

<xs:element minOccurs="0" name="realPart" type="xs:double"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

7 DAL System

DAL System provides a user-dedicated implementation of a computer. That
is, a computer user who install this system on her computer can further use
the computer as a brain-assistant dedicated to her problem domain. Since the
computer use lacks the efficiency when used in this manner we chose to describe
here the implementation of the system in the cloud. This manner of DAL System
implementation dedicates the system to a problem domain, thus allowing the
computer to be shared among many users, who in effect share the problem domain
in a manner in which the students of a class share the class instructor’s knowledge.

7.1 Cloud implementation of DAL system

Cloud-implementation of the DAL System is described in Fig. 4. The assumption
is that CC that accommodates the DAL System would have an administrator that
manage the system allowing various users to register for DAL System use on a
given problem domain. For that the CC is provided with a data base where all the
SEAD-ed domain ontologies are maintained. The user subscription for a domain
D is performed by an installation procedure that activates DAL System with the
domain ontology required.

Further, as shown in Fig. 4, the user customizes the system to her personal use,
evolving the problem domain she subscribed for with the concepts she learned
and/or created during her own problem solving process. When the user decides
to leave the system and cancel her subscription, the DAL System’s manager may
buy the knowledge developed by the user and update the domain, thus ensuring
domain evolution with the concepts developed by the respective user. This ensures
a domain evolution with the knowledge developed by problem solving process of
all domain experts.

128



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

Fig. 4. Architecture of an DAL System

7.2 User interaction with DAL system

A user doesn’t need a computer in order to interact with the DAL System. An iPad
(or any other display) which provide a two-way communication using a command
language can be used in this purpose. We envision here a Unix shell interaction
as described in Fig. 5.

The DAL System is not appropriate for iconic-language implementation because it
manipulates concepts that can be created by the user. Since the system is natural
language based, and natural language is infinite through the infinite sequences of
human generations speaking it, Window-implementation, though possible, would
not be appropriate.

129



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

Fig. 5. Interacting with an DAL System

8 Conclusions

The computeri, as the automobil, is a human created tool used to help people
solve their problems. But unlike the automobil, the problem where computer
is used is not specified by the term comsputer. Therefore while the automobil
is integrated in the process of problem solving by the natural languag term
automobil, the computer creators hve developed a special methodology for its
use which is not integrated in the process of problem solving. By the contrary,
the methodology developled by computer creators for its usage integrates the
computer based problem solving process within the computer lnguage. This
implies that computer use for problem solving requires knowledge of computer
architecture and functionality. This is acquired by high-level education which
implies that computer can be used only by the people special educted in this
purpose. But all people need to solve problems, so current methodology for

130



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

comiputer use is discriminatory. In addition, complexity of software tools creted
by computer scienstists to make computer use esier, increases with the complexity
of the problem domains of comouter uses thus stretening computer tehnolgy
itself. The research reported in this paper has the aim to discuss an alternate
methodology for computer use by the integrtion of the computer withinh problem
solving process, not vice-versa, thus using the natural language of the user. This
is achieved by the following steps:

1. Develop the Domain Algorithmic Language (DAL), which is an unambiguous
sublanguage of the natural language of the problem solver. The syntax of
this language is mathematically specified by an unambiguous grammar,
and its semantics are specified based on research on the Semantic Web.

2. Develop an ontology where the concepts of DAL are stored as
tuples 〈Term, Meaning〉, where the Term is the natural language term of the
concept, and the Meaning is a Web Service implementing the concept. The
process of DAL representation by such an ontology is called Computational
Emancipation of the Application Domain (CEAD). The CEAD-ing process
is performed by the domain problem solver during her school education,
under the direction of domain experts as teachers, and continues during
problem-solving. This allows DAL to be dynamically evolved and customized
to the domain user. The conclusion is that the education of the domain
problem solver is initiated in school and continues as long as that problem
solver uses the domain as her profession.

3. In addition to the CEAD, the domain is provided with a Domain-Dedicated
Virtual Machine (DDVM), which is a virtual computer whose memory is
the domain ontology, and whose instructions are the terms of the domains
and their execution is performed by the execution of the Web Service
associated with the term.

4. The problem-solving process consists of using DAL to express the solution
to her problem. Since DAL is a natural language, this process ends up with
a DAL algorithm. Furthermore, the DAL algorithm is executed using real
computers on the computer network by the computation involved in the
Web Services populating it.

The conclusion is that the computer user uses only her natural language while
solving problems with her computer. This means that the computer is integrated
within the problem-solving process performed during DAL algorithm execution.
The feasibility of this problem-solving methodology is discussed in the paper by
showing the required software tools and by presenting a system that implements
this methodology for the domain of problem solving in high-school algebra.

