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Abstract

In recent years, descriptive models of risky choice
have incorporated features that reflect the importance
of particular outcome values in choice. Cumulative
prospect theory (CPT) does this by inserting a
reference point in the utility function. SP/A
(security-potential/aspiration) theory uses aspiration
level as a second criterion in the choice process.
Experiment 1 compares the ability of the CPT and SP/A
models to account for the same within-subjects data
set and finds in favor of SP/A. Experiment 2
replicates the main finding of Experiment 1 in a
between-subjects design. The final discussion brackets
the SP/A result by showing the impact on fit of both
decreasing and increasing the number of free
parameters. We also suggest how the SP/A approach
might be useful in modeling investment decision making
in a descriptively more valid way and conclude with
comments on the relation between descriptive and
normative theories of risky choice.
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Formal models of decision making under risk can be
found in three disciplinary guises. Until quite
recently, almost all economists believed that decision
makers both should and do select risks that maximize
expected utility. In contrast, investment
professionals have seen investors as selecting
portfolios that achieve an optimal balance between
risk and return. Psychologists, too, have explored
expected utility theory and portfolio theory as
possible descriptive models, and they have also
developed original information processing models
focused on how people choose rather than what people
choose.

For the most part, these three disciplines have
been isolated from one another, although psychologists
have been more eclectic in their outlooks than others.
Recently, however, both psychologists and economists
have been exploring a nonlinear modification of the
expected utility model that we term the
“decumulatively weighted utility” model. At present,
this model has not affected practice in finance, but
we believe the model can also be applied at the level
of the individual investor.

In what follows, we first describe decumulatively
weighted utility generically and then present two
specific psychological instantiations of the model,
cumulative prospect theory, (Tversky & Kahneman,
1992), and SP/A theory (Lopes, 1987; 1990; 1995).
Second, we test the ability of these two theories to
account for the same set of data. Third, we suggest
how these results might apply in the investment
context. Finally, we comment on fitting and testing
complex, nonlinear models.

Decumulatively Weighted Utility
In a nutshell, the expected utility model asserts

that when people choose between alternative
probability distributions over outcomes (i.e.,
lotteries or gambles), they should (the economic
model) and do (the psychological model) make their
choices so as to maximize a probability weighted
(i.e., linear) average of the outcome utilities.
Although much evidence supports the idea that
averaging rules can model people’s choices and
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judgments reasonably well in a variety of tasks
(Anderson, 1981), the linearity assumption of expected
utility theory has not fared so well. Less than a
decade after the publication of von Neumann and
Morgenstern’s (1947) axiomatization of expected
utility theory, Allais (1952/1979) demonstrated that
linearity failed in qualitative tests comparing
choices in which “certainty” was an option to choices
in which it was not.

For almost three decades afterwards, economists
ignored these failures of linearity whereas
psychologists assumed that they represented subject
failures rather than model failures. In the 1980s,
however, some economists began to take the failures
seriously and to seek out variants of expected utility
that could better account for behavior. An obvious
candidate at the time was prospect theory (Kahneman &
Tversky, 1979), but this model violated stochastic
dominance, “an assumption that many theorists [were]
reluctant to give up” (Tversky & Kahneman, 1992, p.
299). Instead, these economists began to explore the
normatively more acceptable idea of decumulatively
weighted utility. The first economic applications were
proposed independently by Quiggen (1982) Allais
(1986), and Yaari (1987), followed quickly by many
others (Chew, Karni & Safra, 1987; Luce, 1988;
Schmeidler, 1989; Segal, 1989).

The best way to understand decumulative weighted
utility is to start with the structure of the expected
value model:

   EV = pi viΣ
i = 1

n
, Eq. 1

in which the v i  are the n possible outcomes listed in
no particular order and the pi  are the outcomes’
associated probabilities. Expected utility theory
simply substitutes utility, u(v) , for monetary
outcomes:

   EU = pi u viΣ
i = 1

n
. Eq. 2

Weighted utility models (e.g., prospect theory)
substitute decision weights, w(p)  for probabilities,

   WU = w pi u viΣ
i = 1

n
, Eq. 3

but this is the move that leads to violations of
stochastic dominance.
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Decumulative weighted utility models recast the
issue of transforming raw probabilities to one of
transforming decumulative probabilities:

    
DWU = h pjΣ

j = i

n
u vi – u vi – 1Σ

i = 1

n
Eq. 4

        = h(Di) u(vi) – u(vi – 1)Σ
i = 1

n
.

In such models, the v i  are ordered from lowest (worst

outcome) to highest (best outcome). Di  =    pjΣ
j = i

n
 is the

decumulative probability associated with outcome v i ;
that is, Di  is the probability of obtaining an outcome
at least as high as outcome v i . Thus, D1 (the
decumulative probability of the worst outcome, v 1) is 1
(you get at least that for sure) and Dn+1  (the
decumulative probability of exceeding the best outcome,
v n) is zero. 

The function, h, maps decumulative probabilities
onto the range (0,1) and so preserves dominance. It
can also provide an alternative to using curvature in
the utility function to model risk attitudes. For
example, in expected utility theory, if u(v)  is a
concave function of v , decision makers will prefer
sure things to actuarially equivalent lotteries, a
pattern termed “risk aversion.” Decumulative weighting
can predict the same pattern even while assuming that
u(v)  = v  (a variant of decumulatively weighted
utility that we call decumulative weighted value) by
letting h(D)  be a convex function of D. Although the
predicted behavior is the same, we call it “security-
mindedness” in order to distinguish between utility-
based and probability-based mechanisms.

The other major risk attitudes also have analogues
in the decumulative weighted value (or utility) model.
These are given in Table 1. Both models can
accommodate risk neutrality (expected value maximizing
behavior) and both can accommodate the rejection of
sure things in favor of actuarially equivalent
lotteries (termed “risk seeking” in expected utility
theory and “potential-mindedness” by us). Both models
can also predict the “cautiously hopeful” (our term)
pattern first described by Markowitz (1959) in which
subjects buy both insurance and lottery tickets,
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thereby paying premiums sometimes to gamble and other
times to avoid gambling.

