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ABSTRACT
We give a randomized bi-criteria algorithm for the prob-
lem of finding a k-dimensional subspace that minimizes the
Lp-error for given points, i.e., p-th root of the sum of p-th
powers of distances to given points, for any p ≥ 1. Our
algorithm runs in time Õ

`

mn · k3(k/ε)p+1
´

and produces

a subset of size Õ
`

k2(k/ε)p+1
´

from the given points such
that, with high probability, the span of these points gives
a (1 + ε)-approximation to the optimal k-dimensional sub-
space. We also show a dimension reduction type of result
for this problem where we can efficiently find a subset of size
Õ
`

kp+3 + (k/ε)p+2
´

such that, with high probability, their
span contains a k-dimensional subspace that gives (1 + ε)-
approximation to the optimum. We prove similar results for
the corresponding projective clustering problem where we
need to find multiple k-dimensional subspaces.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms,Theory

Keywords
subspace approximation, projective clustering

1. INTRODUCTION
Low-dimensional representations of massive data sets are

often important in data mining, statistics, and clustering.
We consider the problem of subspace approximation, i.e.,
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we want to find a k-dimensional linear subspace that min-
imizes the sum of p-th powers of distances to given points
a1, a2, . . . , am ∈ R

n, for p ≥ 1. We also consider the corre-
sponding projective clustering problem where instead of one
k-dimensional subspace we want to find s of them such that
the p-th root of the sum of of the p-th powers of distances
from each ai to its nearest subspace is minimized.

The p = 2 case for subspace approximation (also known
as low-rank matrix approximation) is well studied because a
k-dimensional subspace that minimizes the sum of squared
distances is spanned by the top k right singular vectors of
a matrix A ∈ R

m×n (with rows a1, a2, . . . , am), and can be
computed in time O(min{mn2, m2n}) using Singular Value
Decomposition (SVD). Some recent work on p = 2 case [1,
2, 3, 4, 5, 9, 12], initiated by a result due to Frieze, Kannan,
and Vempala [7], has focused on algorithms for computing a
k-dimensional subspace that gives (1 + ε)-approximation to
the optimum in time O(mn · poly(k, 1/ε)), i.e., linear in the
number of co-ordinates we store. Most of these algorithms,
with the exception of [1, 12], depend on subroutines that
sample poly(k, 1/ε) points from given a1, a2, . . . , am with the
guarantee that, with high probability, their span contains a
k-dimensional subspace that gives (1 + ε)-approximation to
the optimum.

When p 6= 2 we have neither the luxury of a tool like SVD,
nor any simple description of an optimal subspace (such as
the span of top few right singular vectors). We show that one
can get around this difficulty by generalizing and modifying
some of the sampling techniques used in low-rank matrix
approximation. Our proofs are of geometric nature though,
significantly different from the linear algebraic tools used in
low-rank matrix approximation. For a recent review of re-
lated work on the subspace approximation problem, includ-
ing the cases p = 2 and p = ∞ (where we want a subspace
that minimizes the maximum distance to the points), we
refer the reader to [13].

2. OUR RESULTS
We state our problems once again.

Subspace Approximation Problem:

Given points a1, a2, . . . , am ∈ R
n and k > 0, we want to

find a k-dimensional linear subspace H that minimizes the
Lp-error

 

m
X

i=1

d(ai, H)p

! 1

p

.

We denote an optimal subspace by H∗
k .



Subspace Projective Clustering:

Given points a1, a2, . . . , am ∈ R
n and k, s > 0, we want

to find k-dimensional linear subspaces H[1], H[2], . . . , H[s]

that minimize the error
`Pm

i=1 d(ai, H)p
´ 1

p , where H de-
notes H[1] ∪ H[2] ∪ · · · ∪ H[s]. Let H∗[1], . . . , H∗[s] de-
note the optimal subspaces and let H∗ denote their union
H∗[1] ∪ · · · ∪H∗[s].

