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Abstract

Let P be a set of n points in R
d. For any 1 ≤ k ≤ d,

the outer k-radius of P , denoted byRk(P ), is the minimum,
over all (d − k)-dimensional flats F , of maxp∈P d(p, F ),
where d(p, F ) is the Euclidean distance between the point
p and flat F . We consider the scenario when the dimen-
sion d is not fixed and can be as large as n. Computing
the various radii of point sets is a fundamental problem in
computational convexity with many applications.

The main result of this paper is a randomized polynomial
time algorithm that approximates Rk(P ) to within a factor
of O(

√
logn · log d) for any 1 ≤ k ≤ d. This algorithm is

obtained using techniques from semidefinite programming
and dimension reduction. Previously, good approximation
algorithms were known only for the case k = 1 and for the
case when k = d − c for any constant c; there are poly-
nomial time algorithms that approximate Rk(P ) to within
a factor of (1 + ε), for any ε > 0, when d − k is any
fixed constant [23, 7]. On the other hand, some results from
the mathematical programming community on approximat-
ing certain kinds of quadratic programs [28, 27] imply an
O(

√
logn) approximation forR1(P ), the width of the point

set P .

We also prove an inapproximability result for computing
Rk(P ), which easily yields the conclusion that our approx-
imation algorithm performs quite well for a large range of
values of k. Our inapproximability result for Rk(P ) im-
proves the previous known hardness result of Brieden [13],
and is proved by improving the parameters in Brieden’s
construction using basic ideas from PCP theory.
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1 Introduction

We consider the problem of computing the various outer-
radii of point sets in high dimensions. Let P be a set of n
points in R

d. For any 1 ≤ k ≤ d, the outer k-radius of
P , denoted by Rk(P ), is the minimum, over all (d − k)-
dimensional flats F , of maxp∈P d(p, F ), where d(p, F ) is
the Euclidean distance between the point p and flat F . We
note thatR1(P ) is the width ofP ,Rd(P ) is the radius of the
minimum enclosing ball of P , andRd−1(P ) is the radius of
the minimum enclosing cylinder of P . Informally, the outer
k-radius Rk(P ) measures how well the point set P can be
approximated by an affine subspace of dimension d − k.
Computing the outer k-radius of a point set is a fundamental
problem in computational convexity and has applications in
data mining, statistics, and clustering scenarios [18, 19, 23].

The problem of computing the outer k-radius of a point
set has received considerable attention in the computational
geometry literature. The outer k-radius of a set P of n
points can be computed exactly in polynomial time in fixed
dimension [14]. It can also be approximated to within a fac-
tor of (1 + ε), for any ε > 0, in O(n + (1/ε)O(dk)) time
[6, 22]. Thus the problem is reasonably well understood
when the dimension d is taken to be a fixed constant. These
algorithms are not satisfactory when the dimension is large.
In the rest of this section, we are interested in efficient algo-
rithms when the dimension d can be as large as n.

When the dimension d is large, most of the previous re-
sults have focussed on the extreme cases when k = 1, k = d
and k = d − 1. It is well-known that the minimum enclos-
ing ball (Rd(P )) of a set of points can be computed in poly-
nomial time; see for instance the paper by Gritzmann and
Klee [18]. Megiddo [26] shows that the problem of deter-
mining whether there is a line that intersects a set of balls
is NP-hard. In his reduction, the balls have the same ra-
dius, which implies that computing the radius Rd−1(P ) of
the min-enclosing cylinder of a set of points P is NP-hard.
Badoiu et al. [7] give a poly-time algorithm that computes
a (1 + ε)-approximation, for any ε > 0, of the minimum
enclosing cylinder (Rd−1(P )) of a set of points. Har-Peled
and Varadarajan [23] give a poly-time algorithm that com-
putes a (1 + ε)-approximation, for any ε > 0, to Rk(P )
whenever d − k is a fixed constant. These results show
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that approximatingRk(P ) can be done efficiently for small
d− k.

