
Hierarchical-matrix Preconditioners for

Parabolic Optimal Control Problems

Suely Oliveira1 and Fang Yang1

The University of Iowa, Iowa City IA 52242, USA

Abstract. Hierarchical (H)-matrices approximate full or sparse matri-
ces using a hierarchical data sparse format. The corresponding H-matrix
arithmetic reduces the time complexity of the approximate H-matrix op-
erators to almost optimal while maintains certain accuracy. In this paper,
we represent a scheme to solve the saddle point system arising from the
control of parabolic partial differential equations by using H-matrix LU-
factors as preconditioners in iterative methods. The experiment shows
that the H-matrix preconditioners are effective and speed up the conver-
gence of iterative methods.

1 Introduction

Hierarchical-matrices (H-matrices) [9], since their introduction [1, 2, 7, 9], have
been applied to various problems, such as integral equations and partial differen-
tial equations. The idea of H-matrices is to partition a matrix into a hierarchy of
rectangular subblocks and approximate the subblocks by low rank matrices (Rk-
matrices). The H-matrix arithmetic [1, 7, 8] defines operators over the H-matrix
format. The fixed-rank H-matrix arithmetic keeps the rank of a Rk-matrix block
below a fixed value, whereas the adaptive-rank H-matrix arithmetic adjusts the
rank of a Rk-matrix block to maintain certain accuracy in approximation. The
operators defined in the H-matrix arithmetic include H-matrix addition, H-
matrix multiplication, H-matrix inversion, H-matrix LU factorization, etc. The
computation complexity of these operators are almost optimal O(n loga n).

The H-matrix construction for matrices from discretization of partial differ-
ential equations depends on the geometric information underlying the problem
[7]. The admission conditions, used to determine whether a subblock is approx-
imated by a Rk-matrix, are typically based on Euclidean distances between the
supports of the basis functions. For sparse matrices the algebraic approaches
[8, 11] can be used, which use matrix graphs to convert a sparse matrix to an
H-matrix by representing the off-diagonal zero blocks as Rk-matrices of rank 0.

Since the H-matrix arithmetic provides cheap operators, it can be used
with H-matrix construction approaches to construct preconditioners for iterative
methods, such as Generalized Minimal Residual Method (GMRES), to solve sys-
tems of linear equations arising from finite element or meshfree discretizations
of partial differential equations [3, 4, 5, 8, 11].

In this paper we consider the finite time linear-quadratic optimal control
problems governed by parabolic partial differential equations. To solve these

problems, in [12] the parabolic partial differential equations are discretized by
finite element methods in space and by θ-scheme in time; the cost function J
to be minimized is discretized using midpoint rule for the state variable and
using piecewise constant for the control variable in time; Lagrange multipliers
are used to enforce the constraints, which result a system of saddle point type;
then iterative methods with block preconditioners are used to solve the system.

We adapt the process in [12] and use H-matrix preconditioners in iterative
methods to solve the system. First we apply algebraic H-matrix construction
approaches to represent the system in the H-matrix format; then H-LU factor-
ization in the H-matrix arithmetic is adapted to the block structure of the saddle
point system to compute the approximate H-LU factors; at last, these factors
are used as preconditioner in iterative methods to compute the approximate so-
lutions. The numerical results show that the H-matrix preconditioned approach
is competitive and effective to solve the above optimal control problem.

This paper is organized as follows. In Sect. 2 we introduce the optimal control
model problem and the discretization process; Section 3 is an introduction to
H-matrices; in Sect. 4, we review the algebraic approaches to H-matrix construc-
tion; in Sect. 5 we present the scheme to build the H-matrix preconditioners;
finally in Sect. 6 we present the numerical results.

