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I. RATIONALE FOR APPLICATION DRIVEN SOFTWARE

DEVELOPMENT

Even in its very infancy computer technology has been seen
as a collection of tools destined to solve problems of a given
application domain (AD)1. The problem solving process using
computers is (and has been) carried out within the computer
environment and requires the AD experts to formalize their
problems in computer terms. The effort put forth so far toward
making this process easier for AD experts has generated a rich
and well-defined information technology (IT) domain, popu-
lated by computer artifacts such as programming languages
and program generation tools. Successes of this approach to
problem-solving led to the development of current computer
technology whose complexity overwhelms computer experts
themselves. Nevertheless, the usage of current IT for problem
solving still requires AD experts to manipulate IT domain
concepts and tools rather than AD concepts and tools. To
further help this process, more and more complex IT tools are
generated thus increasing software complexity to a level where
only with formidable difficulties can AD experts manage to
develop their application systems. Among the side effects of
this situation are the lack of efficiency in application system
development, poor performance in computer utilization, and
even threat to the future evolution of computer technology
itself. Our conjecture is that in order to break this viciouscircle
we need to rethink the problem solving process. We need to
abandon the requirement that AD experts manipulate computer
terms and to allow them to manipulate AD specific terms
using AD specific languages. The recent advances created by
computing research makes it feasible to move the problem
solving process from the IT domain into the AD domain.

To understand the difference between our research toward
application driven software developmentand previous similar
research we are looking first at three research directions
that have the same goal: problem solving methods (PSM)
[FEMR96], [FM01], [FMvH+03], [CM04] carried out in the
artificial intelligence community, model driven architectures
(MDA) [SK97], [Fra], [GBI+04], [Coo04], [BGK+06] carried
out in the software engineering community, and domain-
specific languages (DSL) [SLCG99], [GM03], [CCMWa],
[vDKV] carried out mostly in the academic community.

Problem solving methods provide reusable architectures
and components for implementing the reasoning part of
knowledge-based systems. Since these architectures and com-

1An application domain is any field of human endeavor where computers
may be used to solve problems.

ponents manipulate computer artifacts the term “problem-
solving” as used in PSM is a synonym to the term ”program-
development” used in IT. That is, the goal of PSM is to
develop automated methods to generate programs that solve
given problems. Model driven architectures [SK97] are cur-
rently used in software engineering as a generic term for
describing the use of models within the software engineering
process. The foundation of MDA [GBI+04] is based on three
ideas: (1) direct representation of the ideas and concepts of
problem domain, (2) use computer-based tools to bridge the
semantic gap between domain concepts and implementation
technology, and (3) use open standards to eliminate useless
diversity and encourage the production of general purpose
tools. Models are computerized representations [Coo04] whose
elementscorrespondto elements or concepts in the problem
domain. However, modeling technology developed over the
past years, such as Unified Modeling Language (UML), uses
as representation elementsIT representationsnotAD concepts.
Domain-specific languages are designed so that they can
more directly represent the problem domain which is being
addressed. That is, domain-specific languages help IT experts
to handle application domain concepts rather than helping
AD experts handle computer technology. The development of
older programming languages (Cobol, Fortran, Lisp) all came
onto existence as dedicated languages for solving problems
in certain areas of interest [vDKV]. The need for specialized
language support to solve problems in well-defined application
domains has resurfaced over and over again.

In summary, PSM, MDA, and DSL have been developed
with the goal of helping the problem solving process. But
since they operate with computer abstractions not with AD
abstractions they cannot fully bridge the semantic gap between
IT and AD. Therefore, we can safely conclude that the research
on computer artifact development performed so far has as
the goal to make computer artifact development more easy,
more efficient, more everything. But note, computer artifact
development is not really the objective of problem solving
within a given problem domain.