The problem seems to get harder when d−k becomes be-
comes large. Bodlaender et al. [9] show that computing the
width of a point set is NP-hard. Gritzmann and Klee [18]
show that it is NP-hard to compute the width of even a set
of 2d points. They also show that it is NP-hard to compute
Rk(P ) for such small point sets as long as k ≤ c ·d, for any
fixed 0 < c < 1. Brieden et al. [10] show that it is NP-hard
to approximate the width of a point set to within a factor of
12/11. Recently, Brieden [13] showed that is NP-hard to
approximate the width of a point set to within any constant
factor. Nesterov [28] gives an algorithm for approximating
a certain kind of quadratic program that implies a poly-time
algorithm for computing an O(

√
logn) approximation of

the width. Later, Nemirovski et al. [27] present a different
algorithm for approximating a more general quadratic pro-
gram that also implies the same result for the width. These
two papers from the mathematical programming literature,
which do not appear to be that well-known in the computa-
tional geometry literature, do not mention the consequences
of their results for the width problem. Yet we think that the
result that they imply for the width problem is quite remark-
able. Brieden et al. [11, 12] give a polynomial time algo-
rithm that gives a

√

d/ log d approximation for the width
of a point set. Their algorithm in fact works for any con-
vex body given in terms of appropriate “oracles”; the num-
ber of calls to the oracle is polynomial in the dimension d.
They also show that this is the best possible result in the
oracle model even if randomization is allowed. (For the
case of a set with n points, their algorithm actually gives
a

√

d/ logn approximation with poly(n) calls to the ora-
cle.) It is not clear if their algorithm can be extended to
computingRk(P ). However, by using the technique of ap-
proximating a polytope by its Lowner-John Ellipsoid [20],
we can easily get a polynomial-time algorithm that gives
an O(

√
d) approximation for Rk(P ). We remark that it is

possible to combine the ideas of Brieden et al. [11, 12] and
Nemirovski et al. [27] to give a polynomial time algorithm
that gives an O(d1/4) approximation for the width of the
point set. For details, see Section 5.

The problem of efficiently computing low-rank approx-
imation of matrices has received considerable attention re-
cently; see [1, 5, 15] and the references cited in these papers.
This problem corresponds to computing the best (d−k)-flat
that fits a (symmetric) point set, where the quality of a flat is
the sum of the square of the distance of each point from the
flat. The problem is therefore related to the one we study in
this paper, where the quality of a flat is the maximum over
the point-flat distances.

Our Techniques and Results

Our main result is a polynomial time algorithm that ap-
proximates Rk(P ) within a factor of O(

√
logn · log d) for

any 1 ≤ k ≤ d.

Theorem 1.1 Given as input a point set P ∈ R
d and any

integer 1 ≤ k ≤ d, there is a randomized polynomial time
algorithm that returns, with probability at least 1/2, a (d−
k)-flat F such that the distance of any point in P from F is
at most O(

√
logn · log d)Rk(P ).

The starting point of our work is the paper of Nemirovski
et al. [27], who present a polynomial time algorithm
that gives an O(log n) approximation for the following
quadratic program:

Maximize xTAx

Subject to xTAix ≤ 1, for 1 ≤ i ≤ n

where A is a symmetric d × d matrix, each Ai is a sym-
metric positive semidefinite d × d matrix, and x ∈ R

d.
For any set P = {p1, . . . , pn} of points in R

d, the width
R1(Q) of the symmetric point set Q = P ∪ −P is eas-
ily seen to be the minimum, over all unit vectors u ∈ R

d,
of maxpi∈P |〈pi, u〉|. Consider the special case of the
quadratic program where A is set to be the identity matrix
and Ai is set to be the matrix pipi

T . It is easy to check
that the value of the program is exactly 1/R1(Q)2. Thus
the algorithm of Nemirovski et al. yields an O(

√
logn) ap-

proximation for the width of Q.
Nemirovski et al. solve the following semi-definite re-

laxation of the quadratic program:

maximize Tr(AX)

Subject to Tr(AiX) ≤ 1, for 1 ≤ i ≤ n

X is positive semi-definite

whereX is constrained to be a symmetric positive semidef-
inite d × d matrix. They then use randomized rounding to
turn the solution X of the SDP into a O(log n) approxima-
tion of the QP.

