
ALTREP: Alternate Representations of Basic R Objects

Luke Tierney

Department of Statistics & Actuarial Science
University of Iowa

December 14, 2017

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 1 / 23

Introduction

My first visit to New Zealand was for NZSA 1997 to present work on
MCMC methodology and interactive graphics software.

Sometime after this visit Ross and Robert added me to their mailing
list and gave me write access to the R CVS archive

It took a year or two before I started actively contributing, but has
been a major focus for me ever since.

I have worked mostly on computational infrastructure, such as

memory management
name space management
error handling framework
compilation
parallel computing support

Much of this is enabling technology not used directly by typical users
or only by package authors.

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 2 / 23

Introduction

Today’s talk is about joint work with Gabe Becker, Tomas Kalibera on
another such technology: alternate representations for basic R objects.

The C level R implementation works with a fixed set of data types,
e.g. INTSXP, REALSXP, ENVSXP.

These have a particular memory layout, but are accessed only through
a function/macro abstraction.

For vector data the accessors are

LENGTH for the number of elements;
DATAPTR for a pointer to a contiguous region in memory.

The memory is typically allocated by malloc

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 3 / 23

Introduction

ALTREP allows for alternate representations of these data types.

Some examples of things we want to enable:

allow vector data to be in a memory-mapped file or distributed;
allow compact representation of arithmetic sequences;
allow adding meta-data to objects;
allow computations/allocations to be deferred;
support alternative representations of environments.

To existing C code ALTREP objects look like ordinary R objects.

Updated C code may be able to take advantage of special features.

Current state is available in the ALTREP SVN branch.

More details are available in ALTREP.html at the branch root.

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 4 / 23

https://svn.r-project.org/R/branches/ALTREP/ALTREP.html

Example: Compact Integer Sequences

Vectors created by n1:n2, seq along or seq len can be represented
compactly.

In 3.4.x with JIT disabled:
system.time(for (i in 1:1e9) break)

user system elapsed

0.258 1.141 1.400

In the ALTREP branch:
system.time(for (i in 1:1e9) break)

user system elapsed

0 0.004 0.000 0.003

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 5 / 23

Example: Compact Integer Sequences

In 3.4.x creating a larger sequence may fail:
x <- 1:1e10

Error: cannot allocate vector of size 74.5 Gb

In the ALTREP branch this succeeds:
x <- 1:1e10

length(x)

[1] 1e+10

Some operations may fail fail:
y <- x + 1L

Error: cannot allocate vector of size 74.5 Gb

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 6 / 23

Example: Deferred String Conversions

Converting integers or reals to strings is expensive.

In lm and glm default row labels on design matrices are created but
rarely used.

The ALTREP branch

modifies the internal coerce function to return a deferred string
conversion object;
this class has a subset method that returns another deferred conversion
object.

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 7 / 23

Example: Deferred String Conversions

For lm with n = 107 and p = 2:
x <- rnorm(1e7)

y <- x + rnorm(1e7)

system.time(lm(y ~ x))

user system elapsed

19.804 0.860 20.703 R 3.4.2 patched

1.960 1.184 3.147 ALTREP

For glm:
system.time(glm(y ~ x))

user system elapsed

20.880 1.624 22.517 R 3.4.2 patched

6.144 5.508 11.657 ALTREP

Deferred evaluation could be useful in many other settings as well.

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 8 / 23

Example: Wrapper Objects and Meta-Data

Currently changing an attribute on a shared vector requires a copy of
the vector data.

Wrapper objects can hold the new attribute value and a reference to
the original object to access its data.

Wrapper objects can also be used to attach meta-data, such as

is the vector sorted;
are there no NA values.

The sort function returns a wrapper that records that the vector is
sorted and whether there are no NA values.

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 9 / 23

Example: Wrapper Objects and Meta-Data

Sorting a large vector takes some time:
x <- rnorm(1e8)

system.time(y <- sort(x, method = "shell"))

user system elapsed

23.652 0.108 23.762

The result y is known to be sorted:
system.time(sort(y, method = "shell"))

user system elapsed

0.220 0.060 0.281

The sorting process reveals that there are no NA values, so this is
recorded in the result y and used by anyNA:
system.time(anyNA(x))

user system elapsed

0.136 0.000 0.136

system.time(anyNA(y))

user system elapsed

0 0 0

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 10 / 23

Example: Wrapper Objects and Meta-Data

Compact integer sequences also carry meta-data:
indx <- seq_along(x)

system.time(anyNA(indx))

user system elapsed

0 0 0

system.time(sort(indx))

user system elapsed

1.288 0.644 1.932

system.time(sort(indx, method = "shell"))

user system elapsed

0.224 0.036 0.260

ALTREP objects can also provide methods for some basic summaries:
system.time(sum(x))

user system elapsed

0.176 0.000 0.176

system.time(as.double(indx))

user system elapsed

0 0 0

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 11 / 23

Example: Memory Mapped Vectors

The ALTREP branch includes sample classes for memory mapped
integer and real vectors.

The file can be opened for reading and writing or in read-only mode.

When used by ALTREP-aware code these will not result in allocating
memory for holding all the data.

Using non-aware functions may result in attempts to allocate large
objects.

The class provides an option for signaling an error when the raw data
pointer is requested.

A variant is also available as a small experimental package
simplemmap.