Another important advance in software development is the
realization that software complexity can be better handledby
developing and studying software architectures that separate
software descriptions from software implementation. Barry
Boehm [Boe96] in his foreword for the book [SG96] identifies
precisely the relationship between software architectureand
the application oriented problem solving process when he
observes that ”the biggest problem in software engineering
is the shortage of intermediate abstractions that connect the



characteristics of the systems users (AD experts) need to the
characteristics of systems that software engineers can build”.
But software architectures could do more than provide the
framework to separate software description from software
implementation. Software architectures can also provide the
framework for an application driven software development.
Software architecture allows us to think about software sys-
tems as problem solving artifacts independently of their im-
plementations, exactly as a car-building engineer thinks about
a car independent of the differential equations describingits
components. So far software architecture allows us to see the
shortage of abstractions that connect AD to the IT domain,
but it does not tell us precisely how we are to bridge this
gap. However, looking at the problem solving process from the
perspective of the architectural aspect of software systems that
solve AD problems, one can see that this gap can be bridged
by computational emancipation of the application domain.

By computational emancipation of an AD we mean two
things: first, it means that AD is provided with a domain
oriented computational structure and second, it means thatthe
computational structure of the application domain is provided
with IT semantics. Computational emancipation of AD can
be achieved by structuring the AD using ontologies where
concepts are associated with computer artifacts as semantics.
AD ontology provides the abstractions AD experts need to
express naturally their problems and solution algorithms while
the computational semantics associated with AD concepts
allow IT experts to develop software that map AD systems into
computer artifacts that implement them. Thus, our research
initiates a software development methodology where:

• AD expert handles AD terms (not UML or any other IT
abstractions) to create AD-systems that provide solutions
to AD applications.

• IT expert develops IT-systems that map automatically
AD-systems into equivalent IT-systems performing them.

The framework for the design and implementation of such
application driven software consists of:

1) Create ontology development tools and description logic
languages. AD experts use use these tools to develop
the AD ontology and AD and IT experts use descrip-
tion logic languages to associate ontological terms with
computer artifacts as meaning.

2) Develop domain driven software architecture description
languages (SADL) that use concepts of the AD ontology
and provide them with interpreters that map SADL
expressions into software systems that implement the
systems described by such expressions.

3) Use this process extensively with various application do-
mains. This can be done by hands-on computer technol-
ogy approach of teaching where AD expert creates AD
ontologies and AD software tools rather than creating
prose. This is similar to what mathematicians do when
they teach their field of interest by developing theorem

proofing methodology rather than developing prose2.
We use Acme [GMW00] as a model for SADL development.
However, the scope of this research is much larger than what
we can fit into a paper. Therefore, the goal of this paper is
rather to illustrate our approach for application driven software
development using an appropriate application domain. Biased
by our own application domain we have chosen language
processing as the AD. Hence, in section 2 we provide an
open-ended ontology of language processing. Section 3 is
dedicated to language processors description using a SADL
and its interpreter. Section 4 presents a case-study that shows
how can this approach take advantage of the current software
technology, particularly provided by Web Service Description
Languages (WSDL), for its implementation.

II. COMPUTATIONAL EMANCIPATION OF PROBLEM

DOMAIN

As stated in the introduction, computational emancipation
of an application domain consists of providing it with a
computational structure whose concepts are associated with
software artifacts as their semantics. This abstraction allows
us to move the process of problem solving with computers
from the IT domain into the AD domain where it belongs.
Here we are concerned with problem solving in the domain
of language processing.

A. Computational emancipation of language processing

The first step in the process of computational emancipation
of a language is the design of a language ontology. This can be
represented using an appropriate T-box of a Description Logic
[BCM+05] or, as we proceed here for simplicity, using an
appropriate tree, Figure 1. The leaves of this tree represent the
vocabulary of the ontology, interior nodes represent concepts
constructed in terms of other concepts, and the arrows and the
dotted lines represent relationships between the conceptsin
the ontology.

The elements of the vocabulary of the language ontology in
Figure 1 are:

• The Alphabet, which is a finite set of distinguishable
symbols.

• Lexical entities, which are strings of symbols over the
Alphabet, usually split in classes that may not be disjoint.
In natural languages these classes are tag-sets, such as
nouns, verbs, adjectives, adverbs, etc. In programming
languages they are lexical tokens, such as identifiers,
numbers, keywords, operators, relations, separators, de-
limiters, parentheses, etc. Each such class is specified
by either a dictionary (in natural languages) or by a
regular expression over (a portion of) the alphabet in
programming languages.