Our first attempt at the problem of computing Rk(Q)
was to write it as a quadratic program, solve the correspond-
ing semi-definite relaxation, and then round the solution.
But this approach does not work because of the presence
of some difficult constraints in the quadratic program that
say that some pairs of vectors must be orthogonal. We then
made the simple but important observation that the semi-
definite program, with A = I and Ai = pipi

T , is directly
a relaxation of the problem of computing Rk(Q) for any
1 ≤ k ≤ d. But this was not good enough precisely because
the semi-definite program is a relaxation for every k. In par-
ticular, because it is a relaxation for k = 1, it may give us



nothing more than an approximation of the width R1(Q) of
Q, and this is not what we want. We then observed that we
can add a valid convex constraint to the semi-definite pro-
gram that places an appropriate upper bound on the max-
imum eigenvalue of the matrix X . This simple constraint
is crucial for the rounding step to work. We solve the re-
sulting semi-definite program, round the solution X∗ into a
convenient form, and then apply the Johnson-Lindenstrauss
dimension reduction technique [25] to reduce the rank of
the solutionX∗ to k+O(log n ∗ log d). This gives us a low
rank solution to the semi-definite program that is nearly as
good as the original solution. From this low-rank solution,
we obtain a (d−k)-flat that gives the desired approximation
of Rk(Q).

We also prove an inapproximability result that gives ev-
idence that our approximation algorithm is doing well for a
large range of k.

Theorem 1.2 1. There exists a constant δ > 0 such that
the following holds for any 0 < ε < 1: there is
no quasi-polynomial time algorithm that approximates
Rk(P ) within (log n)δ for all k such that k ≤ d − dε

unless NP ⊆ DTIME [2(log m)O(1)

].

2. Fix any ε > 0. Fix any constant c ≥ 1. Then there is
no quasi-polynomial time algorithm that approximates
Rk(P ) within (log d)c for all k such that k ≤ d − dε

unless NP ⊆ DTIME [2(log m)O(1)

].

To prove the lower bound result forRk(P ), we start with
a two-prover protocol for Max-3SAT in which the verifier
has very low soundness. Such a protocol is obtained as a
consequence of the PCP Theorem of Arora et al. [3, 4] and
the parallel repetition theorem of Raz [29]. The construc-
tion of Brieden [13] then implies a reduction from Max-
3SAT to Width Computation such that the ratio of the width
of point sets that correspond to satisfiable instances to those
that correspond to unsatisfiable instances is large. This sep-
aration gives us the inapproximability result for width. This
result can then be extended to an inapproximability result
for Rk(P ) for a large range of k.

Organization of the paper

In Section 2, we show that, without loss of generality,
we can move to a setting where the point set is symmetric
and make some preliminary observations. In Section 3, we
present our algorithm for approximating the outer k-radius
of a symmetric point set. In Section 4, we present the lower
bounds. We end with some remarks in Section 5.

2 Preliminaries

The trace of a square matrix A, which we denote by
Tr(A), is the sum of the numbers on the main diagonal of
A. We let I denote the identity matrix; the dimension of
the matrix will be clear from the context. We denote the
inner product of two vectors p and q by 〈p, q〉. A flat of d-
dimensional Euclidean space R

d is any affine subspace of
R

d. For any integer 0 ≤ r ≤ d, an r-flat is any flat whose
dimension is r. Let P be a set of n points in R

d. We denote
by −P the set {−p | p ∈ P}. By performing a transla-
tion, if necessary, we may assume that that the convex hull
conv(P ) ofP contains the origin. LetQ denote the point set
P ∪−P . It is easy to see thatRk(P ) ≤ Rk(Q) ≤ 2Rk(P ).
We shall therefore try to find a good (d− k)-flat for Q.