We now state our results and relate them to other relevant
results:

1. We first obtain a bi-criteria result: a randomized algo-
rithm that runs in Õ

`

mn · k3(k/ε)p+1
´

time and finds

a Õ
`

k2(k/ε)p+1
´

-dimensional subspace whose error is,
with a probability of at least 1/2, at most (1+ε) times
the error of an optimal k-dimensional subspace, (Note:

We use the notation Õ(·) to hide small polylog(k, 1/ε)
factors for the convenience of readers.) We obtain our
results in several steps, using techniques that we be-
lieve are of interest:

(a) In Section 3, we prove that the span of k points
picked using volume sampling has expected er-
ror (k + 1) times the optimum. Since we do not
know how to do volume sampling exactly in an ef-
ficient manner, Section 3.2 describes an efficient
procedure to implement volume sampling approx-
imately with a weaker multiplicative guarantee of
k! · (k + 1).

(b) In Section 4, we show how sampling points pro-
portional to their lengths (or distances from the
span of current sample) can be used to find a

Õ
`

k(k/ε)p+1
´

-dimensional subspace that gives an

additive ε
`Pm

i=1 ‖ai‖
p´1/p

approximation to an
optimal k-dimensional subspace.

(c) We call this method of picking new points with
probabilities proportional to their distances from
the span of current sample as adaptive sampling.
In Section 5, we show that if we start with an ini-
tial subspace V , then using adaptive sampling we
can find Õ

`

k(k/ε)p+1
´

additional points so that
the span of V with these additional points gives

an additive ε
`Pm

i=1 d(ai, V )p
´1/p

approximation
to an optimal k-dimensional subspace. Moreover,
using t rounds of this procedure, this additive

error is brought down to εt
`Pm

i=1 d(ai, V )p
´1/p

.
The ideas used in this section are adaptations of
previous work for the p = 2 case.

(d) Using O(k log k) rounds of the above procedure on
the initial subspace V obtained by approximate
volume sampling (from Procedure 1 above), we
get our bi-criteria result.

2. Our next result is a dimension reduction for the sub-
space approximation problem: We describe an algo-
rithm that runs in mn·poly( k

ε
) time and returns a sub-

space C of dimension Õ
`

kp+3 + (k/ε)p+2
´

that, with
probability at least 1/2, is guaranteed to contain a
k-subspace whose error is at most (1 + ε)H∗

k , for any
ε > 0. This kind of result was known for the case p = 2,

but not for the case p = 1. (For the special case k = 1,
it was implicit in [13]; however, that approach does
not generalize to larger k.) Its importance is precisely
in its being a dimension reduction result – algorithms
developed for the subspace approximation problem in
low or ‘fixed’ dimension, which were designed to op-
timize the dependence on the number of points but
not the dimension, can be plugged in to obtain algo-
rithms with very good dependence on the dimension.
Approximation algorithms for the k-subspace approx-
imation problem in fixed dimension are near linear in
the number of points but exponential in the dimension
[8] – plugging these in yields algorithms whose running
time is comparable to but not significantly better than
the O(mn2poly(k/ε)) algorithm of [13] for p = 1. Note
that the dimension reduction can be seen as reducing
to a constrained instance of the problem in dim(C)+1
dimensions.

The result is obtained by first using the previous bi-
criteria result to obtain a subspace V of dimension
Õ(kp+3) that gives a 2-approximation to the optimal k-
dimensional subspace. Assuming without loss of gener-
ality that V has dimension at least k, the algorithm of
Section 6 uses adaptive sampling to pick Õ

`

(k/ε)p+2
´

points so that the span of V with these new points
contains a k-dimensional subspace that gives a (1 + ε)
approximation to the optimum.

The algorithm of [13], that runs in O(mn2poly(k/ε))
time for p = 1 and returns with probability at least
1/2 a nearly optimal k-subspace, works by first finding
a line ` that lies in a nearly optimal k-subspace, then a
2-subspace B that lies in a nearly optimal k-subspace,
and so on till it finds a nearly optimal k-subspace.
The authors of [13] show that the span of a sample A1

of O(poly(k/ε)) points contains with high probability
such a line `, provided the input points are sampled
in proportion to the norms. However, the algorithm
needs ` and not just A1 – this is because the next stage
for finding B needs to sample based on distances from
`. So they guess `, but the guess works with a proba-
bility that is only inversely proportional to 2poly(k/ε).
This is why their sampling technique is inadequate for
obtaining our dimension reduction result.