• Discourse is the collection of well-formed language-
constructs classified as syntax categories by the spec-
ification rules. In natural languages these are phrases

2Note, in order to provide a systematic methodology for usingcomputer
technology to solve their problems even mathematicians need to computation-
ally emancipate their working domains.
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Fig. 1. Language ontology

constructed according to given grammatical rules. In
programming languages these are constructs representing
units of computations such as expressions, statements of
various forms, functions, programs, etc. In both, natural
and programming languages, the specification rules are
most often provided by context-free grammars whose
terminals are the lexical tokens (tag-sets).

• Objects and actions are elements of the universe of
discourse (UoD) denoted by the lexical entities of the
language. In programming languages these are domain
of values handled by language constructs.

• Properties represent knowledge about the UoD and are
expressed by language phrases. In programming lan-
guages these are language constructs representing com-
putations.

• Syntax and Semantics are related by two operators
V alue : Syntax → Semantics and Discourse :
Semantics → Syntax (Eval and Learn in [Rus02])
defined by equations of the form:

V alue(Syntax.element) =

{UoD.elements denoted by Syntax.element}

Discourse(UoD.element) =

{Syntax.elements denoting the UoD.element}

Notice that an element of the universe of discourse may
have multiple syntactic representations and a syntactic
element may represent multiple elements of the universe
of discourse.

The second step in the process of language emancipation
consists of providing the nodes of the ontology with com-
putational meanings. This is strongly related to the problem-
solving process in the language domain.

We assume here that the computational meaning of the
concepts used by the domain ontology are universal algorithms
that solve classes of problems, are characteristic to the domain,
and are mathematically proven correct. These assumptions are

transformed by the problem solving process into the follow-
ing characterization of the algorithms used as computational
meaning of the AD concepts:

1) Computational meaning associated with an ontology
node are stand-alone computation processes further re-
ferred to ascomponents. Note, data are computation
processes that leave their input unchanged.

2) The behavior of a computational process is completely
defined by its input/output performance.

3) The interaction between computational processes is
achieved by an appropriate combination of one or more
of the mechanisms: calling patterns, sharing appropriate
data or procedures, messaging systems.

4) Composition of computational processes is performed
by filters that map the output generated by a component
into the input expected by another component.

In the particular example of language processing domain,
the nodes of the ontology tree in Figure 1 are associated
with stand-alone computational entities such as, integer arith-
metic, string manipulation operations, table-search algorithms,
regular expressions generating strings and finite automata
recognizing these strings, context free grammars generating
phrases and push-down automata recognizing these phrases.
This list is open-ended, and evolves with the problem solving
process.

B. Example of a language processing problem and solution
algorithm

A language user whose ontology is given may formulate the
following problem.

Create a tool that input a text and produces a stream
of tokens replacing each lexical element of the text
with its token. If a string in the input text is not
recognized as a lexeme of the language the tool
should print a token error such as NoT.

For example, the English text ”This is a test, please disregard”
would be mapped into ”A V A N, V V”; the English text ”This



is a blabla, please disregard” would be mapped into ”A V NoT
N, V V”; the C language text ”if x> y x = x-1 else y = y -
1” would be mapped into ”if id> id id = id - nr else id = id
- nr”

What knowledge would a language user need to have in
order to develop such a tool and how could her solution
be automatically mapped into a program that performs this
computation on a computer?

Language ontology tells language user that every lexical
element of a language text is specified by a regular expression
and the token of that lexeme is a name given to that expression.
The language user may also know that each regular expression
is equivalent with a finite automaton and that a component
that simulates that automaton is associated with the ontology
tree node representing that regular expression. In other words,
the language user has the black boxesC1, ...Ck, associated
with the language ontology nodes representing the language
lexemes. In addition, the language user knows that each black
boxCi inputs stringssi over the language alphabet and outputs
either the tokenti, if si is specified by the regular expression
associated withCi, or the special tokenNoT . Note thatNoT

is different from all other tokens. With this knowledge the
language user may provide the following description of the
proposed tool, called here theScanner:

Scanner:
Input: stream of lexemes;

Output: stream of tokens;
Lexeme: string;

Token: token representation;
Output = empty;
while (more lexemes in the Input) repeat

Lexeme = NextLexeme(Input);
Token = C_i(Lexeme) or NoT;
Output = Output . Token;

Fig. 2. The scanner generation

where· denotes concatenation operator. Using this scanner the
language processing expert can employ a computer to map a
text into the corresponding string of tokens.

