STATWEAVE Users’ Manual

Russell V. Lenth
University of Iowa

June 6, 2008

1 Introduction

STATWEAVE is an extension of some previous literate-programming packages (SWEAVE,
SASWEAVE, and ODFWEAVE) for statistics. Its intent is to provide portable software that
can integrate code and documentation for a large variety of statistical (and nonstatistical)
languages and file formats, and also to provide for extensibility so that a user can add
more file formats and languages.

STATWEAVE is written in Java, providing easy portability across platforms. As cur-
rently implemented, STATWEAVE has only a command-line interface, but a graphical in-
terface could be easily added. A Java virtual machine (JVM) is already installed on most
people’s systems, and the decision to use Java also separates STATWEAVE from requiring
the user to have any particular one of the statistical packages it supports.

In its current implementation, the supported languages include R, SAS, Stata, S-Plus,
Maple, IATEX, DOS, and UNIX; and more can easily be added. The currently supported file
formats are . tex (using an extension of SWEAVE's IATEX syntax) and . odt (the Open Doc-
ument Format XML specification currently implemented in OpenOffice). The probable
next developments for file formats would be Word 2007’s .docx format, and extending
the . tex format to support SWEAVE’s noweb syntax.

To use STATWEAVE, one prepares a source file in the same basic format as the in-
tended output file. Computer code is added to this file, and marked in some way so that
STATWEAVE can tell that it is code in a certain language. These marked blocks of code are
called “code chunks.” Processing via STATWEAVE involves extracting and running the
code chunks in the appropriate program(s), and creating an output document that con-
tains all the materials in the source file, but embedding the code listings, output listings,
and any graphics produced in place of the code chunks. STATWEAVE figures out which
programs it needs to run, and runs them in order of first appearance in the source file.

Section 2 explains how to run STATWEAVE from the command line, and the command-
line options that are available. In Section 3, we describe how to prepare a source file for
STATWEAVE. Section 4 details the various options that can be specified in the source file
for controlling how the code chunks are processed and displayed. STATWEAVE uses a
configuration file that defines defaults for processing, specifies what languages are sup-
ported, provides paths to these languages” implementations on the local machine, etc.

Section 6 explains the construction of this file. Finally, STATWEAVE is designed to be ex-
tensible, and Section 7 describes its Java class structure and how various interfaces can be
implemented and configured to add support for new languages or file formats.

2 Running STATWEAVE

STATWEAVE is written in Java. To run it, you need a Java Runtime Environment (JRE)
installed on your machine, and it must be Version 1.5 or later. If your Java installation is
older, you may download a newer version from http://java.sun.com. The scripts that
run StatWeave check your JRE version to make sure.

2.1 Command line
To run STATWEAVE, the command line is
statweave [option(s)] file

where file is the name of the source file. The possibilities for option(s) are described
shortly. STATWEAVE determines the file format based on its name and extension, which
in turn is delineated in the configuration file (see Section 6).

The options may include any or none of the following; what is default is again deter-
mined by the configuration file.

--weave Make a complete document containing all the writing in the source file, and the
code chunks replaced by code listings plus any output and graphics produced by
running the code. (Note that options within the source file may be used to selec-
tively suppress or relocate these elements when you don’t want them displayed in
the standard manner.)

--tangle Extract the code chunks into separate files, one for each language used in the
document. Do not make an output document.

--config cfgfile Read configuration information from the specified file, rather than
the default one.

--custom custfile After the regular configuration information is loaded, read addi-
tional configuration information from the specified file. Entries in this file will sup-
plement or replace those in the configuration file.

--target ezt Specify the type of output file. Currently, this applies only to a tex source,
where the targets could be tex, dvi, or pdf; the latter two entail further processing
of the tex target.

--cleanup Delete all intermediate files created in the weaving process.

--tidyup Delete only certain intermediate files, as defined by the file-format driver (usu-
ally, this will mean keeping graphics files and deleting the rest).

2

--keepall Do not delete any intermediate files.

--dryrun Do not evaluate any code chunks. This would be useful, for example, for de-
bugging the IXIEX portion of a source file without running any of the statistical code
embedded in it.

Various results will be displayed as STATWEAVE runs. If there are errors, any cleanup
operations are aborted as well so that you may examine intermediate files and hope to
find the errors.

2.2 Languages and engines

In this manual, a “language” refers to a computer language used for statistical or other
analysis, and an “engine” is the program that implements the language. Often, languages
and engines have the same name, e.g. “SAS.” However, an engine can potentially run
more than one language. For example, code chunks in languages SAS and IML are both
run in the SAS engine. If code chunks for two or more languages that share the same
engine appear in the source file, they are collected together into one code stream that is
subsequently run by that engine. For example, if IML chunks are insterspersed with SAS
chunks, they are all processed as a single SAS program.

In some cases, it is useful to make distinctive use of multiple languages that share
an engine; for example, we can set options specifying that the SAS code and results are
formatted differently than the IML code and results. It is possible to define new languages
on the fly; see Section 5.2 for details.