We now illustrate how we harness the power of adap-
tive sampling. Consider the case when k = 1, and let
` denote the optimal solution, and V a subspace of
small dimension whose error is within a constant fac-
tor of that of `. Let ˆ̀ denote the projection of ` onto
V – this can be viewed as V ’s proxy for `. It can be
seen that the error of ˆ̀ is within a constant factor of
that of `. But suppose that ˆ̀ is not quite good enough,
that is, the error of ˆ̀ is at least (1 + ε) times that of
`. We would like an input point a that is a witness to
this – it must satisfy d(a, ˆ̀) > (1 + ε/2)d(a, ˆ̀). Such a
point would enlarge V so that the resulting subspace
is closer to ` than V . How can we find a witness given
that we know only V and not ` or ˆ̀ ? The observation
is that adaptive sampling, that is, sampling according
to distances from V , yields a witness with probability
Ω(ε). It is via this observation that we combine adap-
tive sampling with the analysis techniques in [13] to
get our dimension reduction result.



3. The usefulness of the adaptive sampling approach and
the flexibility of our analysis are perhaps best demon-
strated by our result for dimension reduction for pro-
jective clustering. In Section 7, we describe a random-
ized algorithm that runs in O(mn ·poly( ks

ε
)) time and

returns a subspace spanned by poly( ks
ε

) points that is
guaranteed, with probability at least 1/2, to contain
s k-subspaces whose union is a (1 + ε)-approximation
to the optimum H∗. To our knowledge, such a di-
mension reduction result is not known for the projec-
tive clustering problem for any p, including the cases
p = 2 and p = ∞. Previous results for the cases
p = 1, 2,∞ [10, 4, 13] only showed the existence of
such a subspace spanned by poly( ks

ε
) points – the algo-

rithm for finding the subspace enumerated all subsets
of poly( ks

ε
) points. Our dimension reduction result,

combined with the recent fixed-dimensional result of
[6], yields an O(mn · poly( s

ε
) + m(log m)f(s/ε)) time

algorithm for the projective clustering problem with
k = 1. For lack of space, we do not elaborate on this
application to the k = 1 case here.

3. VOLUME SAMPLING
In this section, we show how to find a k-subset of the given

points such that their span gives a crude but reasonable
approximation to the optimal k-dimensional subspace H∗

k

that minimizes the sum of p-th powers of distances to the
given points.

For any subset S ⊆ [m], we define HS to be the linear
subspace, span({ai : i ∈ S}), and ∆S to be the simplex,
Conv ({0̄} ∪ {ai : i ∈ S}). By volume sampling k-subsets
of [m], we mean sampling from the following probability
distribution:

Pr (picking S) = PS =
vol(∆S)p

P

T,|T |=k vol(∆T )p
.

3.1 (k + 1)-approximation using k points

Theorem 1. For any a1, a2, . . . , am ∈ R
n, if we pick a

random k-subset S ⊆ [m] by volume sampling then

ES

"

m
X

i=1

d(ai, HS)p

#

≤ (k + 1)p
m
X

i=1

d(ai, H
∗
k)p.

Proof.

ES

"

m
X

i=1

d(ai, HS)p

#

=
X

S,|S|=k

vol(∆S)p

P

T,|T |=k vol(∆T )p

m
X

i=1

d(ai, HS)p

=
(k + 1)p+1

P

S,|S|=k+1 vol(∆S)p

P

T,|T |=k vol(∆T )p
(1)

For any (k + 1)-subset S, let VS denote an arbitrary but
fixed k-dimensional linear subspace of HS containing the
projection of H∗

k on to HS. Now for any (k + 1)-subset S,
Lemma 2 gives

vol(∆S) ≤
1

(k + 1)

X

i∈S

d(ai, VS) vol
`

∆S\{i}

´

.

Hence, taking p-th power we have

vol(∆S)p

≤
1

(k + 1)p

 

X

i∈S

d(ai, VS) vol
`

∆S\{i}

´

!p

≤
1

(k + 1)p
(k + 1)p−1

X

i∈S

d(ai, VS)p vol
`

∆S\{i}

´p

(by Hölder’s inequality)

≤
1

(k + 1)

X

i∈S

d(ai, VS)p vol
`

∆S\{i}

´p

Summing up over all subsets S of size (k + 1) we get
X

S,|S|=k+1

vol(∆S)p

≤
1

(k + 1)

m
X

i=1

X

T,|T |=k

d(ai, VT∪{i})
p vol(∆T )p

≤
1

(k + 1)

m
X

i=1

X

T,|T |=k

d(ai, H
∗
k )p vol(∆T )p

=
1

(k + 1)

 

m
X

i=1

d(ai, H
∗
k )p

!