- - - - - - - - - - - - - -
Insert Table 1 about here
- - - - - - - - - - - - - -

Cumulative Prospect Theory
In cumulative prospect theory (CPT), Tversky and

Kahneman (1992) reformulated the original prospect
theory in terms of (de)cumulative weighted utility.
The utility function, u(v) , was unchanged from the
original, being concave (risk averse) for gains and
convex (risk seeking) for losses, with the loss
function assumed to be steeper than the gain function
( λ  > 1):

    

u(v) = {vα if v ≥ 0

– λ( – v)β if v < 0 . Eq. 5

The decumulative weighting function was also taken
to differ for gains and losses. For gains, the
hypothesized function has an inverse S-shape that
reinforces risk aversion for most lottery types but
tends toward risk seeking for long shots (lotteries
that have small probabilities of large prizes):

    
w+(D) = Dγ

Dγ + (1 – D)γ 1 γ1 γ
. Eq. 6

For losses, the weighting function is cumulative
rather than decumulative and S-shaped rather than
inverse S-shaped. It reinforces risk seeking for most
lotteries but tends toward risk aversion for long
shots (lotteries that have small probabilities of very
large losses):

    
w–(P) = Pδ

Pδ + (1 – P)δ
1 δ1 δ

. Eq. 7

Thus, the utility functions and (de)cumulative
weighting functions of CPT are largely (but not
perfectly) mirror-imaged from gains to losses,
producing what Tversky and Kahneman (1992) term “a
four-fold pattern” in the predicted pattern of lottery
preferences.
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There are two general features of CPT that should
also be noted here. The first is that CPT is based on
a psychophysical principle of diminishing sensitivity
from a reference point. In the case of utility, the
reference point is usually assumed to be zero (the
status quo). In the case of (de)cumulative weights,
there are reference points at 0 and at 1. In both
cases, the rate of change in the perceived magnitude
(of value or of likelihood) is assumed to be greatest
near the reference point and to diminish as one moves
away.

The second feature of CPT is that it, like all its
predecessors in the weighted value family, is a one-
criterion model. Although there is much room in the
model for psychological variables to operate, in the
end, all these factors are melded into a single
assessment of lottery attractiveness. 

SP/A Theory
SP/A theory (Lopes, 1987; 1990; 1995) is a dual

criterion model in which the process of choosing
between lotteries entails integrating two logically
and psychologically separate criteria: 

SP/A = f[SP, A], Eq. 8
where SP stands for a security-potential criterion and
A for an aspiration criterion.

The SP (security-potential) criterion is modeled by
a decumulatively weighted value rule (i.e., the model
is identical to Equation 4 except that the utility
function is assumed to be linear 1) :

   SP = h(Di) vi – vi – 1Σ
i = 1

n
. Eq. 9

The decumulative weighting function, h(D) , has the
form:

  
h(D) = wDqS + 1 + 1 – w 1 – 1 – D

qP + 1
Eq. 10

for both gains and losses. The equation is derived from
the idea that subjects assess lotteries from the bottom
up (a security-minded analysis), or the top down (a
potential-minded analysis), or both (a cautiously
hopeful analysis) 2. The parameters qs  and qp represent
the rates at which attention to outcomes diminishes as
the evaluation process proceeds up or down. The
parameter, w, determines the relative weight of the S
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and P analyses. If w = 1, the decision maker is
strictly security-minded. If w = 0, the decision maker
is strictly potential-minded. If 0< w<1, the decision
maker is cautiously hopeful, with the degrees of caution
and of hope depending on the relative magnitudes of w
and 1– w. Although Equation 10 omits subscripts on
parameters for notational simplicity, SP/A theory
follows CPT in allowing qs , q p, and  w  to assume
different values for gains and for losses, moderating
the relative importance of security and potential in the
overall SP assessment. Unlike CPT, however, the
decumulative weighting function of SP/A theory does not
switch between inverse S-shaped for gains and S-shaped
for losses.

The A (aspiration) criterion operates on a principle
of stochastic control (Dubins & Savage, 1976) in which
subjects are assumed to assess the attractiveness of
lotteries by the probability that a given lottery will
yield an outcome at or above the aspiration level, α :

A  =  p(v > α) Eq. 11
For present purposes, we treat the aspiration level as
crisp, which is to say, a discrete value that either
is or is not satisfied. In principle, however, the
aspiration level may be fuzzy: some outcomes may
satisfy the aspiration level completely, others to a
partial degree, and still others not at all. To model
this, Equation 11 would need to incorporate a
particular probability, pi , according to the degree
that its associated outcome, v i , satisfies the
aspiration level (Oden & Lopes, 1997).

SP/A theory and CPT share some significant
psychological features: they both model the process by
which subjects integrate probabilities and values by a
(de)cumulative weighting rule, and they both include a
point on the value dimension that has special
significance to subjects (the reference point for CPT
and the aspiration level for SP/A). Indeed, the
aspiration level may be considered to be a kind of
reference point. However, the theories differ three ways
in how these features function. 

The first difference is in how the reference point
(or aspiration level) exerts its impact. In CPT, the
reference point is incorporated into the utility
function and influences subjects by marking an
inflection point about which outcomes are first
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organized into gains and losses, and then scaled
nonlinearly in accord with a principle of diminishing
sensitivity. In SP/A theory, the aspiration level
participates in a direct assessment of lottery
attractiveness reflecting a principle of stochastic
control and separate from the decumulatively weighted SP
assessment. Because SP and A embody different criteria,
each may favor a different lottery. When this happens,
SP/A theory predicts conflict, a prediction that does
not follow from single-criterion models such as CPT.

The second difference is that CPT predicts a four-
fold pattern across gain preferences and loss
preferences. Although some small imperfections in the
symmetry of the pattern might obtain due to small
differences in the value and weighting functions for
gains and losses, the overall pattern should be one of
reflection between gains and losses. SP/A theory, in
contrast, allows considerable asymmetry between gains
and losses. In the most commonly observed case, subjects
appear to avoid risks strongly for gains but to be
more-or-less risk neutral for losses (Cohen, Jaffray, &
Said, 1987; Hershey & Schoemaker, 1980; Schneider &
Lopes, 1986; Weber & Bottom, 1989). Protocols suggest
that this is because security-minded or cautiously
hopeful subjects set modest aspiration levels for gains,
allowing the SP and A criteria to reinforce one another.
For losses, however, the same subjects set high
aspiration levels, hoping to lose little or nothing, and
thereby setting up a conflict between the A and the SP
criteria (Lopes, 1995). 

The third difference is that SP/A theory predicts
nonmonotonicities in preference patterns that depend on
whether or not the aspiration level is guaranteed to be
met (by boosting all outcomes above the aspiration
level) or guaranteed not to be met (by pushing all
outcomes below the aspiration level) no matter which
lottery of a pair is chosen. For example, consider a
cautiously hopeful decision maker choosing between $50
for sure versus a 50/50 chance of $100, else nothing.
Suppose also that the decision maker wants to win “at
least something.” Although the SP assessment could favor
the long shot mildly, the A assessment would favor the
sure thing strongly, leading to a choice of the sure
thing. If $50 were added to all outcomes, however,
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(e.g., $100 for sure versus a 50/50 chance at $150, else
$50) the A assessment would “drop out” (since both
options satisfy the aspiration level with certainty)
leaving the SP assessment to carry the day. CPT, in
contrast, is qualitatively unaffected by cases in which
outcomes are all pushed upward or downward so long as no
outcomes cross the reference point. The experiments that
follow use this third difference to distinguish between
the two theories and test their abilities to account for
subjects’ choices among a set of multioutcome lotteries.

