
No Coreset, No Cry: II

Michael Edwards1 and Kasturi Varadarajan1

Department of Computer Science
The University of Iowa

Iowa City, IA 52242-1419
Email: [mcedward,kvaradar]@cs.uiowa.edu

Abstract. Let P be a set of n points in d-dimensional Euclidean space,
where each of the points has integer coordinates from the range [−∆, ∆],
for some ∆ > 1. Let ε > 0 be a given parameter. We show that there is
subset Q of P , whose size is polynomial in (log ∆/ε), such that for any k
slabs that cover Q, their ε-expansion covers P. In this result, k and d are
assumed to be constants. The set Q can also be computed efficiently, in
time that is roughly n times the bound on the size of Q. Besides yielding
approximation algorithms that are linear in n and polynomial in log ∆
for the k-slab cover problem, this result also yields small coresets and
efficient algorithms for several other clustering problems.

1 Introduction

A slab in <d is specified by a hyperplane h and a real number r ≥ 0: Slab(h, r)
is the set of points at distance at most r from h. The width of such a slab is
2r. Note that such a slab can be viewed as the set of points enclosed between
two parallel hyperplanes at distance 2r apart. For an ε ≥ 0, the ε-expansion of
Slab(h, r) is Slab(h, r(1 + ε)); note that its width is 2r(1 + ε).

For an integer k ≥ 1 and a parameter 0 < ε < 1, a (k, ε) (multiplicative)
coreset of a point set P ⊆ <d is a subset Q ⊂ P such that given any k slabs
that cover Q, the ε-expansion of the k slabs covers P . (A set of k slabs is said
to cover a point set if the point set is contained in the union of the k slabs.)

A (1, ε) coreset for any set of n points P ⊆ <d of size O(1/ε(d−1)/2) exists,
and can be computed in O(n) time [3, 4, 1, 5]. (We are ignoring constants in the
running time that depend on ε. Throughout this paper, d will be treated as a con-
stant.) Such a coreset immediately implies a linear time algorithm for computing
an approximately minimum width slab enclosing P . Moreover, a (1, ε) coreset
automatically implies a small (1, ε) coreset of other kinds, obtained essentially
by replacing ‘slab’ in the definition above by ‘ball’, ‘cylinder’, ‘spherical shell’,
‘cylindrical shell’, etc. [1]. One immediately obtains linear-time approximation
algorithms for various extent measure problems, such as finding the minimum-
width slab, cylinder, spherical shell, cylindrical shell, etc. enclosing a point set.
Furthermore, a small (1, ε) coreset also yields small coresets corresponding to
such extent measure problems for points with algebraic motion [1]. This pleasant
state of affairs continues to persist if we want to handle a few outliers [8].

It is therefore natural to ask if small (k, ε) coresets exist, for k ≥ 2. We are
asking, informally, if the pleasant state of affairs for the one cluster case also
holds for the multiple cluster case. Answering this question in the negative, Har-
Peled [7] gave an example of a point set P ⊂ <2 for which any (2, 1/2) coreset
has size at least |P | − 2. In other words, the coreset needs to contain nearly all
the points. This is unfortunate, since a small coreset would yield small coresets
for several clustering problems. (Nevertheless, small coresets exist for the k balls
case [7], and small coresets of a weaker type exist for the k cylinders case [2].
These are the exceptions.)

Har-Peled’s construction, when embedded on an integer grid, uses coordi-
nates that are exponentially large in the number of input points. In this paper,
we ask whether small coresets exist if the coordinates are reasonably small. The
main result of this paper is the following theorem, which answers the question
in the affirmative.

Theorem 1. Let P be any set of n points in <d, with the co-ordinates of each

point in P being integers in the range [−∆, ∆], where ∆ ≥ 2. For any integer k ≥
1, and 0 < ε < 1, there is a (k, ε) coreset of P with at most (log ∆/ε)f(d,k) points,

where f(d, k) is a function of only d and k. Such a coreset can be constructed in

n(log ∆/ε)f(d,k) time.

We remark that k and d are treated as constants in the big-O notation.
Evidently, the theorem implies an algorithm whose running time is linear

in n and polynomial in log ∆ (ignoring ‘constants’ that depend on ε, d, and k)
for computing k slabs of width (1 + ε)r∗ that cover P , where r∗ is the smallest
number such that k slabs of width r∗ cover P . (That is, r∗ is the width of the
optimal k-slab cover of P .) Such an algorithm is obtained by computing a (k, ε)
coreset of P , computing an optimal k-slab cover for the coreset, and taking their
ε-expansion. (An algorithm that is more efficient in terms of the hidden constants
can be obtained, if really needed, by working through the proof of Theorem 1.)