0

@

X

T,|T |=k

vol(∆T )p

1

A , (2)

where in the second inequality, the fact that d(ai, VT∪{i}) ≤
d(ai, H

∗
k) is because ai ∈ HT∪{i} and VT∪{i} contains the

projection of H∗
k on to HT∪{i}. Finally, combining equations

(1) and (2) we get

ES

"

m
X

i=1

d(ai, HS)p

#

≤ (k + 1)p
m
X

i=1

d(ai, H
∗
k)p.

Lemma 2. Let S ⊆ [m] be a (k + 1)-subset and V be any
k-dimensional linear subspace of HS. Then

vol(∆S) ≤
1

(k + 1)

X

i∈S

d(ai, V ) vol(∆S\{i}).

Proof. W.l.o.g. we can identify HS with R
k+1 and the

subspace V with span({e2, e3, . . . , ek+1}), where the vectors
{e1, e2, . . . , ek+1} form an orthonormal basis of R

k+1. Let

AS ∈ R
(k+1)×(k+1) be a matrix with rows {ai : i ∈ S}

written in the above basis, and let Cij denote its submatrix
obtained by removing row i and column j. For any k-subset
T ⊆ S, let ∆′

T be the projection of ∆T onto V . Then

vol(∆S) =
1

(k + 1)!
|det(AS)|

=
1

(k + 1)!

˛

˛

˛

˛

˛

X

i∈S

(−1)i+1(AS)i1 det(Ci1)

˛

˛

˛

˛

˛

≤
1

(k + 1)

X

i∈S

|(AS)i1| ·
1

k!
|det(Ci1)|

=
1

(k + 1)

X

i∈S

d(ai, V ) vol(∆′
S\{i})

≤
1

(k + 1)

X

i∈S

d(ai, V ) vol(∆S\{i}),

since vol(∆′
S\{i}) ≤ vol(∆S\{i}).



3.2 Approximate Volume Sampling
Here we describe a simple iterative procedure to do volume

sampling approximately.

Approximate Volume Sampling

1. Initialize S = ∅. While |S| < k do:

(a) Pick a point from the following distribution:

Pr (picking ai) ∝ d(ai, HS)p.

(b) S = S ∪ {i}.

2. Output the k-subset S.

Theorem 3. Let P̃S denote the probability with which the
above procedure picks a k-subset S. Then

P̃S ≤ (k!)p · PS ,

where PS is the true volume sampling probability of S. Thus,

ES

"

m
X

i=1

d(ai, HS)p

#

≤ (k!)p · (k + 1)p
m
X

i=1

d(ai, H
∗
k )p,

where the expectation is over the distribution P̃S. This im-
plies that

ES

2

4

 

m
X

i=1

d(ai, HS)p

! 1

p

3

5 ≤ k! · (k + 1)

 

m
X

i=1

d(ai, H
∗
k )p

! 1

p

Proof. W.l.o.g., let S = {1, 2, . . . , k}, and let Πk be the
set of all permutations of {1, 2, . . . , k}. For any τ ∈ Πk, we

also use H
(j)
τ to denote span({A(τ(1)), A(τ(2)), . . . , A(τ(j))}).

P̃S

=
X

τ∈Πk

‚

‚aτ(1)

‚

‚

p

Pm
i=1 ‖ai‖

p

d(aτ(2), H
1
τ )p

Pm
i=1 d(ai, H1

τ )p
· · ·

d(aτ(k), H
k−1
τ )p

Pm
i=1 d(ai, H

k−1
τ )p

≤ |Πk|
(k!)p vol(∆S)p

Pm
i=1 ‖ai‖

p ·
Pm

i=1 d(ai, H∗
1 )p · · ·

Pm
i=1 d(ai, H∗

k−1)
p

= PS ·
(k!)p+1 P

S,|S|=k vol(∆S)p

Pm
i=1 ‖ai‖

p ·
Pm

i=1 d(ai, H∗
1 )p · · ·

Pm
i=1 d(ai, H∗

k−1)
p
.