III. A PPLICATION DRIVEN PROBLEM SOLVING

METHODOLOGY

Traditional problem solving methodology requires the AD
expert to produce programs written in a programming lan-
guage implemented on a computer in order to employ that
computer to solve a problem. The programming language is
a high-level notation of the computations performed by the
computer. To perform this task, the AD expert, in addition to
expertise on her problem domain, needs to master three things:
(1) understand machine computation, (2) express machine
computations using the concepts provided by the programming
language, and (3) encode the concepts of her problem domain
as valid programs of the programming language. This is a
lengthy and difficult process.

A. Application driven problems and solution algorithms

The goal of computational emancipation of an AD is to
allow AD experts to use computer technology as a problem
solving tool dedicated to their AD without requiring the
AD expert to develop IT representations. Assuming that the
computational emancipation of the ADs has been performed,
the AD concepts are already associated with computations
performed by the problem solving tool, the computer. This
is similar to the manipulation of arithmetic expressions by
mathematicians doing arithmetic. Arithmetic expressionsneed
not be represented using other computational terms because
they represent computations performed by the human brain
while doing arithmetic. In other words, the tool (i.e., the com-
puter) is seen here as an extension of the brain performing the
processes represented by the AD concepts and thus helping the
AD expert to manipulate her problem domain more efficiently.

Consequently the problem solver in a computationally
emancipated AD manipulates AD terms which represent com-
putation processes they understand and which are performed
by the tool (the computer) exactly as arithmetic computations
are performed by the brain. Better yet, AD computations are
expressed using the natural language of the AD domain and
are performed by the AD expert’s brain using the computer
as a powerful tool. Therefore, the language used by the AD
expert to represent problems and solution algorithms should
be the natural language of the AD expert. The software
technology that IT domain experts need to develop, in order
to make this approach to problem solving feasible, consistsof
interpreters dedicated to the problem domain which interpret
the problem solutions, provided by AD experts, and map
them into computer processes implementing these solutions.
This is carried out using the computation processes associated
with the terms used by AD experts in the AD ontology as
components. This interpretation is based on a few new ideas
which can be summarized as follows:

1) The solutions developed by AD experts contain two
types of terms: (a) terms present in the AD ontology
(such as regular expression, finite automaton, lexeme,
token, etc., used in the example in Figure 2) and (b)
terms that are not present in the AD ontology.

2) Terms present in the AD ontology are directly inter-
pretable as computation processes performed by the
computer. Terms that are not present in the ontology
are treated by the interpreter as operators of process
compositions. Computation performing these process
compositions is specific to the interpreter itself and thus
it is implemented by the interpreter.

3) The result of the computation performed by the in-
terpreter composing processes implicitly or explicitly
present in the expert solution can be one of:

a) the expression of a persistent process that is asso-
ciated with a new ontology term (such asscanner)
thus performingontology expansion;

b) the transient process that implements the expert
solution thus solving the problem (such as the



scanning process performed by the expression in
Figure 2);

c) the value produced by the process generated by the
interpreter, such as the stream of tokens produced
by the computation expressed in Figure 2.

Note, in cases (b) and (c) above it is irrelevant which computer
performs the processes initiated by the interpreter or whatkind
of language these computational processes are represented
in. Thus, the usual problems faced by software development
disappear. However, in case (a) where the interpreter gener-
ates code, the interpreter does need to face these problems.
Therefore, in this situation the interpreter relies on language
translation methodology.

To illustrate this discussion further, we consider here the
problem of creating a language interpreter which inputs an
(arithmetic) expression and maps it into the arithmetic value it
represents. This interpreter uses as components a scanner and
a parser. The solution to this problem requires the language
user to handle the computation terms within the language pro-
cessing domain which are not yet in the language processing
ontology. Therefore here we assume that through previous
developments the language ontology has been augmented with
the language processing ontology given in Figures 3 and 4. The
solution formulated by the language expert is in Figure 5.