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 12 / 23

https://github.com/ltierney/Rpkg-simplemmap

Abstract Classes

The framework is designed around a set of abstract classes.

A set of abstract classes for R data types:

ALTREP

ALTENV ALTVEC

ALTINTEGER ALTREAL ALTSTRING ...

The most specific classes correspond to R data types.

Concrete classes specialize one of these.

Each abstract class level defines a set of methods.

Each concrete class has a table of method implementations.

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 13 / 23

Methods
General Methods

ALTREP object methods:

Duplicate
Coerce
Length
Inspect

The standard macros defer to these methods for ALTREP objects.

Duplicate and Coerce methods can return NULL to fall back to the
default behavior.

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 14 / 23

Methods
Vector Methods

ALTVEC methods:

Dataptr
Dataptr or null
Extract subset
Extract subarray

Dataptr may need to allocate memory; for now GC is suspended when
calling the method.

Dataptr or null will not allocate.

Dataptr or null and Extract subset can be used to avoid fully
allocating an object.

Adding Extract subarray will help for interfacing to structured
storage systems.

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 15 / 23

Methods
Specific Vector Methods

Specific vector methods (patterned after JNI):

Elt
Set elt
Get region
No NA
Is sorted
and several others.

Some numeric vector methods:

Min
Max
Sum
Prod

A single method for extracting properties specified by a bitmask
might be useful.

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 16 / 23

Changes to Existing Functions

Existing functions will work without modification.

But by using the DATAPTR they may cause allocation or reading of
full data that can be avoided.

Some functions modified to avoid using DATAPTR:

mean
min
max
sum
prod.

These use Get region to process data in chunks.

Many more functions could be modified along these lines.

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 17 / 23

Changes to Existing Functions

Subsetting has also been modified to avoid using DATAPTR.

This means head, sample, for example, avoid allocation:
x <- 1:1e12

length(x)

[1] 1e+12

head(x)

[1] 1 2 3 4 5 6

> sample(x, 10)

[1] 736617330192 392069636550 568241239321 224393184527

[5] 851984238988 174365872796 366347672451 84457266227

[9] 72327203393 761965661188

Other operations attempt to allocate and fail:
x + 1

Error: cannot allocate vector of size 7450.6 Gb

log(x)

Error: cannot allocate vector of size 7450.6 Gb

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 18 / 23

Serialization and Package Support

Classes can provide custom serialization by defining methods for
Serialized state
Unserialize

Packages can register ALTREP classes.

Serialization records the package and class name.

Unserializing loads the package namespace and looks up the
registered class.

A sample package implementing a memory mapped vector object is
available on GitHub.

Custom serialization requires a bump in the serialization version:
Older R versions cannot handle custom serializations; bumping the
format version gives a clearer error message.
Some packages that make assumptions about the serialization format
may need updates (e.g. digest).
This provides an opportunity for some other changes (e.g. recording
native encoding information).

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 19 / 23

Some Implementation Details

ALTREP objects are allocated as CONS cells with an altrep header
bit set.

Standard macros, like LENGTH look at this bit to decide whether to
dispatch.

To allow efficient scalar identification there is also a scalar bit,

With the ALTREP changes, operations like DATAPTR, STRING ELT,
and SET STRING ELT now might cause allocation.

Eventually code should be rewritten to allow for this.

For now, GC is suspended in these allocations.

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 20 / 23

Some Issues and Notes

Performance can suffer due to:
overhead of checking altrep bit for standard objects;
dispatching overhead for ALTREP objects.

Accessing the DATAPTR and possibly allocating may sometimes be
much faster.

Switching to an ALTREP may only pay off if objects are large.

Deferred evaluations/allocations are very useful, but:
allocation failures can be delayed and come at unexpected times;
operations may produce unexpected large allocations, e.g. log(1:1e10);
some situations can lead to repeated evaluations.

Memory mapping issues:
unserialization failure when the file is not available;
some settings might need a conversion layer (e.g. a file of 8-bit
integers).

Deferred edits might be useful for improving complex assignment
performance.

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 21 / 23

Current Status

ALTREP will hopefully be fully incorporated into R 3.5.0 in 2018.

The basic framework is now in R-devel, but

it is still subject to change;
no ALTREP objects are generated yet.

A necessary change to the internal object structure requiring packages
using compiled code to be rebuilt occurred in September 2017.

This change also reserves 64 bits for vector sizes on 64 bit platforms,
which simplifies large vector support.

The next step will be to incorporate creation of ALTREP object into
base code:

compact integer sequences;
deferred string conversions;
meta-data wrappers.

This will be done after further testing on CRAN and BIOC packages.

Further performance testing and tuning is also needed.

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 22 / 23

Conclusions

The ALTREP changes are evolutionary:

Existing code should continue to work.
Performance overhead should be minimal.

The framework should help to

allow experimentation with some new ideas;
regularize some things currently being done.

R internals have evolved considerably in the last 20 years.

The ability to do this is a tribute to the original design Ross and
Robert put together.

Luke Tierney (U. of Iowa) ALTREP NZSA 2017 23 / 23

	Introduction
	Examples
	Compact Integer Sequences
	Deferred String Conversions
	Wrapper Objects and Meta-Data
	Memory Mapped Vectors

	Design and Implementation
	Abstract Classes
	Methods
	Changes to Existing Functions
	Serialization and Package Support
	Some Implementation Details

	Some Issues
	Current Status
	Conclusions