The theorem also holds if we replace ‘slab’ in the definition of a (k, ε) core-
set by an ‘`-cylinder’, where an `-cylinder is the set of points within a certain
distance from an `-dimensional flat (affine subspace of dimension `). The proof
readily carries over to this case. Consequently, we also obtain efficient algorithms
for approximating the k-`-cylinder cover of the point set P .

Other consequences for clustering follow from Theorem 1 using the machinery
developed in Agarwal et al. [1]. We give two illustrative examples. An annulus in
<2 is the set of points between two concentric circles, and its width is the differ-
ence between the two radii. An ε-expansion of an annulus is defined accordingly.
Let P be a set of points in <2 with integer coordinates in the range [−∆, ∆],
and let k ≥ 1 be an integer and 0 < ε < 1 be a parameter. We can compute, in
linear time, a subset Q ⊂ P of (log ∆/ε)g(k) points such that for any k annuli
that cover Q, their ε-expansion covers P . Here, g is only a function of k.

The second example concerns moving points [6]. Let P = {p1, . . . , pn} be a
set of points moving linearly in <2, where the position of point pi at time t is
given by pi[t] = ai + bit, where ai, bi ∈ <2 have integer coordinates in the range

[−∆, ∆]. Let P [t] = {p1[t], . . . , pn[t]} denote the point set at time t. Let k ≥ 1
be an integer and 0 < ε < 1 be a parameter. We can compute, in linear time, a
subset Q ⊂ P of size (log ∆/ε)g(k) such that for any time t, and any k balls that
cover Q[t], their ε-expansion covers P [t]. These examples by no means exhaust
the consequences. For instance, we can replace linear motion by quadratic motion
and balls by slabs in the second example.

In summary, small coresets do exist for the multiple cluster case, provided
we are willing to expand our definition of ‘small’ in a reasonable way.

Technique. The proof of Theorem 1 builds (k, ε) coresets from (k − 1, ε)
coresets. The idea is to add to the coreset a subset Q′ composed of (k − 1, ε)
coresets of a small number of appropriately chosen subsets of P . The subset Q′

will have the property that for any set of k slabs, the points of Q′ contained in
the k’th slab tell us approximately which subset of P is contained in the k’th
slab. We are then left with the problem of adding a (k − 1, ε) coreset for the
remainder of P . The cases where Q′ fails to give us such meaningful information
are precisely those where the k’th slab plays no essential role – the ε-expansion
of the first k − 1 slabs covers P . Crucial to the entire construction is an idea
from [3], which says, in a technical sense that is convenient to us, that in order
to know the shape of a cluster, it is sufficient to know its d principal dimensions.

Is bounded spread enough? We modify the construction of Har-Peled [7]
to show that merely assuming bounded spread is not enough to obtain a coreset
of the type obtained in Theorem 1. The point set is P = {p1, . . . , pn} in <3,
where pi = (1/2n−i, 1/2i−1, i− 1). The spread of this point set, that is, the ratio
of the maximum to minimum interpoint distance, is clearly O(n). We claim that
any (2, 1/2) coreset for this point set must include each pi, for 1 ≤ i ≤ n, and
must consequently have all the points. Suppose, to the contrary, that there is
such a coreset without pi. Then the slab Slab(h1, 1/2n−(i−1)), where h1 is the
hyperplane x = 0, covers the points p1, . . . , pi−1, and the slab Slab(h2, 1/2i),
where h2 is the hyperplane y = 0, covers the points pi+1, . . . , pn. Therefore the
two slabs cover the coreset points. But evidently a 1/2-expansion of these two
slabs does not cover pi, a contradiction.

In Section 2, we establish some geometrical facts needed in Section 3, where
we prove Theorem 1. We omit from this preliminary version the proofs for the
consequences of Theorem 1 claimed above. These consequences follow, with some
care, via the arguments used for the one cluster case in [1].

2 Preliminaries

For any subset V = {v1, . . . , v`} of points in <d, let

Aff(V) = {a1v1 + · · · + a`v` | a1 + · · ·a` = 1}

be the affine subspace or flat spanned by them. If Aff(V) has dimension t, then
it is called a t-flat.

Let proj(q, F) denote the closest point on flat F to a point q, and let dist(q, F)
denote the diatance between q and proj(q, F).