Experiment 1
Method

Stimuli and task.  Subjects chose between
actuarially equivalent pairs of five-outcome lotteries
comprising three positive (gain) sets and three
negative (loss) sets. The standard positive lotteries
are shown in Figure 1. The tally marks represent
lottery tickets yielding the outcomes shown at the
left. Each of these lotteries has 100 tickets and each
has an expected value of approximately $100. The names
indicated for the lotteries are for exposition only
and were not used with subjects.

- - - - - - - - - - - - - -
Insert Figure 1 about here
- - - - - - - - - - - - - -

Scaled positive  and shifted positive  lotteries
were created by transforming the outcomes in the
standard positive lotteries linearly. (Examples are
shown in Figure 2.) To create the shifted lotteries,
standard positive outcomes were increased by $50
(bringing the expected value of the shifted positive
lotteries to $150). To create the scaled positive
lotteries, standard positive outcomes were multiplied
by 1.145 (bringing the expected value of the scaled
lotteries to $114.50). The multiplicative constant was
chosen to equate the maximum outcomes ($398) in the
scaled and shifted sets.

- - - - - - - - - - - - - -
Insert Figure 2 about here
- - - - - - - - - - - - - -

Standard negative, scaled negative and shifted
negative lotteries were created by appending a minus
sign to the outcomes in the respective positive sets.

Design and subjects .  Lotteries within stimulus set
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were paired in all possible combinations ( 6C2 = 15
pairs per set) and pairs were arrayed vertically on
sheets of US letter paper. Two replications were
created for each set differing in the order of the
lotteries on the page. 

Pairs from the positive sets were randomized
together (within replication) with the constraint that
no particular lottery appeared on adjacent pages.
Pairs from the negative sets were randomized
similarly. Each replication consisted of 45 pairs (3
sets x 15 pairs per set).

The subjects for this experiment were 80
undergraduate students at the University of Wisconsin
who served for extra credit in introductory psychology
courses.

Procedure. Subjects were run in groups of two to
four. Each subject was given a notebook containing
practice materials and the randomized stimulus pairs.
At the beginning of the experiment, subjects were
shown how to interpret the positive lotteries and were
told that the amount of prize money for each of the
lotteries in a pair was the same. Then they were told
that we were interested in their preferences for
distributions (i.e., how the prizes are distributed
over tickets) and were given three positive pairs for
practice. Subjects were asked to indicate whether they
would prefer the top lottery or the bottom lottery if
they were allowed to draw a ticket from either for
free and keep the prize.

Next, subjects were shown exemplars of negative
lotteries and were told that these represented losses.
They were then asked to indicate for a set of three
more practice pairs which of each pair they would
prefer if they were forced to draw a ticket from one
or the other and pay the loss out of their own
pockets.

Stimulus notebooks were divided into five sections,
the first containing the practice pairs and the
remaining four containing the four sets of stimulus
pairs (two positive replications and two negative
replications). Positive and negative replications were
alternated with half of the subjects beginning with a
positive replication and the other half beginning with
a negative replication. Each set was preceded by a
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colored sheet announcing that “The next set of
lotteries are all win [or loss] lotteries”. Subjects
went through the notebooks at their own pace,
indicating preferences for the top or bottom lottery
by circling “T” or “B” on a separate answer sheet. The
task took about an hour for most subjects. All choices
were hypothetical.

Results and Discussion
The data from Experiment 1 are shown in Figure 3

for gains (left panel) and for losses (right panel).
Lotteries are listed along the abscissas in the order
of subject preferences for the standard lotteries. The
data have been pooled over subjects, replications, and
stimulus pair. Each data point represents the
proportion of times the average subject chose the
lottery out of the total number of times that the
lottery was available for choice. Each lottery was
presented 10 times (5 pairs x 2 replications) so that
the maximum number of choices per subject for a given
lottery was 10 and the minimum was zero.

- - - - - - - - - - - - - -
Insert Figure 3 about here
- - - - - - - - - - - - - -

The data reveal four patterns that are of special
significance. (1) For both gains and losses, there are
obvious main effects for lotteries [F(5,395) = 93.08
and 25.00, respectively, p < .0001 for both] as well
as interactions between lottery and condition
[F(10,790) = 48.99 and 8.09, respectively, p < .0001
for both]; (2) For both gains and losses, the data for
standard and scaled stimuli are virtually identical
[F(5,395) = 1.925, p = .09 and F(5,395) = 0.602, p =
.69, respectively]; (3) The slopes of the preference
functions for the standard and scaled stimuli are
steeper for gains than for losses; and (4) the
preference functions for the shifted stimuli are non-
monotonically related to the preference functions for
standard and scaled stimuli, especially for gains, and
the pattern of non-monotonicity reverses between gains
and losses. Preference for lower risk lotteries
decreases for gains and increases for losses whereas
preference for higher risk lotteries increases for
gains and decreases for losses. As will be seen, these
differences between preference functions for shifted
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lotteries and preference functions for standard and
scaled lotteries are critical to disentangling the
roles of decumulative (or cumulative) weighting and
aspiration level in risky choice.

In what follows, we use the Solver function of
Microsoft Excel) to fit both CPT (Tversky & Kahneman,
1992) and SP/A theory (Lopes, 1990; Oden & Lopes,
1997) to the data. Solver is an iterative curve
fitting procedure that adjusts free parameters to
optimize the fit of a model to a data set according to
whatever criterion the user specifies. We used root-
mean-squared-deviation (RMSD) between predicted and
obtained. In order to lessen the possibility of
finding only a local minimum, good practice requires
starting with one’s best guesses of parameter values
and then, once a minimum is found, checking the fit by
systematically altering parameter values and rerunning
the program to make sure that a better fit cannot be
found. The values we report are the best that we could
find.

For both CPT and SP/A, we fit the models to the
aggregate choice proportions (given in Table 2) for
the two-alternative choice task that subjects
performed and then pooled the predictions across
choice pairs to obtain means (as are shown for the
obtained data in Figure 3). Although we had too few
replications to fit single subject data, visual
inspection of single subject means revealed that the
patterns of primary interest were evident at the
single subject level, being especially clear for
strongly security-minded subjects and somewhat
attenuated for subjects whose preferences tended
toward cautious hopefulness or potential-mindedness.

- - - - - - - - - - - - - -
Insert Table 2 about here
- - - - - - - - - - - - - -

Fitting CPT. As noted previously, CPT is a one-
criterion model in which both values and probabilities
are transformed psychologically during the lottery
evaluation process. The utility function (Equation 5)
has three parameters: α  defines the curvature of the
function for gains (or values above the reference
point); β defines the curvature of the function for
losses (or values below the reference point); and λ
defines the relative slope of the two functions, with
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the loss function specified to be steeper than the
gain function ( λ  > 1).