2.3 Order of processing

When you run STATWEAVE, the chunks of code are extracted from the source file and
assembled into separate code files, one for each engine required by the embedded code.
If tangling is requested, we are now done. If we are weaving, the code files are run in
order of first appearance in the source file, then the results are collected and embedded in
the output document.

It is possible that one engine will produce results that are needed by another engine—
say, by writing data to a file. Since engines are run in order of first appearance, that will
work fine as long as the first code chunk for the second engine appears after the first
code chunk for the second engine. If files are passed back and forth, you need to use the
restart option to start a new instance of an engine with its own code file. See Section 4.

3 Making a source file

To use STATWEAVE, the primary activity is preparing a suitable source file. This file needs
to contain instructions to delineate code chunks, as well as possibly specifications of vari-
ous options for how they are processed and displayed, and/or instructions for including

certain parts of the output. We will use the term “tag” to refer to a portion of the source-
tile content that signals STATWEAVE to give it special treatment. Here are the tags that
can be included in the source file, regardless of its file format:

e Tags for delineating code chunks
e Tags for specifying options for processing a particular code chunk
e Tags that specify global options that apply to all code chunks

o Tags that provide language-specific options that apply to all chunks in a given lan-
guage

e Tags for evaluating an expression and embedding the results within a paragraph of
the document

e Tags for saving and re-using code chunks, perhaps with argument-substitution—
essentially a mechanism for defining macros

e Tags for saving and restoring portions of the output of code chunks—the output,
code listing, and graphs.

The main part of the STATWEAVE software reacts to the presence of these tags. The soft-
ware specific to different file formats are responsible for defining how these tags are spec-
ified in the source file, finding the tags, and communicating the information to the main
program.

In its current implementation, STATWEAVE supports two file formats: IATEX and Open-
Document text (ODT). The following subsections describe how to use STATWEAVE tags
in each of these formats. They also describe the basic style we recommend for future ex-
tensions to other file formats. File formats that use markup should use a comparable style
to that defined for IXTEX sources below. Future extensions to WYSIWYG (“what you see
is what you get”) source files should define tags comparably to the way they are defined
below for ODT files.

3.1 KETEX source files

Ordinary IATEX source files use markup to define how the document is formatted; for
example, the \section macro is used at the beginning of a new section, and the itemize
environment together with the \item macro defines a bulleted list. It is logical to use a
similar style of markup to insert tags into an STATWEAVE source file.

A simple source file using SAS and IML code is illustrated in Figure 1. It illustrates
most types of tags for the I&TEX format. Near the beginning, the \SASweaveOpts macro
specifies an option that applies to all code chunks in SAS (but not to code chunks in other
languages). A few lines later, the first code chunk appears in the SAScode environment.
STATWEAVE uses the characters that precede the string “code” to determine that the lan-
guage is SAS. Next is a code chunk for IML (the IMLcode environment). This example as-
sumes that STATWEAVE is configured so that IML is another language for the SAS engine.

Figure 1: Demo source file demo-swv. tex in IXIEX format

\documentclass{article}

\begin{document}
\SASweaveOpts{prompt="$ "}

\section{StatWeave example using SAS}
Let’s read in some data and copy it into a matrix in IML:
\begin{SAScode}
data chickwgt;
infile "chickwgt.txt" firstobs = 2;
input weight time chick diet;
\end{SAScode}
\begin{IMLcode}
proc iml;
use chickwgt;
read all into A;
\end{IMLcode}
We have read-in \IMLexpr{nrow(A)} observations and \IMLexpr{ncol(A)} variables.

Let’s do an analysis.
\begin{SAScode}{label=mixed, saveout}
proc mixed;

class diet chick;

model weight = time diet;

random chick(diet);
\coderef{hidden}{ods select tests3;}
\end{SAScode}
The output is as follows:
\recallout{mixed}

\end{document}

The line after the IMLcode environment contains two \IMLexpr macros; the arguments to
these macros will be evaluated in IML, and these macros will be replaced by the results.
(By the way, in SAS, it does not make sense to evaluate an expression outside of PROC IML,
so it is important for IML to be active when expressions are embedded.)

The last code chunk (again a SAScode environment) has some options added; these
assign a label to the code chunk and instruct STATWEAVE to remember the output instead
of displaying it just below the code listing. The code chunk itself contains a \coderef
macro. Normally, this is used to reuse the code in a previous code chunk. In this instance,
we reuse a rather trivial, built-in chunk named hidden that simply adds the supplied
argument (in this case an ods statement) invisibly to the code that is executed. This is
handy, especially in SAS, for selecting only certain parts of the output.

After this last SAScode environment is a line of text for the document. This is followed
by a \recallout macro that requests we now display the output that we had saved under
the label “mixed.”

Figure 2: Output document demo . pdf generated by source file in Figure 1.

1 StatWeave example using SAS

Let’s read in some data and copy it into a matrix in IML:

$ data chickwgt;
$ infile "chickwgt.txt" firstobs = 2;
$ input weight time chick diet;

IML> proc iml;
IML> use chickwgt;
IML> read all into A;

We have read-in 578 observations and 4 variables.
Let’s do an analysis.