For any subset V = {v1, . . . , v`} of points in <d, let

conv(V) = {a1v1 + · · · + a`v` | a1, . . . , a` ≥ 0, a1 + · · ·a` = 1}

be the convex hull of V .
Let D denote the points in <d with integer co-ordinates in the range [−∆, ∆].

The following proposition is well known.

Proposition 1 There exists a constant cd > 0, depending only on the dimension

d, such that for any subset V ⊆ D and point q ∈ D, dist(q,Aff(V)) is either 0
or a number in the range [cd/∆

d, 4d∆].

Lemma 1. There exists a constant c′d, depending only on the dimension, for

which the following is true. Let v0, . . . , vt be any set of points, where t ≤ d.
For 1 ≤ i ≤ t, let ui denote the vector vi − proj(vi,Aff({v0, . . . , vi−1})), and

suppose that ||ui|| > 0. Suppose that for every i ≥ 1 and j ≥ i, we have

dist(vj ,Aff({v0, . . . , vi−1})) ≤ 2||ui||. Then the t-simplex conv({v0, . . . , vt}) con-

tains a translate of the hyper-rectangle

{c′d(a1u1 + a2u2 + · · · + atut)|0 ≤ ai ≤ 1}.

Proof. This is the central technical lemma that underlies the algorithm of Bare-
quet and Har-Peled [3] for computing an approximate bounding box of a point
set. For expository purposes, we sketch a proof. We may assume without loss of
generality that v0 is the origin, and u1, . . . , ut are multiples of the first t unit
vectors in the standard basis for <d. Scale the first t axes so that u1, . . . , ut map
to unit vectors. The conditions of the lemma ensure that the images v′

0, . . . , v
′

t

of v0, . . . , vt lie in the “ cube ”

C = {(x1, . . . , xd)| − 2 ≤ xi ≤ 2 for i ≤ t, xi = 0 for i > t},

and the (t-dimensional) volume of conv({v′

0, . . . , v
′

t}) is at least 1/t!, which is
at least 1

4dd!
of the volume of C. It follows (see Lemma 3.5 of [3]) that there

exists c′d > 0, depending only on d, such that a translate of c′dC is contained in
conv({v′

0, . . . , v
′

t}). Scaling back gives the required hyper-rectangle.

It is worth stating that under the conditions of Lemma 1, the set {v0, . . . , vt}
is contained in the hyperrectangle

v0 + {(a1u1 + a2u2 + · · · + atut)| − 2 ≤ ai ≤ 2}.

3 The Coreset Construction

In this section, we describe our algorithm for constructing a (k, ε) coreset for any
given subset of D, for k ≥ 2. Our construction is inductive and will assume an
algorithm for constructing a (k − 1, ε) coreset for any given subset of D. As the
base case, we know that a (1, ε) coreset of size O(1/εd−1) for any subset P ′ ⊂ D

can be constructed in O(|P ′|+1/εd−1) time [1]. Let λ denote the smallest integer
that is at least log2

4d∆
cd/∆d , where cd > 0 is the constant in Proposition 1. Note

that λ = O(log ∆).
Let P ⊂ D be the point set for which we wish to construct a (k, ε) coreset.

Our algorithm can we viewed as having d+1 levels. At level t, we do some work
corresponding to each instantiation of the variables v0, . . . , vt. Let Q denote the
final coreset that the algorithm returns; Q is initialized to be the empty set.

We construct a (k − 1, ε) coreset K of the point set P and add K to Q.
Each point in K is a choice for the variable v0. For each choice of v0 from K, we
proceed to Level 0 with the point set P [v0] = P .

Level 0: Suppose we have entered this level with {v0} and P [v0]. We partition
P [v0] into λ+1 buckets. The 0’th bucket B0[v0] contains just v0 and for 1 ≤ i ≤ λ,
the i’th bucket Bi[v0] contains all points p ∈ P [v0] such that cd2

i−1/∆d ≤
dist(p, Aff({v0})) < cd2

i/∆d. (Note that Aff({v0}) simply consists of the point
v0.) By Proposition 1, we do indeed have a partition of P [v0]. For each 1 ≤ i ≤ λ,
we construct a (k − 1, ε) coreset Ki[v0] of Bi[v0] and add Ki[v0] to Q.

Each point in
⋃λ

i=1 Ki[v0] is a choice for v1. If v1 is chosen from Kj [v0], we

enter Level 1 with {v0, v1} and the corresponding set P [v0, v1] =
⋃j

i=0 Bi[v0].
Note that for any p ∈ P [v0, v1], we have dist(p, Aff(v0)) ≤ 2dist(v1, Aff(v0)).