Weights in CPT also are defined separately for
gains and for losses, as shown in Equations 6 and 7.
For gains, the function is decumulative with a
parameter, γ, regulating both the curvature and
crossover point of the inverse S-shaped weighting
function. For losses, the function is cumulative with
an analogous parameter, δ, regulating curvature and
crossover points.

CPT was fit simultaneously to the data for the
three scaling conditions (standard, scaled, and
shifted) and for both outcome types (gains and
losses), estimating a single set of six parameter
values. The fitting process can best be understood by
reference to Table 3. Matrix A shows the pair choice
data for the scaled positive pairs. Each entry is the
proportion of times that subjects preferred the column
lottery to the row lottery. Lotteries are ordered
across the columns in descending order of preference
and down the rows in ascending order of preference.
Complementary pairs of entries sum to 1.00, e.g.,
entries (1,1) and (6,6) in which riskless (RL) and
long shot (LS) lotteries are opposed. The value .500
is entered in the minor diagonal where opposing
lotteries are identical. These pairs were not included
in the stimulus set for obvious reasons.

- - - - - - - - - - - - - -
Insert Table 3 about here
- - - - - - - - - - - - - -

Matrix B gives the best fitting predictions of CPT
for scaled positive pairs obtained iteratively by
minimizing the root mean square deviation between
obtained and predicted choice proportions. The utility
and weighting functions of CPT were fit using the five
value and weight parameters described above to
estimate CPT attractiveness 3 values for the six
various lotteries. These values are shown as the
column and row headings in Matrix B.

The second and final step was to use the CPT
attractiveness values as input to a pair-choice
process that we modeled using the logistic function of
CPT difference scores shown below 4:
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  p(CPT 1 > 2) = 1
1 + e– k (CPT 1 – CPT 2 )

Eq. 12

The function predicts the proportion of times that
lottery 1 is preferred to lottery 2 based on the two
individual attractiveness values. The function has a
single parameter, k , that is inversely related to the
variance of the distribution of difference scores,
CPT1 - CPT 2. Although it might seem reasonable to
allow CPT to fit separate k  parameters for gains and
for losses, the second k  would be redundant with λ and
would, in the present case, allow λ  to fall below 1
(see Footnote 5.)

Figure 4 shows the best-fitting predictions of CPT
to the data for gains (left panel) and for losses
(right panel). Parameter values are in Table 2.
Although the RMSD of .0810 is respectable for fitting
90 data points with six parameters, a comparison of
predictions and data (Figure 3) reveals a qualitative
discrepancy for the shifted gain lotteries. Although
CPT is able to capture the general flattening of this
preference function relative to the standard and
scaled functions, all but the prediction for the long
shot are monotonically decreasing. In contrast,
subjects’ preferences for the shifted rectangular,
bimodal, and long shot lotteries were all greater than
for the shifted short shot. Moreover, the
nonmonotonicity that is induced for the shifted long
shot comes at the expense of incorrectly predicting
nonmonotonicity for the standard and scaled long shots
as well.

- - - - - - - - - - - - - -
Insert Figure 4 about here
- - - - - - - - - - - - - -

A second issue concerns the CPT parameter values
(see Table 3). Beginning with the parameters for the
utility functions, note that although the function for
gains is sharply curved ( α  = .426), the function for
losses is close to linear ( β = .942). Second, looking
at the probability weights, note that the function for
gains shows considerable nonlinearity ( γ = .685)
whereas the function for losses is again essentially
linear ( δ = .980). Finally, looking at λ , the
parameter that determines the relative slopes of the
utility functions for gains and losses, note that it
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has reached its floor value of 1.00 5. Although the
values of these parameters are consistent with the
observed fact that the loss data are essentially
linear and relatively shallow in slope, there is
nothing in CPT that would lead one to expect this
large asymmetry between gains and losses. Indeed, CPT
is well-known for its prediction of reflection in
preferences between gains and losses (i.e., the four-
fold pattern).

- - - - - - - - - - - - - -
Insert Table 3 about here
- - - - - - - - - - - - - -

In all, then, CPT does reasonably well in fitting
the data if one considers only RMSD. When one looks at
qualitative effects, however, CPT fails with the
shifted gains. Moreover, in order to get a reasonable
fit, CPT must make use of parameter values that are
inconsistent with the underlying psychophysical
principle (diminishing sensitivity from a reference
point) on which both utility and weighting functions
are theorized to depend.

Fitting SP/A theory. As explained previously, SP/A
theory proposes that risky choice involves two
criteria, one based on a comparison of decumulatively
weighted averages of probabilities and outcomes (the
SP criterion) and the other based on a comparison of
probabilities of achieving an aspiration level (the A
criterion). The SP assessment process (Equation 4) has
three parameters: q defines the degree of attention
to different outcomes in assessments of security
( qs )and potential ( qp), whereas w defines the
relative importance of security and potential
assessments overall. In principle, all three
parameters might differ between gains and losses. The
A assessment process (Equation 5) has a single
parameter, α , the aspiration level, which can also
differ for gains ( α+) and losses ( α - ). Although α
might need to be fit as a free parameter in some cases
(e.g., with continuous outcome distributions or with
manipulated aspiration levels), our stimuli and choice
conditions justified fixing α+ at 1 and α -  at zero 6.

- - - - - - - - - - - - - -
Insert Table 5 about here
- - - - - - - - - - - - - -
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In fitting SP/A theory to the data, we modeled the
SP criterion and the A criterion separately (but not
sequentially) and integrated the results into a final
choice. The procedure is schematized in Table 5.
Matrix A gives the scaled positive data and Matrix B
gives the best-fitting predictions based on just the
SP criterion. The column and row headings are
estimated SP attractiveness values. We let w differ
between gains ( w+) and losses ( w- ) but, in order to
hold our parameters to six, set qs  = qp = q and used

the same single value for both gains and losses . The
entries in the cells are choice proportions, p(SP 1>2),
obtained by applying the logistic function to
difference scores just as we did in fitting CPT:

  p(SP 1 > 2) = 1
1 + e–k(SP1 – SP2)

. Eq. 13

The parameter, k , is inversely related to the
variance of the distribution of difference scores, SP 1
- SP 2

Matrix C shows best-fitting predictions based on
just the A criterion. The row and column headings show
the probability that the row (or column) lottery will
yield a value that meets the aspiration level (e.g.,
the riskless gain lottery, column 1, guarantees a
nonzero payoff whereas the peaked gain lottery, column
2, has only a .96 probability of a nonzero payoff).
The table entries are choice proportions, p(A 1>2) ,

obtained by submitting the A values to a relative
ratio process having a parameter, t , 0 < t  that
controls contrast. Equation 14 shows the process for
gains:

  
p(A 1 > 2) =

A1
t+

A1
t+ + A2

t+

 
. Eq. 14

The equation for losses looks a little different but has
the same structure:

  
p(A 1 > 2) = 1 –

1 – A1
t–

1 – A1
t–

+ 1 – A2
t– Eq. 15

16



               
  

=
1 – A2

t–

1 – A1
t–

+ 1 – A2
t–  .