Since Q is a symmetric point set, the best (d − k)-flat
for Q contains the origin. For any point p and (d − k)-
flat F passing through the origin, the distance of p from
F is nothing but the length of the projection of p onto the
subspace orthogonal to F . Thus we can define Rk(Q) to be
the minimum, over all sets x1, . . . , xk of k orthogonal unit
vectors, of the square root of

max
p∈P

k
∑

i=1

〈p, xi〉2.

It will be convenient to work with Rk(Q)2 instead of
Rk(Q).

We will need the following consequence of the Johnson-
Lindenstrauss lemma [25].

Lemma 2.1 Let q be a vector in R
d, let v1, . . . , vr be

a set of orthogonal unit vectors. Let G be a ran-
dom s-dimensional subspace of the subspace spanned by
v1, . . . , vr. Let u1, . . . , us be an orthonormal basis for G.
Then there exists a constant C such that if s ≥ C logn, the
inequality

r

s
· 〈q, u1〉2 + · · · + 〈q, us〉2

〈q, v1〉2 + · · · + 〈q, vr〉2
≤ 2

holds with probability at least 1 − 1/n2.

This lemma has certain interesting consequences for the
relation between the various radii of Q.

Proposition 2.2 Let Q be a symmetric point set in R
d

with n points. For any 1 ≤ ` ≤ k ≤ d, R`(Q)2 ≤
2max(`,C log n)

k ·Rk(Q)2.

In particular, if the width of Q is greater than a
fraction 1/

√
d of the radius of the minimum enclos-

ing ball of P (R1(Q) ≥ Rd(Q)/
√
d), then a random

k-dimensional subspace gives, with high probability, an



O(log n)-approximation to Rk(Q)2 for k ≥ C logn. It
is also easy to see that a random k-dimensional subspace
gives an O(log n)-approximation for k < C logn. Thus
it is relatively straightforward to obtain the results of this
paper when conv(Q) is “fat”. If conv(Q) is not fat, for ex-
ample when Q lies on a lower dimensional subspace, it is
clear that a random k-dimensional subspace of R

d is not
good enough.

3 The Algorithm

The algorithm involves three main steps: solving a semi-
definite relaxation, rounding the solution obtained and then
using dimension reduction to get a low-rank solution nearly
as good as the original solution. We now describe each step
in detail.

Semidefinite Relaxation

We use semidefinite programming to get a set of non-
negative reals λ1, . . . , λd and a set of orthogonal unit vec-
tors x1, . . . , xd in R

d satisfying the constraints described in
the following lemma.

Lemma 3.1 Let Q = P ∪ −P be a set of 2n points in
R

d. We can compute, in polynomial time, a set of non-
negative reals λ1, . . . , λd and a set of orthogonal unit vec-
tors x1, . . . , xd in R

d such that

d
∑

i=1

λi = 1

max
i
λi ≤ 1/k

d
∑

i=1

λi〈p, xi〉2 ≤ Rk(Q)2/k for each p ∈ P

Proof: We note first of all that the above is feasible, since
by the definition of Rk(Q) there exist k orthogonal vectors
v1, . . . , vk such that

k
∑

i=1

〈p, vi〉2 ≤ Rk(Q)2 for each p ∈ P.

To construct λ1, . . . , λd and x1, . . . , xd, we first solve
the semi-definite program:

Minimize α

Tr(X) = 1

Tr(ppTX) ≤ α/k for each p ∈ P

X is positive semi-definite

1

k
I −X is positive semi-definite

X is required to be a d × d symmetric matrix. The last
constraint (where I denotes the identity matrix) is equiva-
lent to saying that the largest eigen-value of X should be at
most 1/k. The value of the optimal solution α∗ to the semi-
definite program is at most Rk(Q)2, as is seen by letting
X = 1

k (v1v1
T + · · · + vkvk

T ).
Let X∗ be the symmetric positive-definite matrix re-

turned by the semi-definite program. We decompose it as
X∗ = λ1x1x1

T + · · ·λdxdxd
T where the xi are orthogonal

unit vectors and the λi are the eigenvalues of X∗. It is easy
to verify that the xi and the λi give us what we want.