$ proc mixed;

$ class diet chick;

$ model weight = time diet;
$ random chick(diet);

The output is as follows:

The Mixed Procedure
Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F
time 1 527 2468.49 <.0001
diet 3 46 6.28 0.0012

The resulting document obtained by running STATWEAVE on this source file is dis-
played in Figure 2. The text elements in the original document are exactly as was entered
in the source file; but the code chunks and macros containing STATWEAVE tags have been
suppressed or replaced with formatted code listings and output, if any. The initial SAS-
specific option caused the lines in the listing of SAS code to be preceded by the $ character
and a space. That option was SAS-specific, though, so the lines of IML code are preceded
by the default prompt, which is the language name followed by “> ”. We could have
used “SAS” in place of “IML” in the source-file tags, and exactly the same results would
have been obtained except for the prompt strings. If any output had been generated by
these code chunks, it would have been displayed immediately after the code listings.

We verify that the \IMLexpr macros now contain the actual number of observations
and variables. The code listing for the final chunk reverts to the dollar-sign prompt. Note
that the \coderef line is not displayed in there. The requested portion of the output
is shown where it was requested by the \recallout macro. Had we not used that, we
would not have been able to put the intervening narrative between the code listing and
the output.

Figure 3: ODT source file demo-swv.odt comparable to the one in Figure 1.

ff, demo-swv - OpenCffice.org Writer E]@
File Edit ‘iew Insert Formak Table Tools wWindow Help x
Bl aRBREsR IV B - & QE-v HeoE®E]
£ g | | sweodebody w| | Courier Mew | 10 | B JF UJ||[=|= = = | iE £ <= = t)
""Z""i""l"";""';2"';"'";3"'1"";4"&'"'i5"'i""LE‘"';'"'H'A

SLS: prompt=T$

StatWeave example using SAS

Let’s read in some data and copy it into a matrixz in ML

data chickwugt:
infile "chickwgt.txt™ firstobhs = 2:
input weight time chick diet;

HML:

proc iml:
use chickwgt:

o read all into 4; |

We have read4n IML:nrowili) cbservations and IML:ncol (i) variables.

Let's do an analysis.
SL5: label=mixed, saveout

‘

proc mixed:
class diet chick;
model weight = tCime diet;
random chick(diet) :
hidden{ods select tests33:}

The cutputis as follows:
output :mixed

ME]k<

£ >
Page 1)1 Default 100%: IMNSRT STD

3.2 ODT source files

OpenOffice is a freely available, open-source office suite that includes a word processor,
spreadsheet, database, etc. The word processor, OpenOffice Writer, is an example of a
WYSIWYG interface. In OpenOffice Writer, the same functionality as IXTEX markup is im-
plemented in a style menu; for example, a “heading 1” style is comparable to a \section
macro in IEX. Accordingly, our standard design for ODT source files uses custom style
markings as tags for the various STATWEAVE elements. This design has the additional ad-
vantage that our custom styles can include special colors and fonts to make the presence
of STATWEAVE tags easily noticeable.

To create an ODT source file for STATWEAVE, simply open a new document based on
the SWstyles template that accompanies STATWEAVE. (Or after starting the new docu-
ment, load the template via the style menus.) This template defines styles that correspond
to all the needed tags in STATWEAVE. You can find them in the “custom styles” listings
for paragraphs and character formats.

To illustrate, Figure 3 shows a screen shot of an ODT equivalent of the IXTEX source
tile shown in Figure 1. In this figure, the current position of the cursor is at the end of

the last line of the IML code. Note that the style selector (to the left in the lower part of
the toolbar) displays that the style here is SWcodebody. This is a paragraph style that is
used for each line of each code chunk; as provided, this style displays in monospace black
fonts with a light blue background. Everything that is formatted like that in Figure 3 is
in the SWcodebody paragraph style, and that is how STATWEAVE can tell that they are
code-chunk lines.

At the beginning of each code chunk is a single paragraph in SWcodehead style, dis-
played in white text with a dark blue background. Most code chunks should be preceded
by one of these paragraphs (if a code chunk is in the same language as the previous one,
and no options are needed, the SWcodehead paragraph is not needed). Minimally, the
code header contains the language name followed by a colon. Any options for that chunk
follow the colon. Global or language-specific options are quite similar to code-chunk
headings, only they use the SWopts paragraph style, displayed with yellow text on a dark
blue background. The first line in the document is a SAS-specific option. A global option
that applies to all code chunks would have been similar, but without the “SAS:” at the
beginning.

In-line evaluation of expressions is accomplished using the SWexpr character style.
This is the only STATWEAVE style that is a character style rather than a paragraph style,
so you will not find it on the same menu. They are displayed as blue text on a light-blue
background, and to enter one, give the language name, a colon, and the expression to be
evaluated.

There are two more to go. The recalled code that was accessed using \coderef in the
IATEX example is implemented using the SWrecall paragraph style. Give the label (in
this case, “hidden”), and any arguments enclosed in curly braces. It is displayed with
a light-yellow background. Recalled output is obtained using the SWrecall paragraph
style, displayed with a coral background. Give the keyword “output:” followed by the
label for the output. Saved code listings and graphics are recalled in the same way, using
the keywords “code:” and “fig:” respectively.