Level 1: Suppose we have entered this level with {v0, v1} and P [v0, v1]. We
partition P [v0, v1] into λ + 1 buckets. The 0’th bucket B0[v0, v1] contains all the
points of P [v0, v1] that lie on Aff({v0, v1}). (Note that Aff({v0, v1}) is simply the
line through v0 and v1.) For 1 ≤ i ≤ λ, the i’th bucket Bi[v0, v1] contains all
points p ∈ P [v0, v1] such that cd2

i−1/∆d ≤ dist(p, Aff({v0, v1})) < cd2
i/∆d. By

Proposition 1, we do indeed have a partition of P [v0, v1].
Let u1 = v1 − proj(v1, Aff({v0})). Cover the “rectangle”

R[v0, v1] = v0 + {a1u1| − 2 ≤ a1 ≤ 2}

by O(1/ε) copies of translates of the scaled down rectangle

R′[v0, v1] = {
ε

2
c′da1u1|0 ≤ a1 ≤ 1}.

Here, c′d > 0 is the constant in Lemma 1. Note that the bigger rectangle
R[v0, v1] lies on Aff({v0, v1}) and contains B0[v0, v1]. For each of the O(1/ε)
copies of R′[v0, v1], we compute a (k − 1, ε) coreset of the points of B0[v0, v1]
contained in that copy, and add all these coreset points to Q.

For each 1 ≤ i ≤ λ, we construct a (k − 1, ε) coreset Ki[v0, v1] of Bi[v0, v1]

and add Ki[v0, v1] to Q. Each point in
⋃λ

i=1 Ki[v0, v1] is a choice for v2. If v2 is
chosen from Kj [v0, v1], we enter Level 2 with {v0, v1, v2} and the corresponding

set P [v0, v1, v2] =
⋃j

i=0 Bi[v0, v1]. Note that for any p ∈ P [v0, v1, v2], we have
dist(p, Aff(v0, v1)) ≤ 2dist(v2, Aff(v0, v1)).

Level t (2 ≤ t < d): Suppose we have entered this level with {v0, . . . , vt}
and P [v0, . . . , vt]. We partition P [v0, . . . , vt] into λ + 1 buckets. The 0’th bucket
B0[v0, . . . , vt] contains all the points of P [v0, . . . , vt] that lie on Aff({v0, . . . , vt}).
For 1 ≤ i ≤ λ, the i’th bucket Bi[v0, . . . , vt] contains all points p ∈ P [v0, . . . , vt]

such that cd2
i−1/∆d ≤ dist(p, Aff({v0, . . . , vt})) < cd2

i/∆d. By Proposition 1,
we do indeed have a partition of P [v0, . . . , vt].

For 1 ≤ i ≤ t, let ui denote the vector vi−proj(vi, Aff({v0, . . . , vi−1})). Cover
the rectangle

R[v0, . . . , vt] = v0 + {a1u1 + a2u2 + · · · + atut| − 2 ≤ ai ≤ 2}

by O(1/εt) copies of translates of the scaled down rectangle

R′[v0, . . . , vt] = {
ε

2
c′d(a1u1 + a2u2 + · · · + atut)|0 ≤ ai ≤ 1}.

Note that the bigger rectangle R[v0, . . . , vt] lies on Aff({v0, . . . , vt}) and con-
tains B0[v0, . . . , vt]. For each of the O(1/εt) copies of R′[v0, . . . , vt], we compute
a (k−1, ε) coreset of the points of B0[v0, . . . , vt] contained in that copy, and add
all these coreset points to Q.

For each 1 ≤ i ≤ λ, we construct a (k − 1, ε) coreset Ki[v0, . . . , vt] of

Bi[v0, . . . , vt] and add Ki[v0, . . . , vt] to Q. Each point in
⋃λ

i=1 Ki[v0, . . . , vt] is a
choice for vt+1. If vt+1 is chosen from Kj [v0, . . . , vt], we enter Level t + 1 with

{v0, . . . , vt, vt+1} and the corresponding set P [v0, . . . , vt, vt+1] =
⋃j

i=0 Bi[v0, . . . , vt].
Note that for any p ∈ P [v0, . . . , vt+1], we have

dist(p, Aff(v0, . . . , vt)) ≤ 2dist(vt+1, Aff(v0, . . . , vt)).