�

Remark Clearly, we cannot hope to find the decomposi-
tion of X∗ exactly in finite time. However, the decomposi-
tion of a “perturbation” of X∗ can be found in polynomial
time and this would be sufficient for our purposes. For more
details, we refer the reader to [27], page 4. For simplicity,
we assume that what we find is a decomposition of X∗ it-
self.

Rounding the Solution

We now round the solution obtained in the previous step.
This is described in the following lemma.

Lemma 3.2 Let Q = P ∪ −P be a set of 2n points in
R

d. We can compute, in polynomial time, non-negative re-
als β1, . . . , βd and orthogonal unit vectors x1, . . . , xd such
that each βi ∈ { 1

m ,
1

2m , . . . ,
1

23 log dm
, 0} for some m ≥ k

and

d
∑

i=1

βi = 1

d
∑

i=1

βi〈p, xi〉2 ≤ 4Rk(Q)2/k for each p ∈ P

Proof: Let λ1, . . . , λd be the non-negative reals and
x1, . . . , xd be the unit vectors returned by the algorithm of
Lemma 3.1. (Essentially, we want to round each λi such
that the rounded values belong to a small set of numbers.)
If there are k or more λi’s in the range [1/2k, 1/k], we set
λ′i = 1/2k for each such λi and λ′i = 0 for every other λi.
It is clear that

d
∑

i=1

λ′i ≥ 1/2



max
i
λ′i ≤ 1/2k

d
∑

i=1

λ′i〈p, xi〉2 ≤ Rk(Q)2/k for each p ∈ P

By letting βi = λ′i/(
∑d

i=1 λ
′
i), we obtain the desired result.

If there are at most k − 1 λi’s in the range [1/2k, 1/k],
we set λ′i = 1/2k for each such λi, λ′i = 0 for every λi ≤
1/d3k, and λ′i = λi for every other λi. It is easy to check
that

d
∑

i=1

λ′i ≥
k − 1

2k
+

1

k
− d

d3k
≥ 1/2

max
i
λ′i ≤ 1/2k

d
∑

i=1

λ′i〈p, xi〉2 ≤ Rk(Q)2/k for each p ∈ P

Next, for each 1 ≤ j ≤ 3 log d − 1, we round each λ′
i in

the range ( 1
2j+1k ,

1
2jk ] to 1

2j+1k . Since each non-zero λ′i is
smaller by a factor of at most 1/2, the new λ′i satisfy

d
∑

i=1

λ′i ≥ 1/4

max
i
λ′i ≤ 1/4k

d
∑

i=1

λ′i〈p, xi〉2 ≤ Rk(Q)2/k for each p ∈ P

By letting βi = λ′i/(
∑d

i=1 λ
′
i), we obtain the desired result.

�

Dimension Reduction

We now use dimension reduction to get a low-rank solu-
tion nearly as good as the original solution. This is given by
the following lemma.

Lemma 3.3 Let Q = P ∪ −P be a set of 2n points
in R

d. We can compute, in randomized polynomial time,
a set γ1, . . . , γ` of non-negative real numbers and a set
u1, . . . , u` of orthogonal unit vectors in R

d such that ` ≤
k +O(log n log d) and with probability at least 1/2,

∑̀

i=1

γi = 1

max
i
γi ≤ 1/k

∑̀

i=1

γi〈p, ui〉2 ≤ 8Rk(Q)2/k for each p ∈ P.