Competing Interests

Author has declared that no competing interests exist.

131



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

References

[1] Rus T. Computer integration within problem solving process. InProceedings
of RoEduNet 11-th International Conference 2013 Jan 6.

[2] Falbo RA, Quirino GK, Nardi JC, Barcellos MP, Guizzardi G, Guarino N,
Longo A, Livieri B. An ontology pattern language for service modeling.
InProceedings of the 31st Annual ACM Symposium on Applied Computing
2016; 321-326. Available: https//doi.org/10.1145i/2851613.2851840

[3] Rus T. Milestones for Computing Future.’ Open Journal of
Software Engineering and Applications. 2016;9:52—56. Available:
https//doi.org/10.4236/jsea.20169200.

[4] Software as a Service (SAAS). Available:
en.wikipedia.org/wiki/Software as a service, 2010.

[5] Srinivasan S, Getov V. Navigating the cloud computing landscape:
technologies, services, and adopters. Computer. 2011;44(3):22-3.

[6] Polya G. How To Solve It. Second Edition. Princeton University Press,
second ed., Princeton; 1973.

[7] Rus T, Rus D. Systems Methodology for Software. World Scientific,
Singapore; 19930.

[8] Bui CK. An Evolutional Domain Oriented Approach to Problem Ssolving
Based on Web Service Composition. PhD Thesis, The University of Iowa,
Department of Computer Science, Iowa City; 2013.

[9] Sipser M. Introduction to the Theory of Computation. Second Edition,
Thomson Course Technology, Boston; 2006.

[10] McBride B. The Resource Description Framework (RDF) and its Vocabulary
Description Language RDFS, Springer, Berlin. 2004;51–65.

[11] line G, Caroll J. W3C, Resource Description Framework (RDF): Concepts
and Abstract Syntax; 2004. Available: http://www.w3.org/TR/rdf-concepts.

[12] Takeuti G, Zaring W. Introduction to Axiomatic Set Theory. Springer-Verlag,
Berlin; 1971. Available: https//doi.org/10.1007/978-1-4684-9915-5

[13] Badder FD, Calvanese D, McGuinnes D, Nardi D, Patel-Schneider P. The
Description Logic Handbook. Cambridge University Press, Cambridge; 2005.

[14] McGuinnessi D, van Harmelen F. OWL Overview, OWL Web Ontology
Language Overview. W3C Proposed Recommendation 15 December 2003;
2003. Available: http://www.w3.org/TR/2003/PR-owl-features-20031215

[15] Aho A. Sethi, R, Ullman, J. Compilers: Principles, Techniques, and Tools.
Addison- Wesley, Boston; 1986.

132



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

[16] Guarino N, Welty C. A Formal Ontology of Properties, Proceedings of
12-th International Conference on Knowledge Engineering and Knowledge
Management in (Dieng, R. Ed.), (Berlin), Springer Verlag, Berlin. 2000; 97-
112. Available: https//doi.org/10.1007/3-540-39967-4 8

[17] Guarino N, Welty C. Evaluating Ontological Decisions with
Ontoclean. Communications of the ACM. 2002;45(2):61–65. Available:
https//doi.org/10.1145/503124 503150

[18] WWelty C, Guarino N. Supporting Ontological Analysis of Taxonomic
Relationship. Data & Knowledge Engineering. 2001;39:51—74. Available:
https//doi.org/10.1016/50169-023X/(o1)00030-1

[19] Hurby P. Ontology-Based Domain-Driven Design. OOPSLA05 Workshop on
Best Practices for Model Driven Software Development, San Diego, 2005.

[20] Brusa G, Chiotti O, et al. A Process for Building a Domain Ontology: An
Experience in Developing a Government Budgetary Ontology. Proceedings,
Australian Ontology Workshop (AOW 2006). 2006;72.

[21] Boyce S. Developing Domain Ontologies for Course Contents. International
Forum of Educational Technology & Society. 2007;10:275–288.

[22] Hernandez N. Mothe, J. Chrisment, C, Egret, D.Modeling Context Through
Domain Ontology. Information Retrieval. 2007;10:143–172.

[23] Rector A. Modularisation of Domain Ontologies Implemented in Description
Logics and Related Formalism Including OWL. Proceedings of the 2nd
International Conference on Knowledge Capture K-CAP-03. Sanibel Island
23-25 October, 121–128, ACM 1–5811-583–1/03/0010, October; 2003.