The provided template includes two other styles named Winput and Woutput. These
define the styles to be used for code listings and output listings in the output docu-
ment. The output document will inherit these styles. Thus, while they are not needed
for STATWEAVE tags, you can modify these styles according to how you want code and
output listings to be formatted in the output document.

3.3 Auto-correction caution

One issue peculiar to WYSIWYG word-processors is that they quietly modify certain
things that you enter. For example, quotation marks are changed to opening and clos-
ing quotes, and hyphens in certain contexts are changed to en dashes. This is problematic
because minus signs and quotes are important elements of computer code. STATWEAVE
specifically looks for and reverses the most common of these, but it is easy for some other
auto-correct artifact to pass through to the program that is run. Thus, you may want to
disable or severely limit auto-formatting when you prepare the source file.

3.4 Summary of STATWEAVE tags

Here is a compact reference to the tags we have discussed for the two file formats.

Tag type IATEX source file ODT <style>

Code chunk \begin{langcode}{opts}... <SWcodehead>lang:opts,
\end{lang code} <SWcodebody>. ..

Global options \weaveOpts{...} <SWopts>. ..

Lang-specific opts \langweaveOpts{...} <SWopts>lang: . ..

Expression \langexpr{...} <SWexpr>. ..

Reuse code \coderef{label } <SWcoderef>label

... with arguments \coderef{label}{...}{...} <SWcoderef>label{...}{...}

Recall results \recallcode{labell}, <SWrecall>code: label,
\recallout{label}, or <SWrecall>out: label, or
\recallfig{label} <SWrecall>fig: label

4 Setting options in the source file

As explained earlier, options may be specified at the beginning of a code chunk to deter-
mine how the chunk is processed, what is displayed, how it is formatted, and so forth.
This section describes the options that are available. Note that some options are available
only for certain file formats or certain languages. As new drivers are added, the available
options may expand.

4.1 Option format

Both IXTEX and ODT files require essentially the same format for options: a comma-
delimited list in the format

keyl=valuel, key2=value2, key3 = wvalue3,

where the keys are the option names. If desired, extra spaces may be added around
equal signs and commas. If a value must include a comma or a space, it may be enclosed
in double quotes (". . ."); and if quotes within quotes are needed, consecutive quotes are
interpreted as a quote character; for example, prompt = "-""- " sets the prompt string
to -"-, followed by a space.

Many options are boolean (values are TRUE or FALSE). These values may be abbreviated
T and F. There is an even terser form for a boolean option: just the keyword with no
value is taken as TRUE, and an exclamation point before the keyword sets it to FALSE.
For example, an option list of fig, !echo is equivalent to £ig=TRUE, echo=FALSE. Another

thing to know: if STATWEAVE or an associated driver tries to test an option and it is found
to not even exist, it is taken as FALSE.

Finally, it is possible to remove an option altogether by preceding its name with a
hyphen. For example, we may have set a global option of prompt="> " but you later
want to use the default prompt; then include -prompt in the option list.

4.2 Options for code-chunk processing

eval (boolean) If TRUE, the code will be run by the appropriate program; if FALSE, it is
only listed (assuming echo is TRUE).

restart (boolean) If TRUE, and there have been previous code chunks for the same en-
gine, a new code stream is started for that engine that will be run separately, after
the previous ones.

label (string) The value is assigned as a label that can be used later to reference the code
chunk or some result produced by it. If a label is not provided, the label 1astchunk
is assigned and remains valid until another unlabeled chunk appears.

The factory default is eval=TRUE and the others undefined.

4.3 Options for code listings

echo (boolean) If TRUE, the code chunk is listed; if FALSE, it is not

prompt, prom, ompt (string) If it is defined, the value of prompt is appended to the be-
ginning of each line of the code listing. If undefined, prompt is formed by concate-
nating the values of prom and ompt. prom defaults to the current language name,
and ompt defaults to “> ”. For example, in a SAS code chunk, by default each code-
listing line is preceded by “SAS> ”. Note that prom and ompt have no effect when
prompt is defined; you may un-define prompt using -prompt.

savecode (boolean) Suppresses the code listing, but saves it for later recall using the
chunk label.

showref (boolean) If TRUE, reused code is displayed in the code listing; if FALSE, it is
hidden.

codestyle (string) You may use this option to specify a paragraph style name (for ODT
tiles) or environment name (for IXTEX files) to be used for formatting the code listing.
The default is Winput. In an ODT file, the named style should be defined in the
source document; the Winput style is provided in the template SWstyles.ott that
comes with STATWEAVE. For a IXIEX file, this must be defined using the \Define-
VerbatimEnvironment or \RecustomVerbatimEnvironment macros in the fancyvrb
package; the Winput environment is defined in the file StatWeave.sty that comes
with STATWEAVE.

10

codefmt (string; IXIpX-specific) The value of codefmt is inserted as optional arguments
for the verbatim environment that is used for displaying the code listing—thus al-
lowing you to change the formatting in a variety of ways. For example,

codefmt = "formatcom=\color{blue}, frame=single"

will alter the formatting so that the code listing is in blue, and surrounded by a
box. For details on what is possible, see the documentation for the IXIEX package
FANCYVRB.

beforecode, aftercode (string, IXTpX-specific) If specified, these strings are inserted in
the I&TEX result file just before and just after each code listing.