Proof: We compute, in polynomial time, non-negative re-
als β1, . . . , βd and orthogonal unit vectors x1, . . . , xd in
R

d satisfying the conditions of Lemma 3.2. It will be con-
venient to denote, for each 0 ≤ j ≤ 3 log d, the xi’s (if there
are any) with corresponding βi = 1/(2jm) by v1

j , . . . , v
nj

j .
(That is, nj is the number of such xi’s.) We thus have

3 log d
∑

j=0

nj

2jm
= 1,

and for each p ∈ P ,

3 log d
∑

j=0

1

2jm
(〈p, v1

j 〉2 + · · · + 〈p, vnj

j 〉2) ≤ 4Rk(Q)2/k.

For each 0 ≤ j ≤ 3 log d, let dj be the smallest integer
such that

nj

m2jdj
≤ 1/k.

Clearly, we have that

dj ≤ njk

m2j
+ 1.

Let bj = min(nj ,max(dj , C logn)). Observe that

nj

m2jbj
≤ 1/k.

For each 0 ≤ j ≤ 3 log d, let u1
j , . . . , u

bj

j be an orthonormal
basis for a random bj-dimensional subspace of v1

j , . . . , v
nj

j .
(If bj = nj , this is just the original subspace spanned by
v1

j , . . . , v
nj

j .) From Lemma 2.1, it follows that the inequal-
ity

3 log d
∑

j=0

nj

2jmbj
(〈p, u1

j 〉2 + · · · + 〈p, ubj

j 〉2) ≤ 8Rk(Q)2/k

holds for every p ∈ P with probability at least 1/2. Fur-
thermore, we have

3 log d
∑

j=0

nj

2jmbj
· bj = 1.

We have already checked that

nj

m2jbj
≤ 1/k.



Finally, we have

3 log d
∑

j=0

bj ≤
3 log d
∑

j=0

max{C logn, dj}

≤ O(log d logn) +

3 log d
∑

j=0

dj

≤ O(log d logn) +

3 log d
∑

j=0

(
njk

m2j
+ 1)

≤ O(log d logn) + 3 log d+ k ·
3 log d
∑

j=0

nj

m2j

= O(log d logn) + 3 log d+ k ∗ 1

= O(log d logn) + k,

which completes the proof.
�

The Main Result

We now get a good (d − k)-flat using the solution ob-
tained after the dimension reduction step.

Lemma 3.4 Let Q = P ∪ −P be a set of 2n points in R
d.

We can compute, in randomized polynomial time, a (d−k)-
flat F such that with probability at least 1/2 the distance of
any point in Q from F is at most O(

√
logn · log d)Rk(Q).

Proof: Using the algorithm of Lemma 3.3, we compute
a set of non-negative reals γ1, . . . , γ` and a set of or-
thonormal unit vectors u1, . . . , u` in R

d such that ` =
k +O(log d logn) and

∑̀

i=1

γi = 1

max
i
γi ≤ 1/k

∑̀

i=1

γi〈p, ui〉2 ≤ 8Rk(Q)2/k for each p ∈ P.

Without loss of generality, we assume that γ1 ≥ γ2 · · · ≥
γ`. Now

γk ≥ 1 − (k − 1)/k

`− (k − 1)
≥ 1

ck log d logn

for some constant c > 0. We thus have

k
∑

i=1

γi〈p, ui〉2 ≤ 8Rk(Q)2/k for each p ∈ P,

and furthermore γi ≥ 1
ck log d log n for 1 ≤ i ≤ k. It follows

from this that

k
∑

i=1

〈p, ui〉2 ≤ (8c logn log d)Rk(Q)2 for each p ∈ P.

We have thus found the required u1, . . . , uk. The (d −
k)-flat we desire is the one orthogonal to these vectors. This
also completes the proof of Theorem 1.1.

�

4 The Inapproximability Result

We start with formal definitions of problems that will be
used in the sequence of reductions from Max-3SAT to com-
puting the width R1(P ) of a set of points.