The difference between gains and losses reflects the
fact that gains engender an approach/approach process
based on relative lottery goodness, A, whereas losses
engender an avoidance/avoidance process based on
relative lottery badness, 1-A . In other words, the
probability of choosing Lottery 1 over Lottery 2 for
gains reflects the degree to which Lottery 1 is better
than Lottery 2, whereas the probability of choosing
Lottery 1 over Lottery 2 for losses reflects the
degree to which Lottery 2 is worse than Lottery 1.

Matrix D combines the p(SP 1>2)  values and the

p(A 1>2)  values according to:
  p SP/A1 > 2 = Eq. 16

  
p(SP1 > 2)p(A1 > 2)

1/2

p(SP1 > 2)p(A1 > 2)
1/2

+ 1 – p(SP1 > 2) 1 – p(A1 > 2)
1/2  .

This rule (which is useful for cases in which both the
domain and the range of the function are 0 to 1)
displays both averaging properties [p(SP/A 1>2)  lies

between p(SP 1>2) and p(A 1>2) ] and Bayesian properties

(the impact of an input value depends on its
extremity). The exponent, 1/2, sets the weight of the
two input quantities to be equal. Although one might
imagine that this could be a free parameter in the
model, our experience suggests that it shares variance
with the SP and A parameters, muddying the fitting
process when it is included.

Figure 5 shows the best fitting predictions of SP/A
theory to the data for gains (left panel) and for
losses (right panel). The RMSD of predicted to
obtained is .0681. (relative to .0810 for CPT). As can
be seen by inspection of the figures, SP/A has also
done a better job of capturing the qualitative
features of the data. In particular, SP/A predicts the
nonmonotonic increases in preference for the shifted
rectangular, bimodal, and long shot gain lotteries.

17



- - - - - - - - - - - - - -
Insert Figure 5 about here
- - - - - - - - - - - - - -

The parameter values for the SP/A model are in
Table 6. Although the values are generally reasonable,
the values for the SP component are not far from an
expected value fit ( w = .50, qs  = qp = 1). We

believe this reflects the simplifying constraints that
we imposed on the parameters of the SP criterion. We
shall have more to say about the matter in the final
discussion. 

- - - - - - - - - - - - - -
Insert Table 6 about here
- - - - - - - - - - - - - -

Experiment 2
It is sometimes thought that the opportunities for

comparison offered by repeated measures designs create
choice patterns that might not occur if subjects made
only a single choice. The purpose of Experiment 2 was
to replicate the main finding of Experiment 1 (i.e.,
that shifted lotteries are evaluated differently than
standard or scaled lotteries) using a between subjects
design. We also wanted to collect subjects’ reasons
for their choices. Because between-subject experiments
are costly in terms of the required number of
subjects, we used only positive lotteries.
Method

The stimuli were the 45 pairs comprising the
standard, scaled, and shifted positive sets. Each pair
was printed separately on a single sheet of US letter
paper. Sheets were randomized and distributed at the
beginning of experimental sessions to subjects who
were participating in other related experiments. In a
given session, different subjects had different pairs.
Consequently, it was necessary to describe how to
interpret the lotteries in very general terms, never
mentioning particular outcomes or numbers of tickets.

As in Experiment 1, subjects were asked to mark
which of the two lotteries they would prefer if they
were allowed to draw a ticket from either for free and
keep the prize for themselves. They were also asked to
write a sentence or two explaining the basis for their
preference.
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A total of 433 subjects from the University of
Wisconsin—Madison and the University of Iowa
participated in the experiment for extra course
credit. Six of these subjects indicated by their
written responses that they had not understood how to
interpret the lotteries, leaving 427 usable responses
ranging over the 45 choice pairs.

Results and Discussion
The data from Experiment 2 are shown in Figure 6.

Clearly, the means are noisier than the means from
Experiment 1, a result one might anticipate not only
from the different subjects contributing to each data
point, but also from the reduced amount of data going
into each data point (400 choices per data point in
the within-subject case versus about 24 choices per
data point in the between subject case). Despite the
noise, however, a chi square analysis shows that the
key differences between the three scaling conditions
were replicated. Specifically, (1) the patterns of
preferences for standard stimuli and scaled stimuli do
not differ significantly from one another, χ2(1) =
1.65, p > .05; whereas (2) the pattern of preferences
for shifted stimuli differs significantly from the
overall pattern of preference for standard and scaled
stimuli, χ2(1) = 25.13, p < .001.

- - - - - - - - - - - - - -
Insert Figure 6 about here
- - - - - - - - - - - - - -

Table 7 illustrates the reasons that subjects gave
for their choices, taking the long shot (LS) and short
shot (SS) lotteries as examples. (These are the
lotteries that are shown in Figure 2.) Protocols for
the scaled condition are on the left and for the
shifted condition are on the right. In each set, the
first four subjects (plain text) chose with the
majority whereas the last two subjects (italic) chose
with the minority.

- - - - - - - - - - - - - -
Insert Table 7 about here
- - - - - - - - - - - - - - 

In the scaled condition, the majority of subjects
(5 of 8) preferred the short shot to the long shot.
Protocols 1 through 4 show clearly that such subjects
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are concerned with achieving a nonzero outcome. In
terms of SP/A theory, the A criterion seems to be
outweighing the SP criterion. Neither of the remaining
two subjects seems particularly concerned with
avoiding zero (the A criterion). Consequently, the
extra high outcomes in the long shot have more impact
(the SP criterion).

In the shifted condition, the majority of subjects
(7 of 10) preferred the long shot to the short shot.
In particular, protocols 7, 8, and 10 convey the sense
that the $50 guaranteed outcome is good enough (the A
criterion is fully satisfied for both lotteries)
allowing the subjects to choose the slightly riskier
long shot (the SP criterion). In contrast, protocol 11
suggests that the subject has adjusted his or her
aspiration level upward, so that $50 is now equivalent
to “not winning” (the A criterion) whereas protocol 12
reveals a subject who focused on the relative
magnitudes of high and low outcomes, but placed more
weight on the low outcomes (the SP criterion).

In sum, then, Experiment 2 confirms that preference
patterns differ for shifted lotteries and for standard
or scaled lotteries even when the data are gathered in
a between-subjects design. Moreover, the protocols
show, as SP/A theory predicts, that this result
reflects differences in the relative impacts of SP and
A criteria under the shifted and scaled or standard
conditions. In the shifted condition, all lotteries
satisfy the A criterion for gains and none satisfy it
for losses, allowing the SP criterion to manifest
itself more strongly in either case. In the scaled and
standard conditions, however, there are large
differences in the degree to which the A criterion is
satisfied, reducing the importance of the SP criterion
overall.