The factory defaults are echo=TRUE, eval=TRUE, showref=FALSE, and codestyle=Winput;
the rest are left undefined. These can be changed in the configuration file.

4.4 Options for output listings

hide (boolean) If TRUE, output is not displayed; if FALSE, output is displayed.

results (file-format-dependent) In a IEIEX source file, results=tex specifies that the
output is expected to be in ETEX format. In an ODT source file, results=xml is
used when the code produces output containing XML tags, such as a table.

saveout (boolean) Suppresses the code listing, but saves it for later recall using the chunk
label.

loose, tight (boolean) These options control the way in which blank lines are com-
pressed. If both options are false, (1,2,3,4,5,6,...) consecutive blank lines are re-
placed by (1,1,1,2,2,3,...). If tight is TRUE, these are replaced by (0,1,1,1,1,2,...);
otherwise, if 1loose is TRUE, no compression of blank lines is performed. In all cases,
all blank lines that precede the first line or follow the last line of output are removed.
Tight spacing might be preferred if you want to remove blank lines that precede ta-
ble headings (such as are produced by SAS); the down side is that if two tables are
separated by only one blank line, they will be squashed together.

outstyle (string) You may use this option to specify a paragraph style name (for ODT
tiles) or environment name (for IXIEX files) to be used for formatting the verbatim
output listing. The default is Woutput. If the results option is other than verbatim,
this option has no effect. In an ODT file, the named style should be defined in the
source document; the Woutput style is provided in the template SWstyles.ott that
comes with STATWEAVE. For a IXIEX file, this must be defined using the \Define-
VerbatimEnvironment or \RecustomVerbatimEnvironment macros in the fancyvrb
package; the Woutput environment is defined in the file StatWeave.sty that comes
with STATWEAVE.

11

outfmt (TEX-specific) The value of outfmt is inserted as optional arguments for the
environment that is used for displaying the output listing—thus allowing you to
change the formatting in a variety of ways. See more discussion under codefmt
above.

beforeout, afterout (string, IXTgX-specific) If specified, these strings are inserted the
IATEX result file just before and just after each output listing (whether or not it is
verbatim).

The factory defaults are hide=FALSE, outstyle=Woutput, and the rest are undefined. These
can be changed in the configuration file.

4.5 Options for graphics

fig (boolean) If TRUE, we expect the code to produce a graph; by default, it will be
displayed below the output listing. Currently, STATWEAVE only provides for one
graph from each code chunk. If more than one graph is actually produced by that
chunk, it may cause an error; if not, what is displayed may be the first or the last
one produced, depending on the software.

width (dimension) Specify the width of the constructed figuer. This is used by STATWEAVE
when it sets up a file or graphics output stream for it. The value may end in in, cm,
mm, pt, or px to specify inches, centimeters, millimeters, points, or pixels. If no units
are given, STATWEAVE makes a reasonable guess based on the size of the number.
If no width is specifies, the default is 6 inches (or the equivalent in other units).

figfmt (string) If specified and fig is TRUE, this forces the graphics format to be the spec-
ified value. The valid values are eps, gif, jpg (or jpeg), pdf, png, ps, or tif. You
get an error if the format is not supported for both the statistical language and the
target file format.

height (dimension) Same as width, but for the height of the figure.

dispw (dimension) Set the displayed width of the figure as it is to appear in the output
document. If this is not specified, the value of width is used.

disph (dimension) Set the displayed height of the figure as it is to appear in the output
document. If this is not specified, the value of height is used.

scale (number) Set a scale factor for expanding or contracting the figure from its original
width and height. If not give, a value of 1 is assumed.

savefig (boolean) Suppresses the display of the figure, but saves it for later recall.

beforefig, afterfig (string, IXTgX-specific) If specified, these strings are inserted the
[ATEX result file just before and just after each figure.

12

A note on scaling: Ordinarily, you should specify only one of the options dispw, disph,
or scale. If scale is defined, dispw and disph are ignored. Specifying only dispw is
equivalent to setting scale equal to dispw/width. If both dispw and disph are defined,
they are both used, and this will distort the shape of the graph when they are not in the
same proportion as width and height.

5 Programming statements

This section describes some STATWEAVE constructs that in essence provide programming
statements within the source file.

5.1 Code reuse and argument substitution

A code chunk may be saved under a label, and recalled later using the reuse-code tag for
the file format in question (see Section 3.4). If no label is provided, a code chunk may still
be recalled under the label lastchunk until a new code chunk is defined.

Recalled code may or may not be displayed in the code listing, depending on whether
the option showref is true or false. By default, it is false, meaning that recalled code is not
displayed. You may force a particular chunk to be displayed by preceding its label with
an asterisk (x).

Finally, argument substitution is provided in a manner similar to that of TgX macros.
If the saved code chunk contains the strings #1, #2, ..., those strings are replaced by the
tirst, second, ... arguments provided with the reuse-code tag. Both the ODT and KIEX
file formats provided specify that these arguments be enclosed in braces.