Evaluator:
Input: arithmetic expression of type text;
Output: arithmetic value of type number;
Intermediate Form:

IF1 of type streamOf(Token,Lexeme);
Intermediate Form:

IF2 of type abstract syntax tree;
Run:
IF1 = scanner(Input);
IF2 = parser(IF1);
Output = evaluate(IF2);

Fig. 5. Expression evaluation

To understand the structure of the interpreter that maps this
language processing solution algorithm into the value of its
input, we must observe that the interpreter consists of two
transformations:

1) A translator, that maps the solution algorithm supplied
by the AD expert into an interpretable form written
into an IT dependent language called here the Software
Architecture Description Language (SADL).

2) The interpreter itself that maps SADL-expressions into
the computations they represent.

The description of the translator requires both a formal speci-
fication of the language used by the domain expert to write its
solution algorithms and a formal specification of the SADL.
Since AD expert uses her natural language to express problems
and solution algorithms, in this paper we focus on SADL
and its mapping into the computations the SADL expressions
represent.

B. Software Architecture Description Language

The SADL is the intermediate language we use to represent
AD solutions in the IT domain. This language is organized on
three levels of structuring:

1) The lexical elements of the language are the AD con-
cepts and AD operators. The semantics of AD concepts
used in SADL are the IT computation artifacts asso-
ciated with them in the AD ontology. The semantics
of AD operators are computations specified by SADL
interpreter.

2) The second level of SADL is the computation process
which is either specified by the signature of the compu-
tation artifacts used in the AD ontology or are operators
that compose such processes in SADL.

3) The third level of SADL is the system which consists of
sequential and parallel process compositions of one or
more SADL processes that implement an AD solution
algorithm.

The intermediary nature of SADL allows the AD problem
solving process to evolve with the AD while SADL implemen-
tations evolve with advances provided by IT. It should also be
noted that SADL is not meant for either the AD expert or the
IT expert. SADL is simply provided as a way to bridge the
AD solutions to IT processes implementing those solutions.

SADL design is inspired from both software architecture
description languages, such as Acme [GMW00] and seman-
tic web technologies, such as the web service description
language (WSDL) [CCMWb] [CCMWa]. SADL borrows its
semantics from Acme. However, we restrict the fundamental
concepts SADL handles to three:component, which has the
same meaning as component in Acme,filter, which has the
flavor of a connector in Acme without concerns about ports
and roles, andsystemwhich has the same meaning as system
in Acme. SADL builds further on Acme by adding operators
that allows SADL to express the control flow among the
components of a SADL system. SADL borrows its syntax
from XML rather than using C-like syntax as Acme does.
The XML syntax used by SADL is specified as follows:

1) SADL lexical elements are the concepts used in the
natural language of the AD expert.

2) A SADL process is represented by an XML element.
The tags of XML elements representing SADL pro-
cesses identify the nature of the computation performed.
These tags are associated with an open-ended list of
attributes (such as name, signature, location, etc.) which
specify the process location and describe the envi-
ronment in which the computations performed by the
process operate.

3) A SADL system is then a sequence of XML elements
that describe a composed process which represents one
of: (a) the computer code that implement a new concept
of the AD ontology, (b) the computer process that
implement a user solution, (c) the value produced by
a computer process.
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Fig. 4. Front end ontology

The formal definition of this syntax is the object of another
research.

The SADL approach to process descriptions is also used in
languages such as BPEL [ACD+03], METEOR-S [POV], and
WSDL-S [AFM+]. Also, as in WSDL, SADL uses URIs to
associate AD ontological terms with the computer artifactsthat
implement them. However, since SADL operates on the AD
ontology, its interpreter does not need the ability to search the
web, simply because the URI of its processes are provided
in that ontology. In addition, processes in SADL may be
composed into larger processes that may be preserved in the
AD ontology.

To further explain the motivation behind SADL and the dif-
ferences from other similar languages, we turn to the problems
raised by the implementation of the SADL interpreter. We start
by observing that the computation performed by the interpreter
relies on composing processes associated with the nodes of
the ontology. But these processes are not ready composable
because their outputs and inputs may be of different type.
Hence, the first problem faced by the IT expert implementing
the interpreter consists of finding a universal input/output and
standard algorithms that map these input/outputs into this
universal form. Our answer to this problem is:represent the
inputs and outputs of the computation processes associated
with the nodes of the ontology by XML files and associate the
nodes of the ontology with XSLT transformers that perform the
mapping of outputs into expected inputs. The second problem
faced by the IT expert is finding a universal way of specifying
the address of the computing processes associated with the
ontology nodes. Our solution to this problem is:use URI of
theses processes and name spaces associated with various
ADs. The rest is simple compiler technology available to
the IT expert. For example, Figure 6 shows the SADL form
of the solution algorithm generated by the language expert
solving the problem of mapping arithmetical expressions into

the values they represent.