2 The Optimal Control Problem

The model problem [12] is to minimize the following quadratic cost function:

J(z(u), u) :=
q

2
‖z(v) − z∗‖

2
L2(t0,tf ;L2(Ω)) +

r

2
‖v‖2

L2(t0,tf ;Ω)

+
s

2
‖z(v)(tf , x) − z∗(tf , x)‖

2
L2(Ω)

(1)

under the constraint of the state equation:

∂tz + Az = Bv, t ∈ (t0, tf)
z(t, ∂Ω) = 0
z(t0, Ω) = 0

(2)

, where the state variable z ∈ Y = H1
0 (Ω) and the control variable v ∈ U =

L2(t0, tf ;Ω). B is an operator in L(L2(t0, tf ;Ω), L2(t0, tf ;Y ′)) and A is an uni-
formly elliptic linear operator from L2(t0, tf ;Y) to L2(t0, tf ;Y ′). The state vari-
able z is dependent on v. z∗ is a given target function.

2.1 Discretization in Space

The system is first discretized in space by fixing t. Considering the discrete
subspace Yh ∈ Y and Uh ∈ U , then the discretized weak form of (2) is given as:

(żh(t), ηh) + (Azh(t), ηh) = (Buh(t), ηh), ∀ηh ∈ Yh and t ∈ (t0, tf) . (3)

Let{φ1, φ2, .., φn} be a basis of Yh and {ψ1, ψ2, .., ψm} be a basis of Uh, where
m ≤ n. Apply the finite element methods to (3), we obtain the following system
of ordinary differential equations:

Mẏ +Ay = Bu, t ∈ (t0, tf) . (4)

Here Ai,j = (Aφj , φi) is a stiffness matrix, Mi,j = (φj , φi) and Ri,j = (ψj , ψi)
are mass matrices, and Bi,j = (Bψi, φj). The semi-discrete solution is zh(t, x) =
∑

i yi(t)φi(x) with control function uh(t, x) =
∑

i ui(t)ψi(x).
We can apply the analogous spatial discretization to the cost function (1),

and obtain:

J(y, u) =

∫ t0

tf

e(t)TQ(t)e(t) + u(t)TR(t)u(t) dt+ e(tf)TC(t)e(tf) (5)

, where e(·) = y(·) − y∗(·) is the difference between the state variable and the
given target function.

2.2 Discretization in Time

After spatial discretization, the original optimal problem is transferred into mini-
mizing (5) under the constraint of n ordinary differential equations (4). θ-scheme
is used to discretize the above problem.

First the time scale is subdivided into l intervals of length τ = (tf − t0)/l.
Let F0 = M + τ(1− θ)A and F1 = M − τθA. The discretization of equation (4)
is given by:

Ey +Nu = f (6)

, where

E =

−F1

. . .
. . .

F0 −F1

, N = τ

B
. . .

B

, y ≈

y(t1)
...

y(tn)

, etc . (7)

Then discretize the cost function (5) by using piecewise linear functions to ap-
proximate the state variable and piecewise constant functions to approximate
the control variable and obtain the following discrete form of (5):

J(y,u) = uTGu + eTKe (8)

, where e = y−y∗ and the target trajectory z∗(t, x) ≈ z∗,h(t, x) =
∑

i(y∗)i(t)φi(x).
A Lagrange multiplier vector p is introduced to enforce the constraint of (6), and
we have the Lagrangian

L(y,u,p) =
1

2
(uTGu + eTKe) + pT (Ey +Nu − f) . (9)

To find y, u and p where ∇L(y,u,p) = 0 in (9), we need to solve the following
system:

K 0 ET

0 G NT

E N 0

y

u

p

 =

My∗

0
f

 . (10)

3 Hierarchical-matrices

The concept and properties of H-matrices are induced by the index cluster tree
TI and the block cluster tree TI×I [9] . In the rest of this paper, #A denotes the
number of elements of set A and S(i) denotes the children of node i.