Discussion
The model comparison in Experiment 1 showed that, on

six parameters, SP/A does a better job than CPT of
fitting the present set of choice data. Not only is
the RMSD for SP/A 16% smaller, the model also captures
(as CPT does not) the nonmonotonic relation between
preferences for shifted lotteries and preferences for
standard and scaled lotteries. Experiment 2 reinforced
this finding by replicating the critical
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nonmonotonicity for gain lotteries in a between
subjects design. It also provided protocols confirming
that the nonmonotonicity may arise because adding $50
to standard positive lotteries eliminates aspiration
level as a consideration for most subjects, thus
enhancing the impact of the decumulatively weighted SP
criterion. In what follows, we discuss the
implications of this result for modeling investment
risk. We also provide comments on fitting complex
models along with two instructive comparisons to the
six-parameter SP/A model. We end with a discussion of
the relation between descriptive and normative
theories.

Risk Taking and Aspiration Level 
It has often been pointed out that when people are

in economic difficulty, they tend to take risks that
they would avoid under better circumstances. This
tendency appears among sophisticated managers in
troubled firms (Bowman, 1980; 1982) as well as among
unsophisticated subsistence farmers (Kunreuther &
Wright, 1979). Experimental studies using managers as
subjects have also confirmed the tendency toward
risk-taking for losses, at least when ruin is not at
issue (Laughhunn, Payne & Crum, 1980; Payne, Laughhunn
& Crum, 1981). Standard thinking in investment theory
would not lead one to expect risk taking in
threatening situations. Instead, hard-pressed decision
makers should value low risk over high expected return
and choose accordingly.

The S-shaped utility function of prospect theory
seems to provide an explanation for this paradoxical
risk-taking: people take risks when they face losses
because their utility function for losses is “risk
seeking” (i.e., convex). Though one can criticize the
circularity of the “explanation,” it at least predicts
preferences better than the more standard assumption
of uniform “risk aversion” (i.e., diminishing marginal
utility). But predicting preferences is only half the
story, especially when predictions fail, as they often
do in experimental studies of preferences for losses
with students (Cohen, Jaffray & Said, 1987; Hershey &
Schoemaker, 1980; Schneider & Lopes, 1986; Weber &
Bottom, 1989) as well as with managers (MacCrimmon &
Wehrung, 1986). The other half of the story can be
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found in protocol data. Studies by Mao (1970)  and by
Petty and Scott (cited in Payne, Laughhunn & Crum,
1980) suggest that managers tend to define investment
risk as the probability of not achieving a target rate
of return (that is to say, an aspiration level).

No one can doubt that expected return (i.e.,
expected or mean value) is a central and well-
understood concept for managers, but the concept of
risk is less well understood. In portfolio theory, for
example, risk is usually equated with outcome variance
(Markowitz, 1959) but this is not entirely
satisfactory descriptively since it treats wins and
losses alike. Other approaches to defining risk try to
bypass this objection by restricting the variance
computation to losses (i.e., the semivariance) or by
computing risk as a probability weighted average of
deviations below a target level (Fishburn, 1977). Few,
however, have explored the possibility of modeling
risk as the raw probability of not achieving an
aspiration level. One who has is Manski (1988) who
developed the idea in what he called a utility mass
model. Another approach that incorporates raw
probabilities comes from Weber (1988) who augmented an
expectation model with weighted probabilities of
winning, losing, and breaking even. 

SP/A theory incorporates both notions, each in a
separate criterion. On the SP side, a security-minded
weighting function (or a cautiously hopeful function
displaying more caution than hope) pays more attention
to the worst outcomes than to better outcomes. On the
A side, the model operates on the probability of
achieving the aspiration level. Although normative
models usually focus on a single criterion,
descriptive models must go where subjects lead. In the
case at hand, the subjects seem to be saying that they
understand and use the term “risk” in both
distributional and aspirational senses. For example,
in Table 6, two subjects refer explicitly to risk. In
Protocol 8, one subject uses the concept in the A
criterion sense: risk is the chance of winning less.
In Protocol 10, however, another subject does not
count chances, but rather focuses on differences in
prize amounts, an SP-focused analysis.

Practitioners work at the boundary between normative
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and descriptive. Clients expect guidance (the
normative function) in how to achieve their personal
goals (the descriptive function). For the client who
is concerned about not meeting a target return, there
seems little point in discussing variance. It would
seem better for the professional to recognize in a
client’s spoken desires the relevance of those
mathematical rules that seem most applicable and,
then, to explain in a simple fashion, properties of
the rules that may not be self-evident.

Although much has been claimed since von Neumann and
Morgenstern (1947) about the dire consequences of
violating linearity, recent examination of alternative
rules based on decumulative weighted utility and
aspiration criteria (e.g.,  Manski, 1988; March, 1996;
Yaari, 1987) suggests that these alternatives are
neither better nor worse than maximizing expected
utility. They are, however, different and seem to come
closer to doing what people want done.

Pushing the Model Tests
In Experiment 1, we fit the CPT and SP/A models on

the same number of free parameters even though SP/A
theory could reasonably use several more. In order to
better illuminate the roles of the various
psychological components of the theory, we now bracket
the six-parameter SP/A fit by comparing it to a zero-
parameter fit and a ten-parameter fit.

The top panel of Figure 7 shows what happens when
the SP criterion of SP/A theory is neutralized by
setting its parameters to yield the expected value for
all lotteries ( w = .50, qs  = qp = 1.00), thus

allowing the A criterion to dominate. We set the
aspiration level here as we did previously: α  gains >
0; α  losses = 0). The choice rule is also zero-
parameter, assuming that subjects choose whichever
lottery has the higher value on the A criterion and is
indifferent if lotteries tie on aspiration level.

- - - - - - - - - - - - - -
Insert Figure 7 about here
- - - - - - - - - - - - - -

The A criterion alone produces a reasonable
quantitative fit, with an RMSD of .1206. Although it
may seem surprising that such a simple mechanism does
so well in fitting complex data given the very
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complicated models that have been favored for risky
choice recently (including both CPT and SP/A), the
result maps well onto the classic finding of
information processing studies using duplex bets
(Payne & Braunstein, 1971; Slovic & Lichtenstein,
1968) that probability of winning dominates the choice
process. Still, the best that aspiration can do by
itself with the shifted data is to fit a flat line.
Aspiration alone also predicts a mirror symmetry
(reflection in preferences) between gains and losses
whereas the actual loss preference functions are much
flatter than the gain preference functions for all
three lottery types. 

The bottom panel of Figure 7 shows what happens with
a full, ten-parameter fit of SP/A theory. The fit
(RMSD = .0484) is obviously much better than the six-
parameter fit. What interests us more, however, is
that removing constraints on the SP parameters reveals
theoretically meaningful values (see Table 8). Whereas
previously the SP criterion came very close to an
expected value criterion, the new parameter values
suggest important process differences between gains
and losses. For gains, it appears that the bottom-up
(security) evaluation is more important than the top-
down (potential) evaluation whereas, for losses, the
top-down (potential) evaluation appears more important
than the bottom-up (security) evaluation. Similarly,
differences in the w parameter also suggest that the
importance of security is greater for gains than for
losses (w + > w –). Thus, SP/A parameters confirm the
CPT-based intuition that subjects do, indeed, evaluate
high-risk options more favorably for losses than for
gains.