<sadl>
<system name="evaluator">
<component name="scanner"

location="file://FrontEndOntology/scanner" />
<component name="parser"

location="file://FrontEndOntology/parser" />
<filter name="scanner2parser"

location="file://FrontEndOntology/scan2parse" />
<create what="variable" name="input"

val="stdin" />
<execute input="input" output="mid"

process="scanner" />
<output var="mid" />
<translate var="mid" filter="scanner2parser" />
<output var="mid" />
<execute input="mid" output="output"

process="parser" />
<output var="output" />

</system>
</sadl>

Fig. 6. SADL Example

Note that the XML syntax used to express processes in
SADL is easily parseable by many pre-existing libraries and
tools meaning that SADL modifications can be easily imple-
mented. Because of XML encapsulation the code provides
little room for ambiguity and it is easily expandable as
creating new attributes for XML elements representing SADL
processes does not break older SADL expressions.

C. A domain based problem solving interpreter

The domain based problem solving interpreter (SADLI)
is the compositional control element of problem solutions.
More specifically, the SADLI is responsible for processing the
SADL expressions by carrying out the computational process
composition defined by them.

In general the interpreter acts much like themakelanguage
interpreter (or any scripting language interpreter) in that it
provides for assignments, branches, loops, and variable dec-
larations. Variables are abbreviated references to various data



elements present in the AD ontology nodes, including (but
not limited to) components, systems, strings and sets which
are explained in more detail when discussing the element
semantics.

To create a simple example of the SADLI in action, we use
a limited number of XML elements and define a few internal
data types, namelystring and set which represent strings of
characters and sets of variables, respectively. The scope of
the XML elements during SADL expression interpretation is
handled much like in C where a variable definition exists in the
scope where it was defined and all sub-scopes of that scope.
The interpreter reserves the variables stdin, stdout and stderr of
typestring to allow for control over input and output to defined
processes. The important thing to note about variables in the
interpreter context is that rather than creating casting functions
like in C/C++, the interpreter calls out to filter functions
(XSLT filters, or other component processes) to handle the
conversions. These filters are essentially the connectors of the
SADL providing a means to glue components together.

The SADLI actions (as seen in Figure 6) are processes
specified by the tags of XML elements. This allows SADLI to
interpret every XML element that belongs to a SADL expres-
sion in a uniform way. The nature of the computation process
(defined in the domain ontology or being a SADLI process)
is determined by the tag of the element and it is completely
specified by the attributes of the element. However, SADL
requires some mechanisms to handle control-flow operations
such as loops, where certain groupings of SADL processes
must be repeated, and branchings, where computation flow
performed by some process must be interrupted. To handle this
we use the hierarchical nature of XML and thus any SADL
expressions between a SADL start and end tag is considered a
grouping. The behavior of a grouping depends on the tag and
attributes of the tag that surround it. Hence, the tags are used
as operators in SADLI and are classified by the nature of the
computation they represent asontology supported operators
andSADLI supported operators. The syntax and the semantics
of a few SADLI operators follows:

Ontology supported operators:

1) < sadl > scope< /sadl >

Semantics: informs the interpreter of a SADL definition.
While it is somewhat unnecessary, it is a requirement of XML
syntax and provides the interpreter with a scope which can
contain various SADL expressions.

2) < component name=”string” location=”URI”/ >

Semantics: creates a variable in the current scope whose name
is specified by the attributename. The value of this variable
is equivalent to a pointer to the component existing at the
location specified by the attributelocation.

3) < filter name=”string” location=”URI”/ >

Semantics: creates a variable in the current scope whose name
is specified by the attributename. The value of this variable
is equivalent to a pointer to the filter existing at the location
specified by the attributelocation. (For more information on
filters seetranslate)

4) < system name=”string”> scope< /system >

Semantics: defines a new SADL system whose name is spec-
ified by the attributename. The scope of the operatorsystem
is the SADL expression that specifies the system composition.