3.1 Index Cluster Tree and Block Cluster Tree

An index cluster tree TI defines a hierarchical partition tree over an index set
I = (0, . . . , n− 1). Note that (0, 1, 2) 6= (0, 2, 1).TI has the following properties:
its root is I ; any node i ∈ TI either is a leaf or has children S(i); the parent
node i =

⋃

j∈S(i) j and its children are pairwise disjoint.
A block cluster tree TI×I is a hierarchical partition tree over the product

index set I×I . Given tree TI and an admissibility condition (see below), TI×I can
be constructed as follows: its root is I×I ; if s×t in TI×I satisfies the admissibility
condition, it is an Rk-matrix leaf; else if #s < Ns or #t < Ns, it is a full-matrix
leaf; otherwise it is partitioned into subblocks on the next level and its children
(subblocks) are defined as S(s× t) = { i× j | i, j ∈ TI and i ∈ S(s), j ∈ S(t) }.
A constant Ns ∈ [10, 100] is used to control the size of the smallest blocks.

An admissibility condition is used to determine whether a block to be ap-
proximated by an Rk-matrix. An example of an admissibility condition is:

s× t is admissible if & only if : min(diam(s), diam(t)) ≤ µ dist(s, t) (11)

, where diam(s) denotes the Euclidean diameter of the support set s, and dist(s, t)
denotes the Euclidean distance of the support set s and t. The papers [1, 2, 7]
give further details on adapting the admissibility condition to the underlying
problem or the cluster tree.

Now we can define an H-matrix H induced by TI×I as follows: H shares the
same tree structure with TI×I ; the data are stored in the leaves; for each leaf
s × t ∈ TI×I , its corresponding block Hs×t is a Rk-matrix, or a full matrix if
#s < Ns or #t < Ns.

Fig. 1 shows an example of TI , TI×I and the corresponding H-matrix.

 {0 1}X{0 1} {0 1}X{2 3} {2 3}X{0 1} {2 3}X{2 3}

{0} {1} {2} {3}

 {0 1} {2 3}

{0}X{0} {0}X{1} {1}X{0} {1}X{1}

{0 1 2 3}X{0 1 2 3}{0 1 2 3}

(a) (b) (c)

RK RK

 0 1 2 3

0

1

2

3

Fig. 1. (a) is TI , (b) is TI×I and (c) is the corresponding H-matrix. The dark blocks
in (c) are Rk-matrix blocks and the white blocks are full matrix blocks.

An m × n matrix M is called an Rk-matrix if rank(M) ≤ k and it is rep-
resented in the form of a matrix product M = ABT , where M is m × n, A is

m× k and B is n× k. If M is not of rank k, then a rank k approximation can
be computed in O(k2(n + m) + k3) time by using a truncated Singular Value
Decomposition (SVD) [1, 7].

3.2 H-matrix Arithmetic

The following is a short summary of the H-matrix arithmetic. A detailed intro-
duction can be found in [1, 2].

H-matrix operations perform recursively; therefore it is important to define
the corresponding operations on the leaf subblocks, which are either full or Rk-
matrices. These operations are approximate as certain operations do not create
Rk-matrices (such as adding two Rk-matrices). In such case, a truncation is
performed using an SVD to compute a suitable Rk-matrix. For example, the
sum of two rank k matrices can be computed by means of a 2k × 2k SVD.

The computational complexity of the H-matrix arithmetic strongly depends
on the structure of TI×I . Under fairly general assumptions on the block cluster
tree TI×I the complexity of H-matrix operators is O(n logα n) [9, 7].

4 Algebraic Approaches for Hierarchical-matrix

Construction

Algebraic H-matrix construction approaches can be applied to sparse matrices.
These approaches take advantage that most entries of a sparse matrix are zeros.
They build H-matrix cluster tree by partitioning a matrix graph either bottom-
up or top-down. The multilevel clustering based algorithm [11] constructs the
cluster tree “bottom-up”, i.e., starts with the leaves and successively clusters
them together until the root is reached. Domain decomposition in [8] and bi-
section are “top-down” algebraic approaches, which start with the root and
successively subdivides a cluster into subsets.