Therefore,

P̃S

PS
≤

(k!)p+1 P

S,|S|=k vol(∆S)p

Pm
i=1 ‖ai‖

p ·
Pm

i=1 d(ai, H∗
1 )p · · ·

Pm
i=1 d(ai, H∗

k−1)
p
.

Now we claim the following, which completes the proof.
Claim:

k!
P

S,|S|=k vol(∆S)p

Pm
i=1 ‖ai‖

p ·
Pm

i=1 d(ai, H∗
1 )p · · ·

Pm
i=1 d(ai, H∗

k−1)
p
≤ 1.

Now we will prove the above claim using induction on k.
The k = 1 case is obvious. For k > 1, we can proceed as for

equation (2) (replacing k + 1 with k) to get

k!
P

S,|S|=k vol(∆S)p

Pm
i=1 ‖ai‖

p ·
Pm

i=1 d(ai, H∗
1 )p · · ·

Pm
i=1 d(ai, H∗

k−1)
p

≤
(k − 1)!

“

P

T,|T |=k−1 vol(∆T )p
”

`Pm
i=1 d(ai, H

∗
k−1)

p
´

Pm
i=1 ‖ai‖

p ·
Pm

i=1 d(ai, H∗
1 )p · · ·

Pm
i=1 d(ai, H∗

k−1)
p

≤
(k − 1)!

P

T,|T |=k−1 vol(∆T )p

Pm
i=1 ‖ai‖

p ·
Pm

i=1 d(ai, H∗
1 )p · · ·

Pm
i=1 d(ai, H∗

k−2)
p

≤ 1,

by induction hypothesis for the (k − 1) case.

4. ADDITIVE APPROXIMATION
We prove bounds on the subspaces that we find in terms

of any k-subspace H of R
n, which therefore, also hold for

the optimal subspace H∗
k .

4.1 Finding a close line
Given any k-dimensional subspace H and a line l, we de-

fine Hl as follows. If l is not orthogonal to H, then its
projection onto H is a line, say l′. Let H ′ be the (k − 1)-
dimensional subspace of H that is orthogonal to l′. Then
we define Hl = span(H ′ ∪ l). In short, Hl is a rotation of H
so as to contain line l. In case when l is orthogonal to H, we
define Hl = span(H ′∪l), where H ′ is any (k−1)-dimensional
subspace of H.

Lemma 4. Let S be a sample of O ((2k/ε)p (k/ε) log(k/ε))
i.i.d. points from a1, a2, . . . , am using the following distribu-
tion:

Pr (picking ai) ∝ ‖ai‖
p

then, with probability at least 1 − (ε/k)k/ε, HS contains a
line l such that
 

m
X

i=1

d(ai, Hl)
p

! 1

p

≤

 

m
X

i=1

d(ai, H)p

! 1

p

+
ε

k

 

m
X

i=1

‖ai‖
p

! 1

p

,

where Hl is defined as above.
Remark: It means that there exists a k-dimensional sub-
space Hl, within an additive error of the optimal, that inter-
sects HS in at least one dimension.

Proof. Let l1 be the line spanned by the first point in
our sample, and let θ1 be its angle with H. In general, let lj
be the line in the span of the first j sample points that makes
the smallest angle with H, and let θj denote this smallest
angle.

Consider the (j + 1)-th sample point for some j ≥ 1, and
assume that

 

m
X

i=1

d(ai, Hlj )
p

! 1

p

>

 

m
X

i=1

d(ai, H)p

! 1

p

+
ε

k

 

m
X

i=1

‖ai‖
p

! 1

p

. (3)

Define BAD = {i : d(ai, Hlj ) >
`

1 + ε
2k

´

d(ai, H) and
GOOD = [m] \ BAD. We claim that

X

i∈BAD

‖ai‖
p >

“ ε

2k

”p
m
X

i=1

‖ai‖
p . (4)



Because, otherwise, using Minkowski’s inequality, the trian-
gle inequality for the Lp norm,

 

m
X

i=1

d(ai, Hlj )
p

!1/p

≤

 

X

i∈GOOD

d(ai, Hlj )
p

!1/p

+

 

X

i∈BAD

d(ai, Hlj )
p

!1/p

≤
“

1 +
ε

2k

”

 

X

i∈GOOD

d(ai, H)p

!1/p

+

 