SADLI supported operators:

1) < create what=”string” name=”string” type=”string” val=”string”/ >

Semantic: creates a computing object of nature determined by
the attributewhat. All kinds of computing objects supported by
SADL can be created by the operatorcreateusing an appropri-
ate specifier defined by the attributewhat and a specific list of
attributes required by the creation of the respective computing
object. The above syntax uses the attributes for variable and
set creation. When a variable is created the name, type, and
the value that initializes it are specified by the attributesname,
type, val. When a set is created the attributeval defines a string
of comma separated set element specifiers. Further, whenwhat
determines a process to be created the location of that process
is specified by the attributelocation which is not shown by
the above syntax.

2) < clear var=”string” / >

Semantics: removes the variable whose name is specified by
the attributevar from the scope it was defined in.

3) < foreach element=”string” in=”string”> scope< /foreach >

Semantics: performs the iteration of the process contained
within its scope. The scope is evaluated by the interpreter for
each element contained within the set specified by the attribute
in. At each evaluation the variable with name specified by the
attributeelementis assigned the value of the current element.

4) < break/ >

Semantics: breaks process flow from the currentforeach
scope.

5) < execute input=”string” output=”string” process=”string”/ >

Semantics: instructs the interpreter to execute the process
identified by the attributeprocess. The input to the specified
process is the contents of the variable specified by the attribute
input. The results of the execution are stored in the variable
specified by the attributeoutput.

6) < translate var=”string” filter=”filter” / >

Semantics: instructs the interpreter to perform a filtering on
the value of the variable specified by the attributevar using
the filter specified by the attributefilter. The value of the
variable should be a XML file. In Acme this filtering action
is represented by connectors and in the standard scripting
language it is performed by pipes.

7) < test var=”string”> scope< /test >

Semantics: provides a run-time test to check if the variable
specified by the attributevar exists and contains data. If so,
the scope is evaluated; otherwise the scope is ignored.

8) < output var=”string” / >

Semantics: instructs the interpreter to output the value of the
variable specified by the attributevar.

IV. CASE-STUDY

To provide a proof of concept that illustrates our application
driven problem solving methodology we present an example



based on the proposed SADL in section 3.2. The problem
solved in this case study is:develop a language interpreter
which takes arithmetic expressions as input and returns the
values represented by these expressions. The goal of this
example is to illustrate the use of SADL and to demonstrate
the ability of current IT tools to implement AD solutions as
computational processes.

We make the following assumptions:

• The computational processes used in the SADL expres-
sions are available to SADLI on the local file-system and
are limited to executable code on a Linux based system.

• All components take input from standard in (stdin) and
output to standard out (stdout).

• The only control flow operator used is theforeachoper-
ator.

• The result provided by the example interpreter is limited
to transient processes and values generated by these
processes.

Here we use only two ontology supported processes, a
scanner and a parser. The scanner uses a set of regular
expressions to gather lexical tokens for integers, reals, and
mathematical operations (+,-,*,/). The input to the scanner is
a text representing an arithmetic expression and the output
is a sequence of tuples〈token, value, position〉 representing
the lexemes discovered in the input. The parser is much like a
standard parser. However, the parser has the ability to map the
arithmetic expression into an abstract syntax tree whose leaves
are labeled by tokens and their values, and whose interior
nodes are operations used in the arithmetic expression. Then
the parser walks this abstract syntax tree and evaluates the
expression it represents. Thus, the parser takes as input a
sequence of tuples〈token, value〉, checks that they are the
constituents of a valid arithmetic expression, and returnsthe
value of the arithmetic expression thus discovered.

A. Execution walkthrough

In section 3 the AD expert has provided a solution to
the above problem using the domain specific language. The
equivalent SADL representation of the solution is shown in
figure 6. Further, the computing process that implements this
solution is performed by the SADLI, as we demonstrate
below. The important parts to note here are the sequence of
SADL elements with the tagsexecute, translate, execute. This
sequence performs the sequential composition of processes
that execute thescanner, then translate the scanner output
using thescan2parsefilter, and then execute theparser. To
demonstrate this, we consider the input
29 + 4/2.