- - - - - - - - - - - - - 
Insert Table 8 about here
- - - - - - - - - - - - - 

There is, however, an important difference between
the mechanisms used by CPT and SP/A to account for
these differences between gains and losses. CPT’s zero
reference point provides the rationale for qualitative
inversions of its utility function (from concave for
gains to convex for losses) and its decumulative
weighting function (from inverse S-shaped for gains to
S-shaped for losses). Thus, CPT specifies that the
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value processing mechanisms and probability weighting
mechanisms used by subjects differ qualitatively for
gains and losses. SP/A, on the other hand, allows the
relative attention paid to worst outcomes and best
outcomes to shift as a function of domain (gains
versus losses) and also allows the relative importance
of the SP and A components to differ between gains and
losses. But domain-mediated reference effects in SP/A
theory are potentially applicable to a broader range
of domain differences. 

For example, Edwards and von Winterfeldt (1986)
propose that a person’s risk attitude may be different
in different “transaction streams.” Choices involving
amounts in what they call the “quick cash” and “play
money” streams (the former being what people have
available in their wallets and the latter being money
reserved for enjoyment) should be less risk averse
(i.e., less security-minded) than choices involving
“capital assets” and “income and fixed expenditures”
streams. Similarly, MacCrimmon and Wehrung (1986)
found that executives are more risk averse in making
decisions about their own personal investments than
they are about business investments. Shifts of these
sorts in one’s willingness to accept risk need not
involve gain/loss shifts. Instead, they may involve
only differences in outcome scale (large versus small
transaction stream) or differences in real-world
expectations or consequences (personal decisions
versus business decisions). The parameters of SP/A
theory, while restricting the decumulative weighting
function to an inverse S-shape for both gains and
losses, nevertheless allow for modeling this broader
class of reference effects through differences in the
relative attention paid to bad versus good outcomes in
the SP assessment and through the relative importance
accorded to SP and A assessments in the final choice.

The Importance of Normative Theory for Description and
Vice Versa

In most of economics, expected utility theory
remains the workhorse of academic research--which is
to say, of normative research--despite its poor fit to
data from psychological experiments. Recently,
however, a number of economists have turned their
attention to testing expected utility theory in
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laboratory settings involving stylized economic games.
Up to now, this new enterprise has been doggedly
empirical and intently focused on theoretically
appropriate task instantiation and on experimental
rigor and control. Despite this attention to detail,
however, the predictions of the theory have frequently
not been borne out, leaving the experimentalists with
the not inconsiderable task of persuading their
colleagues that the model’s failures are meaningful
and should not be overlooked (for reviews, see the
essays by Smith, 1982; 1989; 1991; and the various
chapters in Kagel & Roth, 1995). There has not,
however, been a commensurate effort from these
researchers to develop better theory, although Roth
(1995, p. 18) has pointed out that at least some of
those who ran the earliest economic experiments
expected that experimental data would contribute to
the development of both better descriptive theories
and better normative theories. 

Most economists view their discipline as one that
deals with ideally rational behavior and, thus, attach
little significance to discrepancies between what the
theory predicts and what people actually do.
Psychologists, on the other hand, view their task as
one of predicting behavior and describing its
cognitive sources in psychologically meaningful terms,
whether or not that behavior is rational. The utility
and probability weighting functions of CPT rest on
perceptual concepts. The SP and A components of SP/A
theory rest on attentional and motivational concepts.
Thus, both theories provide a psychological grounding
that allows each to appeal directly to intuitions via
easily understood and compellingly named components.

Intuitiveness is not enough, however. Mathematical
analysis of the sort pursued here is necessary to
specify the quantitative mechanisms from which
theoretical predictions flow and to confirm that it is
these specific mechanisms that provide the best
account of behavior. History shows that it is easy to
conflate phenomena with explanations, especially when
the explanations appeal to intuition. Thus, the
phenomenon of risk aversion became conflated with the
idea of diminishing marginal utility (concavity)
because the intuition was powerful and, indeed, is
accurate, that constant marginal gains or losses in

26



assets are more noticeable to poor people than to rich
people. Conflation of phenomena with explanation is
especially hazardous to theoretical advancement in
that it suppresses interest in psychologically
important alternative explanations, such as the
aspiration and decumulatively weighted utility
mechanisms on which this paper has focused.

The model comparisons we presented pitted competing
psychological mechanisms against one another while
constraining them to the same number of free
parameters. For the data set at hand, SP/A theory
provided the better fit, both quantitatively and
qualitatively. However, a more important comparison
may reside in the relative strengths and weaknesses of
the three different parameterizations of SP/A theory.
On the one hand, the zero-parameter model, relying
solely on the aspiration level mechanism, did
surprisingly well in providing a rough fit to the
data. That a mechanism as simple as this was
overlooked as an alternative to more complicated
accounts is testimony to the unhealthy power that the
“best existing theory” has to stifle research into
alternatives. On the other hand, the 6 and 10
parameter versions of SP/A theory show the necessity
of the SP component for modeling preferences among the
shifted lotteries and for capturing the relative
flattening of preferences for loss lotteries. Although
the possible contributions of aspiration level should
not have been overlooked, theorists and
experimentalists since Bernoulli have not been foolish
in pursuing weighted utility models. Aspiration alone
is simply too simple.

SP/A theory is a descriptive theory, through and
through. Its dual choice criteria--the security-
potential criterion and the aspiration criterion--are
both included because each seems necessary to
adequately capture human choices under risk. It is
worth noting, however, that even though these two
criteria are inconsistent with expected utility
maximization except in special cases, the rationality
of each has been defended recently on normative
grounds, [e.g., see, Manski’s (1988) utility mass
model and Yaari’s (1987) decumulatively weighted value
model). Although there is still a great divide between
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normative and descriptive theories of risky choice,
perhaps we are seeing the first evidence that
descriptive research is finally, as Roth (1995, p. 22)
put it, “speaking to theorists.”
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Footnotes

Requests for reprints should be sent to Lola Lopes
at the College of Business Administration, University
of Iowa, Iowa City, IA 52242 (Lola-Lopes@uiowa.edu).
Deirdre Huckbody ran the subjects and coded the data
as part of an independent study during her senior year
at the University of Wisconsin.

1Most theorists assume that u(v)  is nonlinear
without asking whether the monetary range under
consideration is wide enough for nonlinearity to be
manifest in the data. We believe that u(v)  probably
does have mild concavity that might be manifest in
some cases (as, for example, when someone is
considering the huge payouts in state lotteries). But
for narrower ranges, we prefer to ignore concavity and
let the decumulative weighting function carry the
theoretical load.