Level d: Suppose we have entered this level with {v0, . . . , vd} and P [v0, . . . , vd].
For 1 ≤ i ≤ d, let ui denote the vector vi − proj(vi, Aff({v0, . . . , vi−1})). Cover
the rectangle

R[v0, . . . , vd] = v0 + {a1u1 + a2u2 + · · · + adud| − 2 ≤ ai ≤ 2}

by O(1/εd) copies of translates of the scaled down rectangle

R′[v0, . . . , vd] = {
ε

2
c′d(a1u1 + a2u2 + · · · + adud)|0 ≤ ai ≤ 1}.

Note that the bigger rectangle contains P [v0, . . . , vd]. For each of the O(1/εd)
copies, we compute a (k − 1, ε) coreset of the points of P [v0, . . . , vd] contained
in that copy, and add all these coreset points to Q.

This completes the description of the algorithm for computing Q.

Running Time and Size

Let S(k) be an upper bound on the size of a (k, ε) coreset of any subset of points
from D computed by our algorithm. We derive a bound for S(k), for k ≥ 2, using
a bound for S(k − 1), noting that S(1) = O(1/εd−1).

There are S(k−1) choices for v0. For a choice of v0, there are O(log ∆)S(k−
1) choices of v1. For a given choice of v0, . . . , vt (1 ≤ t ≤ d − 1), there are
O(log ∆)S(k−1) choices of vt+1. Thus for 0 ≤ t ≤ d, we may bound the number

of choices v0, . . . , vt by O(logd ∆(S(k− 1))d+1). For each choice of v0, . . . , vt, we
compute (k − 1, ε) coresets O(log ∆ + 1/εd) times. We therefore have

S(k) ≤ O((
log ∆

ε
)d+1)(S(k − 1))d+2.

The bound in Theorem 1 on the size of Q follows from this.

A similar analysis bounds the running time.

Proof of Coreset Property

Let S1, . . . , Sk be any k slabs that cover Q. We argue that an ε-expansion of the
slabs covers P . Suppose the last slab Sk contains no point from K ⊂ Q. Then
since K is a (k − 1, ε) coreset for P , and the first k − 1 slabs S1, . . . , Sk−1 cover
K, their ε-expansion covers P and we are done. Let us therefore assume that
there is some v0 ∈ K that is contained in Sk. We now need to argue that an
ε-expansion of S1, . . . , Sk covers P [v0] = P .

Stage 0: Let j ≥ 1 be the largest integer such that Sk contains some point
from Kj [v0]. If no such j exists, let j = 0. The sets Ki[v0], j + 1 ≤ i ≤ λ, are
contained in the first k − 1 slabs S1, . . . , Sk−1. Thus an ε-expansion of these
slabs covers Bi[v0], j + 1 ≤ i ≤ λ. If j = 0, we are done, since B0[v0] = {v0}

is contained in Sk, and all points in P [v0] =
⋃λ

i=0 Bi[v0] are covered by an
ε-expansion of the slabs.

So let us assume that j ≥ 1. Let v1 ∈ Kj [v0] be a point contained in Sk.
We now need to argue that an ε-expansion of S1, . . . , Sk covers P [v0, v1] =
⋃j

i=0 Bi[v0].

Stage 1: First consider the point set B0[v0, v1] that lies on Aff({v0, v1}). Let
us consider the points of B0[v0, v1] contained in one of the O(1/ε) copies ρ of
R′[v0, v1]. Since a (k − 1, ε) coreset of these points has been added to Q, these
points will be covered by an ε-expansion of the first k − 1 slabs if the slab Sk

does not intersect ρ. So let us assume that Sk does intersect ρ. Since Sk contains
v0, v1, by Lemma 1, it contains a rectangle that is a translate of a scaling of
R′[v0, v1] by a factor of 2/ε. So this copy ρ of R′[v0, v1] is contained in a slab
‘parallel’ to Sk (the hyperplane defining the two slabs are parallel) but whose
width is ε/2 of the width of Sk. Since Sk intersects ρ, we may conclude that an
ε-expansion of Sk covers ρ.

We have just argued that the point set B0[v0, v1] is covered by an ε-expansion
of the k slabs, since each point in B0[v0, v1] is contained in one of the copies of
R′[v0, v1].

Let j ≥ 1 be the largest integer such that Sk contains some point from
Kj [v0, v1]. If no such j exists, set j = 0. The sets Ki[v0, v1], j + 1 ≤ i ≤ λ, are
contained in the first k−1 slabs S1, . . . , Sk−1. Thus an ε-expansion of these slabs
covers Bi[v0, v1], j + 1 ≤ i ≤ λ.