Definition 4.1 (Quadratic Programming) We are given
non-negative integers P,Q,A,B, non-negative rational
numbers cp,q,a,b for p ∈ [P ], q ∈ [Q], a ∈ [A] and b ∈ [B].
Our goal is to maximize

f(x) =
∑

p,q,a,b

cp,q,a,bxp,ayq,b

over the polytope P ⊆ <PA+QB described by
∑

a

xp,a = 1 for p ∈ [P ],

∑

b

yq,b = 1 for q ∈ [Q],

0 ≤ xp,a ≤ 1 for p ∈ [P ], a ∈ [A],

0 ≤ yq,b ≤ 1 for q ∈ [Q], b ∈ [B].

We denote instances in which the number of inequalities
is at most m and the number of variables is at most n by
QP [m,n].

Definition 4.2 (Norm Maximization) We are given a
string (n,m,A, b), where n and m are natural numbers, A
is a rational m × n matrix and a rational m-vector b. Our
goal is to maximize

f(x) = ||x||22
over all vectors x that belong to the polytope P given by
the inequalities Ax ≤ b. We denote an instance in which
the number of inequalities is at most m and the number of
variables is at most n by NM [m,n].

From now on, let P̃ denote the complexity class, deter-
ministic quasi-polynomial time. That is, P̃ contains the set
of all problems for which there is an algorithm that run in
time 2(log m)O(1)

on inputs of size m. We first prove Theo-
rem 1.2 for the case k = 1 and later extend it to the range of
k mentioned in the statement of Theorem 1.2 using a simple
reduction.



Theorem 4.3 1. There exists a constant δ > 0 such that
the following holds: there is no quasi-polynomial time
algorithm that approximates R1(P ) within (log n)δ

unless NP ⊆ P̃ .

2. Fix any constant b ≥ 1. Then there is no quasi-
polynomial time algorithm that approximates R1(P )
within (log d)b unless NP ⊆ P̃ .

Proof: The proof involves showing a quasi-polynomial
time reduction from the problem of MAX-3SAT to com-
puting R1 on a point set. The inapproximability result will
then follow from the NP-completeness of Max-3SAT. The
details of this reduction is given by the following lemma:

Lemma 4.4 There is a reduction T from 3-SAT formulas of
size m to solving R1 on a point set of size n = 2O(t2t log m)

in d = 2O(t log m) dimensions such that:

1. If ψ is satisfiable, then R1(T (ψ)) ≥ w for some w.

2. If ψ is unsatisfiable, then R(T (ψ)) ≤ w′ for some w′.

3. w
w′

≥ ct for some fixed constant c > 1.

This reduction runs in time 2O(t2t log m).

Proof of Theorem 4.3: We first prove Theorem 4.3 as-
suming Lemma 4.4 and give the proof of Lemma 4.4 later.
To prove part 1 of Theorem 4.3, choose t = log logm and
choose δ′ < log c

3 . Then

ct

(t2t)δ′
≥ (

c

22δ′
)t

> (2δ′

)t

≥ (logm)δ′

.

Hence, we can choose δ < δ′ such that for n large
enough,

ct ≥ (log n)δ.

To prove part 2 of Theorem 4.3, suppose we choose t =
2p log log m

log c for some constant p. Then,

ct

tp
> 2p log log m

= (logm)p.

From above, we observe that, for every constant b ≥ 1, we
can choose d large enough such that

ct ≥ (log d)b.

Observe that the reduction runs in quasi-polynomial time
for our choice of t in both the cases and hence Theorem 4.3
follows.

We are now going to prove Lemma 4.4 by a sequence of
three reductions.

From Max-3SAT to Quadratic Programming Reduc-
tion from Max-3SAT to Quadratic Programming involves
building a two-prover protocol for 3SAT formulas with low
soundness.

The two-prover protocol: By the PCP Theorem [3],
there exists polynomial time reductionT from 3SAT formu-
las to 3SAT formulas such that each clause of T (ψ) has ex-
actly three literals and each variables appears in five clauses
and furthermore

1. If ψ is satisfiable, then T (ψ) is satisfiable.

2. If ψ is not satisfiable, then T (ψ) is at most (1 − ε)-
satisfiable for some constant ε < 1.

We now describe the main steps of the two-prover proto-
col.