[24] NCOR. National Center for Ontological Research, Domain Ontology
Development Methodology; 2011.

[25] OWL 2. Web Ontology Language Manchester Syntax; 2009. www.w3.org/TR

[26] Horridge M. Protègè OWL Tutorial; 2011. owl.cs.manchester.ac.uk/tutorial.

[27] The Apache Axis2/Java; 2011. Available:
http://axis.apache.org/axis2/java/core/

[28] The Apache CXF. An Open Source Services Framework; 2011.
http://cxf.apache.org/

[29] TFE Wikipedia, Enterprise Javabean; 2011. Available:
http://en.wikipedia.org/wiki/Enterprise JavaBean

[30] Metro. Web Services for Java Platform; 2008. Available:
http://java.sun.com/webservices/reference/tutorials

[31] Popek G, Goldberg R. Formal Requirements for Virtualizable Third
Generation Architectures. Communications of the ACM. 1974;17(7):412–421.

133



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

[32] Rus T, Curtis D. Towards an Application Driven Software Technology. The
Proceedings of the 2007 International Conference on Software Engineering
Research & Practice, Las Vegas 25-28 June 2007, 282–288.

[33] Rus T. Liberate Computer User from Programming. 12-th International
Conference, AMAST 2008, Proceedings (J. Meseguer and R. G., Eds.) LNCS.
2008;5140:16—35. Springeri Berlin. Available: https//doi.org/10.1007/978-
3-540-79980-1 3

[34] Monroe R. Capturing Software Architecture Design with Armani, Tech. Rep.
CMU-CS-163, Carnegie Mellon University, Pittsburgh; 2001.

134



Research and Applications Towards Mathematics and Computer Science Vol. 8
Computer Integration within Problem Solving Process

Biography of author(s)

Teodor Rus
Department of Computer Science, The University of Iowa, Iowa City, USA.

He was born in Romania and completed his education at ”Babes,-Bolyai” University.
He received research training at the Computing Institute of the Romanian Academy in
Cluj, where, in 1964, he obtained the scientific title of doctor with the thesis ”The
Use of Tree Data Structure in Solving Non-Numeric Problems” under the guidance
of Academician Tiberiu Popovici. He contributed significantly to the development of
DACICC 1 and DACICC 200 computers. Starting in 1968, he served as the head of the
Compiler Construction Laboratory at the Institute of Computing Technology, ITC-Cluj.
In 1982, he moved to the USA and became a professor at the University of Iowa in Iowa
City, where he is currently a retired Emeritus Professor. In the USA, he dedicated his
entire career to Software Development, making noteworthy contributions to the use of
algebraic methodology in the development of software systems. His research culminated
in defining computer science as the science of using the computer to solve human problems
of any nature (The computer functions as an assistant to the human mind, and its usage
methodology is integrated into the user’s natural language, similar to the methodology
used for other utilities developed by humans to enhance their capabilities. Information
Technology (IT) represents the first phase in the development of the methodology for
using the computer to solve problems, where the problem domains are integrated into
the computer’s language. Artificial Intelligence (AI) represents a second phase in which
the computer’s language is integrated into the computer user’s natural language. The
consequence of this methodology is the simplification of computer use and the development
of a computer education methodology based on the formalization of the problem domain
using an ontology, in which concept terms and their meanings are accessible to both the
computer and its user).

——————————————————————————————————————-
© Copyright (2024): Author(s). The licensee is the publisher (B P International).

Disclaimer:
This chapter is an extended version of the article published by the same author(s) in the following
journal. Open Journal of Software Enegineering and Applications, 9:52-56,2016.
Available:https://www.scirp.org/journal/paperinformation.aspx?paperid=116394

Peer-Review History:
This chapter was reviewed by following the Advanced Open Peer Review policy. This chapter was
thoroughly checked to prevent plagiarism. As per editorial policy, a minimum of two peer-reviewers
reviewed the manuscript. After review and revision of the manuscript, the Book Editor approved the
manuscript for final publication. Peer review comments, comments of the editor(s), etc. are available
here: https://peerreviewarchive.com/review-history/7105E

135


	Preamble
	Introduction
	Problem Solving Process
	Domain Algorithmic Language
	Computational Emancipation of a Problem Domain
	Domain ontology
	Using protegé for OWL file development
	Updating an OWL file with web services

	Domain Dedicated Virtual Machine
	Software architecture description language
	SADL interpreter
	Evolving domain ontology
	Creating new action concepts
	Creating new data concepts


	DAL System
	Cloud implementation of DAL system
	User interaction with DAL system

	Conclusions