2We do not provide the derivation of the SP/A
decumulative weighting function at this time because
it is not relevant to the present focus. Interested
readers can contact us for details.

3We use the term “attractiveness” to refer to
individual lottery values. Others have used
“strength-of-preference” to mean the same thing, but
we prefer to distinquish between individual lottery
assessments (attractiveness) and choices (or
preferences) between lotteries. 

4Although CPT is intended to be a theory of risky
choice, the process that maps two or more individual
lottery assessments onto choice has not been
specified. The logistic function that we apply here
and below is commonly used as the cumulative
probability distribution function in statistical
decision theory models of the two-alternative choice
process (Luce & Galanter, 1963) and is presumed to be
neutral with respect to its impact on CPT’s and SP/A’s
ability to fit the qualitative features of the data.

5A somewhat improved RMSD (.0770) resulted when λ
was allowed to drop to 0.400 (i.e., for the gain
function to be considerably steeper than the loss
function). Although this value is consistent with the
observed fact that the standard and scaled gain data
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are steeper than the standard and scaled loss data,
the value is not consistent with CPT’s oft-repeated
claim that “losses loom larger than gains.”

6Our assumption concerning the values of the
aspiration level is analogous to Kahneman and
Tversky’s assumption (1979; Tversky & Kahneman, 1992)
that the reference point of the utility function is at
zero. Although we, as they, might sometimes want to
modify this simplifying assumption, in the present
case the lottery outcomes are spaced widely enough
that minimum (or maximum) outcomes are good
approximations for what might be “at least a small
gain” or “no more than a small loss” in choices
between more continuous lotteries.
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Figure Captions

Figure 1. Standard positive stimulus set. The tally
marks represent lottery tickets yielding the outcomes
shown at the left. Each lottery has 100 tickets and an
expected value of approximately $100.

Figure 2. Examples of stimuli from the scaled
positive stimulus set and the shifted positive
stimulus set. Scaled stimuli are produced from
standard stimuli by multiplying outcomes by 1.145.
Shifted stimuli are produced from standard stimuli by
adding $50 to each outcome.

Figure 3. Data from Experiment 1 pooled over
subjects, replications, and stimulus pair. Lotteries
are listed along the abscissa in order of average
subject preference for standard lotteries. Data are
the proportion of occasions on which subjects chose a
given lottery out of the 10 occasions on which that
lottery was available for choice.

Figure 4. Predictions of CPT pooled over stimulus
pair using the six parameter values shown in Table 4.

Figure 5. Predictions of SP/A theory pooled over
stimulus pair using the six parameter values shown in
Table 6.

Figure 6. Data from Experiment 2 pooled over
subjects and stimulus pair. Data are the proportion of
subjects choosing a given lottery out of the total
number of subjects who had that lottery available for
choice. 

Figure 7. Top panel: SP/A predictions based on the
A criterion alone with the SP criterion neutralized.
Bottom panel: SP/A predictions based on the ten-
parameter values shown in Table 8.
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Table 1
Risk Attitudes in the 

Expected Utility and Decumulative Weighted Value Models

   Expected Utility   Decumulativ e Weighte d Value
   Assumes h(D) = D      Assumes u(v) = v

Risk attitude u(v) is: Risk attitude h(D) is:
Risk neutral  linear  Risk neutral  linear
Risk averse  concave  Security-minde d convex
Risk seeking  convex  Potential-minded  concave
Markowitz typ e S-shape d Cautiousl y hopeful  invers e S-shaped
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Table 3
Fitting CPT to the Data for Scaled Gain Pairs

Matrix A:  Raw choice proportions
RL PK SS RC BM LS

LS .856  .844  .813  .806  .563  .500
BM .856  .788  .813  .750  .500  .438
RC .863  .744  .650  .500  .250  .194
SS .844  .531  .500  .350  .188  .188
PK .769  .500  .469  .256  .213  .156
RL .500  .231  .156  .138  .144  .144
Means 838  .628  .580  .460  .271  .224

Matrix B:  Choice predictions based on CPT
attractiveness values

13.42  12.11  11.72  10.61  9.91  10.19
10.19  .916  .805  .756  .577  .449  .500
 9.91  .931  .835  .792  .626  .500  .551
10.61  .889  .752  .694  .500  .374  .423
11.72  .779  .572  .500  .306  .208  .244
12.11  .725  .500  .428  .248  .165  .195
13.42  .500  .275  .221  .111  .069  .084
Means .848  .648  .578  .374  .253  .299
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Table 4
Parameter Values for CPT

Parameter  Value
α 0.551
β 0.970
λ 1.000
γ 0.699
δ 0.993
k  0.739
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Table 5
Fitting SP/A Theory to the Data for Scaled Gain Pairs

Matrix A: Raw choice proportions
RL PK SS RC BM LS

LS .856  .844  .813  .806  .563  .500
BM .856  .788  .813  .750  .500  .438
RC .863  .744  .650  .500  .250  .194
SS .844  .531  .500  .350  .188  .188
PK .769  .500  .469  .256  .213  .156
RL .500  .231  .156  .138  .144  .144
Means .838  .628  .580  .460  .271  .224

Matrix B: Choice predictions based on SP criterion
114.86  114.00  113.66  113.9 6 113.97  113.88

113.88  .839  .537  .382  .510  .509  .500
113.91  .834  .528  .374  .501  .500  .491
113.91  .833  .527  .372  .500  .499  .490
113.60  .894  .652  .500  .628  .626  .618
113.98  .818  .500  .348  .473  .472  .463
114.86  .500  .182  .106  .167  .166  .161

Matrix C: Choice proportions based on A criterion
1.000  0.960  0.960  0.800  0.680  0.620

0.620  .989  .984  .984  .917  .705  .500
0.680  .975  .963  .963  .823  .500  .295
0.800  .892  .848  .848  .500  .177  .083
0.960  .595  .500  .500  .152  .037  .016
0.960  .595  .500  .500  .152  .037  .016
1.000  .500  .405  .405  .108  .025  .011

Matrix D:  Predictions combining SP and A criteria
RL PK SS RC BM LS

LS .956  .895  .861  .773  .612  .500
BM .933  .844  .797  .684  .500  .388
RC .865  .714  .646  .500  .316  .227
SS .779  .578  .500  .354  .203  .139
PK .720  .500  .422  .286  .156  .105
RL .500  .280  .221  .135  .067  .044
Means .850  .662  .590  .446  .271  .181
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Table 6
Parameter Values for SP/A Theory

(six parameter fit)

Parameter  Value
q 1.053
w+ 0.505
w- 0.488
k 1.694
t + 9.447
t - 2.035
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Table 8
Parameter Values for SP/A Theory

(ten-parameter fit)

Parameter  Value
qs+ 372.07

qp+  64.37

qs–    4.86

qp–  16.58

w+ 0.837
w– 0.003
k+ .043
k– .023
t + 10.000
t - 2.070
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