4.1 Algebraic Approaches to Construct an Index Cluster Tree

In [11] we propose an H-matrix construction approach based on multilevel clus-
tering methods. To build clusters over the nodes in Gi = (V (Gi), E(Gi)), an
algorithm based on Heavy Edge Matching (HEM) [10] is used. After build-
ing the clusters, a coarse graph Gi+1 is constructed: such that for each clus-

ter C
(i)
k ⊂ V (Gi) there is a node k ∈ V (Gi+1); the edge weight wkt of edge

ekt ∈ E(Gi+1) is the sum of the weights of all the edges, which connect the nodes

in cluster C
(i)
k to the nodes in cluster C

(i)
t in graph Gi. Recursively applying the

above coarsening process gives a sequence of coarse graphs G1, G2, . . . , Gh. The
index cluster tree TI is constructed by making k ∈ V (Gi) the parent of every

s ∈ C
(i)
k . The root of TI is the set V (Gh), which is the parent to all nodes in Gh.

In [8], domain decomposition based clustering is used to build a cluster tree
TI . Starting from I , a cluster is divided into three sons, i.e. S(c) = {c1, c2, c3}

and c = c1 ∪ c2 ∪ c3, so that the domain-clusters c1 and c2 are disconnected
and the interface-cluster c3 is connected to both c1 and c2. Then the domain-
clusters are successively divided into three subsets, and the interface-clusters are
successively divided into two interface-clusters until the size of a cluster is small
enough.

To build a cluster tree TI based on bisection is straight forward. Starting
from a root set I and a set is successive partitioned into two subsets with equal
size. This construction approach is suitable for the sparse matrices where the
none zero entries are around the diagonal blocks.

4.2 Block Cluster Tree Construction for Algebraic Approaches

The admissibility condition used to build TI×I for the algebraic approaches is
defined as follows: a block s × t ∈ TI×I is admissible if and only if s and t are
not joined by an edge in the matrix graph; an admissible block corresponds to a
zero block and is represented as a Rk-matrix of rank zero; an inadmissible block
is partitioned further or represented by a full matrix.

5 Hierarchical-matrix Preconditioners

The construction of H-matrix preconditioners for a system of saddle point type
is based on the block LU factorization.

To obtain a relative cheap yet good approximate LU factors, we replace the
ordinary matrix operators by the corresponding H-matrix operators[3, 8, 11].

First the matrix in (10) is converted to an H-matrix. Since the nonzero
entries of each subblock are centered around the diagonal blocks, we apply the
bisection approach to the submatrixK, G, E andN respectively. Then we obtain
the following H-matrix, which is on the left side of the equation (H indicates a
block in the H-matrix format):

KH 0 ET
H

0 GH NT
H

EH NH 0

 =

L1H 0 0
0 L2H 0

M1H M2H L3H

U1H 0 M1T
H

0 U3H M2T
H

0 0 U3H

 . (12)

The block cluster tree TI×I of L1H, L2H, M1H, and M2H is same as the
block cluster tree structure of KH, GH, EH, and NH respectively. The block
cluster tree structure of L3H is based on the block tree structure of EH: the
block tree of L3H is symmetric; the tree structure of the lower-triangular of L3H

is same as the tree structure of the lower-triangular of EH; the tree structure of
the upper-triangular of L3H is the transpose of the tree structure of the lower
triangular. L1H and L2H are obtained by apply H-Cholesky factorization to
KH and GH: KH = L1H ∗H U1H and GH = L2H ∗H U2H. Then use the H-
matrix upper triangular solve, we can get M1H by solving M1HU1H = EH.
M1H have the same block tree as EH. In the same way we can compute M2H,
which has the same block cluster tree structure as NH. At last we construct
the block cluster tree for L3H and then apply H-LU factorization to get L3H:
L3HU3H = M1H ∗H M1T

H
+H M2H ∗H M2T

H
.

6 Experimental Results

In this section, we present the numerical results of solving the optimal control
problem (1) constrained by the following equation:

∂tz − ∂xxz = v, t ∈ (0, 1), x ∈ (0, 1)
z(t, 0) = 0, z(t, 1) = 0
z(0, x) = 0, x ∈ [0, 1]

(13)

with the target function z∗(t, x) = x(1 − x)e−x. The parameters in the control
function J are q = 1, r = 0.0001 and s = 0.