Step 1: Convert ψ to T (ψ).

Step 2: Choose t random clauses from T (ψ) and t vari-
ables at random, one from each of the t clauses.

Step 3: Ask prover P1 for the assignment to each clause
chosen. Ask the prover P2 for the assignment to the each
variable chosen.

Step 4: Accept if all the clauses are satisfied and the two
assignments are consistent.

By Raz’s parallel repetition theorem [29], the soundness
of this protocol is bounded above by st for some s < 1.
Also, note that in this protocol, the questions to the two
provers are at most t logm bits long where m is the in-
put size and the answers from the two provers P1 and P2

are 3t and t bits long. For more details on use of two-
prover protocols in inapproximability results, see the paper
by Håstad [21].

Lemma 4.5 (Bellare and Rogoway [8]) Using the two
prover protocol described above, there is a reduction T1

from 3SAT formulas of sizem toQP [2O(t log m), 2O(t log m)]
such that:

1. If ψ is satisfiable, then OPT (T1(ψ)) = w1 for some
w1.

2. If ψ is unsatisfiable, thenOPT (T2(ψ)) ≤ w2 for some
w2.

3. w1

w2
≥ f t for some fixed constant f > 1.

Moreover, this reduction runs in time 2O(t log m).



From Quadratic Programming to Norm Maximization
We use the construction of Brieden. Brieden describes a
sequence of interesting reductions that converts an instance
of quadratic programming to an instance of the norm
maximization problem.

Lemma 4.6 (Brieden [13]) There is a reduction T2

from Quadratic Programming to the Norm Maxi-
mization that maps QP [2O(t log m), 2O(t log m)] into
NM [2O(t2t log m), 2O(t log m)] with the following property:
for any input L of QP to T2 and for any λ > 0,

OPT (L)

(1 + λ)
≤ OPT (T2(L)) ≤ (1 + λ)OPT (L).

Moreover, the reduction T2 runs in time 2O(t2t log m)

and the inequalities in T2(L) describe a centrally-symmetric
polytope, that is, a polytope P such that P = −P .

From Norm Maximization to Width Computation
The reduction from Norm Maximization to Width com-
putation is simple [17]. The point set P = {p1, . . . , pn}
where each point pi is obtained from an inequality of the
form < pi, x >≤ 1. Note that the number of points in
the point set P is the same as the number of inequalities
in the Norm Maximization problem and the dimension
is also preserved. In addition, it can be checked that the
value of the norm maximization problem is 1/R1(P )2.
Hence, maximizing the norm of a point inside the centrally
symmetric polytope reduces to computing the width R1 of
the symmetric point set P . The reduction described above
runs in time 2O(t2t log m).

The reduction T required in Lemma 4.4 is obtained by
composing the reductions T1, T2 and T3. In particular,
choose λ small enough and let

c =
1

(1 + λ)2
f.

It can be checked that Lemma 4.4 holds with this choice
of c. This completes the proof of Theorem 4.3.

�

We now give the easy reduction from width to the outer
k-radius that proves Theorem 1.2.

Proof: Let P be a set of n points in R
d. We map

P to a set P ′ of n points in R
d+k−1 using the func-

tion that takes a point (x1, . . . , xd) ∈ R
d to the point

(x1, . . . , xd, 0, . . . , 0). It is easily checked that R1(P ) =
Rk(P ′). Theorem 1.2 follows from this reduction and some
simple calculations.

�

5 Remarks

The paper of Brieden et al. [12] implies a polynomial
time algorithm that gives a

√

d/ logn approximation for
the width of an n-point set. We observe that this result can
be improved to

Theorem 5.1 There is a polynomial time algorithm that
gives a d1/4 approximation for the width of a point set.

This result is obtained by noting that if the number of
points n is less than e

√
d, then the result of Nemirovski et al.

[27] gives a d1/4 approximation algorithm. If the number
of points n is greater than e

√
d, then Theorem 3.3 of [12]

implies a d1/4 approximation algorithm.
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