STATWEAVE provides a predefined (and rather trivial) code chunk named hidden that
is simply #1. It is very useful for hiding code that you don’t want echoed; see the follow-
ing example.

Here is a IATEX example of code reuse with argument substitution. Imagine that we
have a document with SAS code, and we want to import several datasets with various file
formats. The appropriate code for this will be entered early in the source file:

\begin{SAScode}{label=import, !eval, !echo}
proc import
filename = #1.#2

out = #1
dbms = #3 replace;
\end{SAScode}

The code contains the strings #1, #2, and #3 for later substitution with the root name of
the file (as well as the name of the dataset created), its extension, and the delimiter used.
The code chunk has the label import; we disabled both evaluating the code (which would
cause an error!) and echoing it to the document.

Later in the document, we want to read in a comma-delimited file named beans.csv;
so, include this code chunk:

13

\begin{SAScode}
\coderef{import}{beans}{csvi{csv}
proc print data=beans;
\end{SAScode}

This is equivalent to embedding these two code chunks:

\begin{SAScode}{!echo}
proc import

filename = beans.csv

out = beans

dbms = csv replace;
\end{SAScode}
\begin{SAScode}
proc print data=beans;
\end{SAScode}

It amounted to two code chunks because only the print statement is echoed in the code
listing. Later still in the source file, we include this chunk to read-in a tab-delimited file
named peas.dat, and do some analysis:

\begin{SAScode}
\coderef{*import}{peas}{dat}{tab}
proc glm data = peas;

class color fert;

model yield = color*fert / ss3;
\coderef{hidden}{ods select modelanova overallanova;}
\end{SAScode}

The * before the import label causes the proc import statement to be displayed along
with the proc glm statements. At the end, we have another code reference, this time
to hidden. That code will not be displayed (no asterisk before its label, and showref is
false by default). Only the overall ANOVA table and the type-3 sums of squares will be
included in the output, but the associated ods statement will not be shown in the code
listing.

5.2 Defining new languages

It is possible to define or override a language name within a source file. It is done by
specifying a global option of the form

newlang = lang:engine

The newly named language is assigned to the specified engine, which must exist and be
named in the configuration file (see Section 6). If lang already exists, it is overridden.
This newlang option has no effect unless it is specified as a global option.

Why might one want to do this? One example: we have some code in S, and we want
to run the document twice, using R and S-Plus as the engines for S. This can be done using

14

newlang = S:R and newlang = S:Splus. Another example: We expect some of our SAS
code chunks to produce extensive, wide output. Consider these source-file specifications
in IXTRX:

\weaveOpts{newlang = SASwide:SAS}
\SASwideweaveOpts{outfmt = "fontsize=\scriptsize", prompt = "SAS> "}

We now have a new language named SASwide, and an associated language-specific op-
tion. Chunks in a SAScode environment will be formatted the usual way, but chunks in
a SASwidecode environment will have their output formatted in a very small font. Since
both languages use the SAS engine, all this code will be run in the same SAS process.

6 Configuring STATWEAVE

STATWEAVE's configuration file contains information on what languages and file formats
are supported, which engines to use for which languages, what file extensions are asso-
ciated with what file formats, and so forth. It can also be used to add or change global
or language-specific options. The default configuration file in Linux/UNIX is named
.statweave, in the user’s home directory ($HOME). In Windows, the default configuration
file is named statweave.cfg, in the user’s home directory; typically, the full path to the
configuration file is

C:\Documents and Settings\username\statweave.cfg

A different configuration file may be specified on the command line using the --config
option, as described in Section 2.

In addition, one may create a customization file and load it using the --custom command-
line option. This file has exactly the same format as the configuration file, and it is loaded
after the configuration file. A customization file typically contains only a few entries,
such as global or language-specific options, and these override the same entries in the
configuration file.

The configuration (or customization) file is an ordinary text file that may be edited
using an editor like vi, emacs, Notepad, etc. Word processors like OpenOffice, Word, or
WordPad may be used as well, but one must take care to save it in plain-text format.

The file format is defined by Java’s java.util.Proerties class, with no embellish-
ments added; so definitive information is available in the Java documentation. Each line
in the configuration file is in the form keyword=value. Anything after a # character is
ignored, and a line that begins with # is thus a comment line. Spaces around the equal
sign are stripped off. If the characters ", \, or # are needed as part of the value, they must
be escaped using the \ character. A line may be continued if you end it with a single \
character. Everything is case-sensitive, so be careful to use exactly the required combina-
tion of upper- and lower-case letters in keywords. Finally, any equals signs after the first
equals sign are treated as part of the value string.

To illustrate these requirements, here are examples of some valid lines that could ap-
pear in the configuration file.