The scanner returns an XML file where each element
represents a lexical item. The tag of the element is the token
of the lexical element it represents, and the attributesval, line,
word define the lexeme (value) and its position on the screen.
The scanner output for the input example29 + 4/2 is shown
in Figure 7.

<stream>
<int val="29" line="1" word="1" />
<operator val="+" line="1" word="2" />
<int val="4" line="1" word="3" />
<operator val="/" line="1" word="4" />
<int val="2" line="1" word="5" />
<newline val="\n" line="1" word="6" />

</stream>

Fig. 7. The output

Figure 8 shows the XSLT filter used to translate the file
generated by the scanner (Figure 7) into the file in Figure 9
expected by the parser.

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml"
omit-xml-declaration="no" indent="yes" />

<xsl:template match="/stream">
<tokens>
<xsl:for-each select="*">

<xsl:element name="{name(.)}">
<xsl:value-of select="@val" />
</xsl:element>

</xsl:for-each>
</tokens>
</xsl:template>
</xsl:stylesheet>

Fig. 8. XSLT filter

There already exists an XSLT translator (xsltproc) that
provides this translation functionality. Thus, thescan2parse
filter is passed, along with thescanneroutput, to the XSLT
processor. Figure 9 shows the results of the filter on the scanner
output.

<tokens>
<int>29</int>
<operator>+</operator>
<int>4</int>
<operator>/</operator>
<int>2</int>
<newline>\n</newline>

</tokens>

Fig. 9. Parser input

The parser process takes the result of the XSLT filter as input,
generates its internal representation, evaluates it, and deliver
a numeric result, as seen in Figure 10. An appropriate filter
maps it into what user expects to see.

<results>
<result>31</result>

</results>

Fig. 10. Parser output

B. Analysis, Conclusions, and Future Work

Currently the problem solving process is carried out within
computer environment irrespective of problem and problem



domain and relies on encoding the problem and its solution
algorithm using computer abstractions and concepts. The so-
lution is a machine-language program that run under a given
operating system. The research effort to make this process
easier for computer user led to the development of a software
technology whose complexity becomes unbearable. This paper
initiates an alternative methodology whose goal is to move
the problem solving process to the problem domain where
it belongs. Contrasting this approach with UML we observe
that with UML solution algorithms are first represented by
UML diagrams which are then manually or automatically
transformed into programs of a programming language, such
as Fortran. With computational emancipation computer users
use domain concepts and abstractions to develop solution
algorithms and express them in the natural language of the
problem domain. These expressions are then interpreted by
custom software which executes the involved computations
on computer network by appropriate machines under suitable
operating systems. No programming as usual is involved.
The complex software meant to support problem solving
irrespective of problem and problem domain is replaced by
the computational emancipation of the problem domain. This
is well illustrated by the great successes in computer usage
(such as PowerPoint for research presentation and Tex for
printing industry). A new methodology for computer supported
teaching evolves and consequently a beneficial feed-back on
computational maturation of all fields of human endeavor and
a breakthrough in software development are expected. The
goodness of this approach cannot be supported by measure-
ments and analysis, simple because there is not yet enough
experience with it. The goodness of this approach is however
supported by its potential to control software complexity and
to simplify computer use, making the computer indeed a
problem solving tool dedicated to the problem and problem
domain, as it should be.

While the example presented above is very simple, it illus-
trates the ability to computationally emancipate an application
domain and to use this emancipation to develop domain driven
software. It is irrelevant to the SADL interpreter whether the
components are written in C, C++, Python, Java, or even
a shell script. Hence, this work shows that the application
domain expert can step away from computer implementations
of her problem solutions focusing on the application domain.

Since our evaluator example exists as acalculator in the IT
domain, there is very little domain to emancipate here. How-
ever, these same techniques can be applied in any application
domain, and as a future project we will look at this aspect of
software development from another domain’s point of view.
We also need to observe that in our case-study we were both,
the domain experts and the IT experts, and thus our component
design was well thought out. In the real world, not all
components are created equal, in fact, sometimes components
provide multiple functionality that must be extracted. In our
future work we will look into this aspect of domain oriented
component design and will further develop SADL and SADLI
to handle the necessary extensions.
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