If j = 0, we are done, since all the points in P [v0, v1] =
⋃λ

i=0 Bi[v0, v1] are
covered by an ε-expansion of the k slabs.

So let us assume that j ≥ 1. Let v2 ∈ Kj [v0, v1] be a point contained in Sk.
We now need to argue that an ε-expansion of S1, . . . , Sk covers P [v0, v1, v2] =
⋃j

i=0 Bi[v0, v1].
Stage t (2 ≤ t < d): We enter this stage to argue that an ε-expansion of the

k slabs contains P [v0, . . . , vt], for some choice of v0, . . . , vt that are contained in
Sk.

First consider the point set B0[v0, . . . , vt] that lies on Aff({v0, . . . , vt}). Let
us consider the points of B0[v0, . . . , vt] contained in one of the O(1/εt) copies
ρ of R′[v0, . . . , vt]. Since a (k − 1, ε) coreset of these points has been added to
Q, these points will be covered by an ε-expansion of the first k − 1 slabs if the
slab Sk does not intersect ρ. So let us assume that Sk does intersect ρ. Since
Sk contains v0, . . . , vt, by Lemma 1, it contains a rectangle that is a translate
of a scaling of R′[v0, . . . , vt] by a factor of 2/ε. So this copy ρ of R′[v0, . . . , vt] is
contained in a slab ‘parallel’ to Sk but whose width is ε/2 of the width of Sk.
Since Sk intersects ρ, we may conclude that an ε-expansion of Sk covers ρ.

We have just argued that the point set B0[v0, . . . , vt] is covered by an ε-
expansion of the k slabs, since each point in B0[v0, . . . , vt] is contained in one of
the copies of R′[v0, . . . , vt].

Let j ≥ 1 be the largest integer such that Sk contains some point from
Kj [v0, . . . , vt]. If no such j exists, set j = 0. The sets Ki[v0, . . . , vt], j+1 ≤ i ≤ λ,
are contained in the first k − 1 slabs S1, . . . , Sk−1. Thus an ε-expansion of these
slabs covers Bi[v0, . . . , vt], j + 1 ≤ i ≤ λ.

If j = 0, we are done, since all the points in P [v0, . . . , vt] =
⋃λ

i=0 Bi[v0, . . . , vt]
are covered by an ε-expansion of the k slabs.

So let us assume that j ≥ 1. Let vt+1 ∈ Kj [v0, . . . , vt] be a point con-
tained in Sk. We now need to argue that an ε-expansion of S1, . . . , Sk covers
P [v0, . . . , vt, vt+1] =

⋃j
i=0 Bi[v0, . . . , vt].

Stage d: We enter this stage to argue that an ε-expansion of the k slabs
contains P [v0, . . . , vd], for some choice of v0, . . . , vd that are contained in Sk.
This argument is identical to the argument given above for B0[v0, . . . , vt]. In
fact, P [v0, . . . , vd] may be thought of as B0[v0, . . . , vd].

We have completed the proof of Theorem 1.

Acknowledgements

We thank Piotr Indyk for suggesting the problem that is addressed in this paper,
and Sariel Har-Peled for raising it again.

References

1. P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan, Approximating extent mea-
sures of points, J. Assoc. Comput. Mach., 51 (2004), 606–635.

2. P. K. Agarwal, C. M. Procopiuc, and K. R. Varadarajan, Approximation algorithms
for k-line center, Proc. 10th Annu. European Sympos. Algorithms, 2002, pp. 54–63.

3. G. Barequet and S. Har-Peled, Efficiently approximating the minimum-volume
bounding box of a point set in three dimensions, J. Algorithms, 38 (2001), 91–109.

4. T. M. Chan, Approximating the diameter, width, smallest enclosing cylinder and
minimum-width annulus, Internat. J. Comput. Geom. Appl., 12 (2002), 67–85.

5. T. M. Chan, Faster core-set constructions and data stream algorithms in fixed
dimensions, Proc. 20th Annu. ACM Sympos. Comput. Geom., 2004, pp. 152–159.

6. S. Har-Peled, Clustering motion, Discrete Comput. Geom., 31 (2004), 545–565.
7. S. Har-Peled, No coreset, no cry, Proc. 24th Conf. Found. Soft. Tech. Theoret.

Comput. Sci., 2004.
8. S. Har-Peled and Y. Wang, Shape fitting with outliers, SIAM J. Comput.,

33 (2004), 269–285.