15

1 # Here are some sample configuration lines

2 Global.options = width=400px, height=300px, dispw = 10cm

3 SAS.options = prompt = \"\# \", \

4 codefmt = \"formatcom = \\color{blue}, fontsize = \\footnotesize\"

Line 1 is a comment. Line 2 sets some defaults for all graphics, regardless of what lan-
guage is used. Line 3 ends in a \, so that lines 3 and 4 are combined into one, and they
define some SAS-specific options. The part on line 3 is interpreted as prompt = "# ".
Note that the quotes and the sharp sign are escaped (i.e., entered as \" and \#). Similarly,
the codefmt option in line 4 is interpreted as a quoted string that includes the specifica-
tions formatcom = \color{blue} and fontsize = \footnotesize.

We now detail the major parts of the configuration file.

6.1 Languages and engines

The configuration file is required to have a Languages key to specify what languages (and
engines) are supported. The names of the languages are separated by one or more spaces.
For example:

Languages = S R SAS IML Splus Stata tex latex DOS Maple
Each language lang on the list should also have either
e a lang.class entry and a lang.binary entry
or
e a lang.engine entry

A lang.class entry associates lang with a Java class (the engine for that language), and
the lang.binary entry provides the command line needed to run that engine’s code. For
example, consider the configuration lines

R.class = rvl.swv.REngine
R.binary = \"C:\\My BAT files\\R.bat\" Y%codename,
S.engine = R

These set up the R language for its engine and a script on a Windows system. The S
language is simply associated with R; any S code will be handled by R’s class and binary.
Note: Certain engines (such as the one for D0S) do not need a binary, because they are
already hard-coded in the engine driver.

6.2 File formats

Like the languages and engines, we need a FileInterfaces line to specify the available
tile types. And for each interface in that space-delimited list, we associate its Java class
using a key of the form filetype.class. For the file formats provided with STATWEAVE,
these entries are as follows:

16

FileInterfaces = LaTeXFile ODTFile
LaTeXFile.class = rvl.swv.LaTeXFile
ODTFile.class = rvl.swv.0DTFile

We also want to give the defaults for the default targets:

LaTeXFile.target = pdf
ODTFile.target = odt

For ODTFile, there is only one possibility; but for LaTeXFile, you might want to change it
to something else. We also need keys to specify what filename extensions will be associ-
ated with which file type:

LaTeXFile.sources = -swv.tex —nw.tex .swv.tex tex swv nw
ODTFile.sources = -swv.odt .swv.odt -nw.odt .nw.odt odt

These strings are matched against the end of the source file name, and the first one found
determines the base name for the output file. That is done by stripping off the matched
pattern. For example, suppose the source file is named foo.swv.tex. This matches
.swv.tex in the list for LaTeXFile sources; so the source file is deemed to be a I&IEX
tile. If the target is pdf, then the output file will be named foo.pdf (the .swv.tex part
is removed and replaced by .pdf). When a pattern does not begin with a hyphen or pe-
riod, the string out is added. For example, with the above specifications and a source
tile named barodt, it will be deemed an ODT source, and the output file will be named
bar-out.odt. STATWEAVE also checks to make sure the output file has a different name
than the source file, and will add -out if needed.

The IXTEX driver has some additional complexity and requires several more keys. It
knows how to make a . tex file, but it requires additional keys to tell it what software to
run to make other targets; on a Windows installation, these might be

LaTeXFile.bin.pdf =

\"C:\\Program Files\\MiKTeX 2.6\\miktex\\bin\\pdflatex.exe\" --quiet
LaTeXFile.bin.dvi = \"

c
C:\\Program Files\\MiKTeX 2.6\\miktex\\bin\\latex.exe\" --quiet

It also requires a key to specify which graphics file format to use when the target is tex.

LaTeXFile.figfmt.tex = PDF

When the target is dvi or pdf, an appropriate graphics format is selected.

The LaTeXFile driver also is designed to provide for different types of markup (syn-
tax), which one to use by default, and what filename extensions should be associated with
which syntax. This requires yet more keys.

LaTeXFile.SyntaxInterfaces = LaTeXSyntax NowebSyntax
LaTeXSyntax.class = rvl.swv.LaTeXSyntax
NowebSyntax.class = rvl.swv.NowebSyntax
LaTeXSyntax.sources = swv swv.tex
NowebSyntax.sources = nw nw.tex

The first syntax listed in LaTeXFile.SyntaxInterfaces is the default. (Note: As of this
writing, the NowebSyntax driver does not yet actually exist.)

17

6.3 Default options

The configuration file may also contain keys of the form Global.options or lang.options
to specify default global or language-specific options. Examples are shown in the intro-
ductory part of this section.

6.4 Graphics converters

If there is a key of the form fmt1. fmt2, its value is taken to be the command for converting
a graphics file from the first to the second format. For example, under Linux, we might
have the entry:

ps.pdf = ps2pdf Ysrch %tgtl

This will provide the capability of obtaining pdf figures from statistics programs that
cannot provide them, but can provide PostScript figures. The strings %src% and %tgt’
in the value will be replaced by the names of the source and target files in doing the
conversion.

7 Extending STATWEAVE

7.1 STATWEAVE's design

STATWEAVE is written in Java, and thus it comes as an archive of several classes, all in
the package rvl.swv. The main class is rvl.swv.StatWeave, which manages the tasks of
interpreting the command line, reading the configuration file, deciding what tasks need
to be done, and running them in an appropriate sequence. Different file formats are de-
fined as implementations of the Java interface rvl.swv.FileInterface; and different en-
gines are defined as implementations of rvl.swv.EngineInterface. There are additional
classes such as rvl.swv.Tag and rvl.swv.FigFile that define other useful objects.