GMRES iteration stops where the original residuals are reduced by the factor
of 10−12. The convergence rate a ia defined as the average decreasing speed of
residuals in each iteration. The fixed-rank H-matrix arithmetic is used and we
set the rank of each Rk-matrix block to be ≤ 2. The tests are performed on a Dell
workstation with AMD64 X2 Dual Core Processors (2GHz) and 3GB memory.

Table 1 shows the time to compute the different parts of the H-LU factors
and the time of GMRES iterations (in seconds). n is the size of the problem, n1
and n2 is the number of rows of K and G respectively. Based on Table 1, the
time to compute L3H contributes the biggest part of the total time to set up the
preconditioner.

Table 1. Time for computing H-LU factors and GMRES iterations

n(n1/n2) L1H L2H M1H M2H L3H GMRES number
iteration time of GMRES iterations

592(240/112) 0 0 0.01 0 0.01 0 1

2464(992/480) 0.01 0 0.01 0 0.04 0 1

10048(4032/1984) 0.03 0.01 0.13 0.02 0.39 0.04 1

40576(16256/8064) 0.21 0.06 0.84 0.26 4.13 0.32 3

163072(65280/32512) 1.09 0.42 4.23 1.74 25.12 2.66 6

Fig. 2-(a) shows the convergence rate of the H-LU preconditioned GMRES
and Fig. 2-(b), plotted on a log-log scale, shows the time for building the pre-
conditioners and the time for the GMRES iterations.

Based the results, we can see that H-LU speeds up the convergence of GM-
RES iteration significantly. The problem in our implementation is that the time
to compute L3 still consists a significant part of the LU-factorization time. In
the future, more work needs to be done to reduce the complexity of computing
L3 further. More discussion about H-matrix preconditioners and applications
will come in [13].

103 104 105 10610−12

10−10

10−8

10−6

10−4

10−2
The convergence rates

Problem size

Co
nv

er
ge

nc
e

ra
te

102 103 104 105 10610−2

10−1

100

101

102

total time

setup time

gmres iteration time

Times for solving the system

Problem size

tim
e

(s
ec

.)

Fig. 2. (a) The convergence rates of GMRES. (b) Total times for solving the system

References

[1] S. Börm, L. Grasedyck, and W. Hackbusch. Introduction to hierarchical matrices
with applications. EABE, 27:403–564, 2003.

[2] S. Börm, L. Grasedyck, and W. Hackbush. Hierarchical matrices. 2005.
[3] S. Le Borne. Hierarchical matrix preconditioners for the Oseen equations. 2006.

to appear.
[4] S. Le Borne and L. Grasedyck. H preconditioners in convection-dominated prob-

lems. SIAM J. Matrix Anal. Appl., 27(4):1172–1183, 2006.
[5] Sabine Le Borne, Lars Grasedyck, and Ronald Kriemann. Domain-decomposition

based H-LU preconditioners. In Proceedings of the 16th International Conference
on Domain Decomposition Methods (New York, 2005), LNCSE. Springer, 2006.
To appear.

[6] G.A.Gravvanis. Explicit approximate inverse preconditioning techniques.
Archives of Computational Methods in Engeneering, 9(4), 2002.

[7] L. Grasedyck and W. Hackbusch. Construction and arithmetics of H-matrices.
Computing, 70(4):295–334, 2003.

[8] L. Grasedyck, R. Kriemann, and S. Le Borne. Parallel black box domain decom-
position based H-LU preconditioning. 2005.

[9] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. part i: Intro-
duction to H-matrices. Computing, 62:89–108, 1999.

[10] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1999.

[11] S. Oliveira and F. Yang. An algebraic approach for H-matrix preconditioners.
computing, submmitted, 2006.

[12] Christian E. Schaerer, Tarek Mathew, and Marcus Sarkis. Block iterative algo-
rithms for the solution of parabolic optimal control problems. vecpar, 2006.

[13] Fang Yang. H-matrix preconditioners and applications. PhD thesis, the University
of Iowa.