After deciding the file format of the source file, StatWeave uses the reflection mech-
anism to instantiate the appropriate FileInterface implementation named in the con-
tiguration file. It calls methods of that class to obtain tags, code chunks, option specifi-
cations, and so forth. From this information, it detects what engines need to be instanti-
ated (again, using reflection based on the classes specified in the configuration file), and
channels code chunks and other instructions as needed to those engines. Those other in-
structions include code for special separating strings to be incorporated in the output so
that the results of different code chunks are distinguishable. When code listings, output,
or figures are needed, StatWeave tells the file interface to save either the content itself, or
a “bookmark” which will later be replaced. When reading of the code file is complete,
StatWeave asks each engine to run its code, and the output is collected in intermediate
tiles and read by StatWeave, the separating strings are used to sort it all out; the book-
marks are replaced with appropriate portions of the output or import code for figures
that are generated. Then the file interface is asked to write the output file for the desired
target, and then to perform any cleanup operations.

18

From this description, note that EngineInterface and FileInterface classes require
certain methods for communicating pertinent information; and that the names of these
classes are discovered by reading the configuration file. Thus, STATWEAVE can be ex-
tended by writing new implementations of these interfaces, and adding some informa-
tion to the configuration file. (Alternatively, the additional information could be put in a
customization file, but the extensions will not be available unless the customization file is
loaded using the --custom option.) Documentation for the above interfaces is provided
in HTML format in the javadoc tree distributed with STATWEAVE.

7.2 Adding a new engine

The most likely thing you would want to do is add support for a language for which there
isn’t already an engine. There are two ways to do this. One is to write an EngineInterface
implementation from scratch, providing all of the methods needed. A second, much
easier, way is to extend the class rvl.swv.AbstractEngine; this class contains the code
needed by most engines for opening and closing text files, negotiating file formats for
figures, etc.

Details of AbstractEngine can be found in the HTML documentation. When ex-
tending it, the constructor should assign values to certain strings for comment delim-
iters, filename extensions, etc.; and a vector of constants from the FigFile class defining
the allowable graphics formats. You likely need to override only a very few methods:
putExpr, putSeparator, setupFig, and closeFig. Your method setupFig should first call
super . setupFig; this will figure out an appropriate graphics format and size, and return
it as a FigFile object. Use its accessor methods to obtain the required file name, etc., and
output the appropriate setup code to the code file.

AbstractEngine sets a variable parent of class rvl.swv.StatWeave; this is the active
StatWeave machine and it may be used to interact with the session. Parent methods of
particular interest are error, warning, and message for displaying and handling errors;
getOption, isTrue, and getDim for accessing or testing options; and getConfig for ob-
taining configuration information.

When the engine is written and compiled, you need to add its information to the
configuration file. In particular, add a suitable name to the Engines list, an entry to link
that name to its class, and an entry that gives the command line to run the code. When
AbstractEngine is used, it assumes that the latter will contain the string %codenamey,
which is a placeholder where the name of the code file will be substituted. Optionally,
the command line may contain the string %outname as a placeholder for the name of the
output file.

When the driver is written, don’t forget to configure it. Suppose for example that you
have written an engine named GLIMEngine in the my. java.code package. The configura-
tion file should contain:

Languages = ... GLIM
GLIM.class = my.java.code.GLIMEngine
GLIM.binary = glim.bat %codename}, %outname}

That’s it. You may now include GLIM code in your documents.

19

7.3 Adding a new file format
A driver for a new file format may be added by
1. writing a Java class that implements rvl.swv.FileInterface
2. adding a name for this class to the FileInterfaces list in the configuration file

3. linking that name with the new class by adding a line to the configuration file of the
form finame.class = classname where finame is the name given to the file inter-
face and classname is a complete reference to the class, including the Java package.

4. adding a new entry of the form finame.sources = extl exzt2 ... for associating
filename extensions with this interface.

For examples, see the configuration for existing file formats described in Section 6.2.

7.4 Adding a new syntax for ETgX files

Since KIEX is a markup language, different users may prefer different types of markup
for code chunks and other tags. For that reason, the rvl.swv.LaTeXFile class requires an
additional class that implements the rvl.swv.SyntaxInterface interface. A new syn-
tax specification may be created by writing a new implementation of this class, and
editing the configuration file. Specifically, a name for this syntax should be added to
the LaTeXSyntaxInterfaces list; and we need new entries of the form syntaz.class =
classname and syntaz.sources = extl ext2 You may also want to extend or
modify the list in LaTeXFile.sources.

8 Acknowledgements

I'd like to thank Jason Thompson at Northwestern University for pushing me to incor-
porate Stata support for Windows; and Nick Horton at Smith College for a lot of help in
identifying and solving problems in the Stata setup for Linux and MacIntosh platforms.
Thanks to Smith College too, for providing (at Nick’s request) a guest account on their
system so I could do some testing.

20