X

i∈BAD

‖ai‖
p

!1/p

≤
“

1 +
ε

2k

”

 

m
X

i=1

d(ai, H)p

!1/p

+
ε

2k

 

m
X

i=1

‖ai‖
p

!1/p

≤

 

m
X

i=1

d(ai, H)p

!1/p

+
ε

k

 

m
X

i=1

‖ai‖
p

!1/p

,

contradicting our assumption about Hlj as in equation (3).
Inequality (4) implies that with probability at least (ε/2k)p

we pick as our (j +1)-th point ai with i ∈ BAD and by def-
inition

d(ai, Hlj ) ≥
“

1 +
ε

2k

”

d(ai, H).

Now, by Lemma 12, there exists a line l′ in span({ai} ∪ lj)
such that the sine of the angle that l′ makes with H is at
most (1 − ε/4k) sin θj . This implies that

sin θj+1 ≤
“

1−
ε

4k

”

sin θj .

Let us call the (j + 1)-th sample a success if either (a)
the inequality (3) fails to hold, or (b) the inequality (3)
holds but sin θj+1 ≤ (1− ε/4k) sin θj . We conclude that the
probability that the (j +1)-th sample is a success is at least
(ε/2k)p.

Let N denote the number of times our algorithm sam-
ples, and suppose that there are Ω ((k/ε) log(k/ε)) successes
among the samples 2, . . . , N . If inequality (3) fails to hold
for some 1 ≤ j ≤ N − 1, then HS contains a line, namely lj ,
that satisfies the inequality claimed in the Lemma. Let us
assume that the inequality (3) holds for every 1 ≤ j ≤ N−1.
Clearly, we have sin θj+1 ≤ sin θj for each 1 ≤ j ≤ N − 1
and furthermore we have sin θj+1 ≤ (1 − ε/4k) sin θj if the
(j + 1)-th sample is a success. Therefore

sin θN ≤
“

1 −
ε

4k

”Ω((k/ε) log(k/ε))

sin θ0 ≤
ε

k
.

Now using Minkowski’s inequality we have
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d(ai, HlN )p
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i=1

d(ai, H)p

! 1

p

+

 

m
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i=1

d(āi, a
′
i)

p

! 1

p

,

where āi is the projection of ai onto H, and a′
i is the pro-

jection of āi onto HlN . But d(āi, a
′
i) ≤ sin θN ‖ai‖, which

implies

 

m
X

i=1

d(ai, HlN )p

! 1

p

≤

 

m
X

i=1

d(ai, H)p

! 1

p

+
ε

k

 

m
X

i=1

‖ai‖
p

! 1

p

.

Thus HS contains the line lN that satisfies the inequality
claimed in the Lemma.

Our algorithm samples O ((2k/ε)p(k/ε) log(k/ε)) times,
and the probability that a sample is a success is at least
(ε/2k)p. Using the Chernoff inequality with some care, we

conclude that with a probability of at least 1−(ε/k)k/ε, there
are at least Ω ((k/ε) log(k/ε)) successes among the samples
2, . . . , N . This completes the proof.

4.2 From line to subspace

Additive Approximation

Input: a1, a2, . . . , am ∈ R
n, k > 0.

Output: a subset S ⊆ [m] of Õ
`

k · (k/ε)p+1
´

points.

1. Repeat the following O(k log k) times and pick
the best sample S amongst all that minimizes
Pm

i=1 d(ai, HS)p.

2. Initialize S = S0 = ∅, δ = ε/ log k. For t = 1 to k
do:

(a) Pick a sample St of
O ((2k/δ)p(k/δ) log(k/δ)) points from
the following distribution:

Pr (picking ai) ∝ d(ai, HS)p.

(b) S ← S ∪ St.

Theorem 5. The above algorithm returns a subset S ⊆
[m] of O (k · (2k/δ)p(k/δ) log(k/δ)) points such that

 

m
X

i=1

d(ai, HS)p

! 1

p

≤

 

m
X

i=1

d(ai, H)p

! 1

p

+ ε

 

m
X

i=1

‖ai‖
p

! 1

p

.

with probability at least 1− 1/k.

Proof. For a start, let us only look at step 2. From
Lemma 4, we know that there exists a k-dimensional sub-
space F1 such that dim(F1 ∩HS1

) ≥ 1 and

 

m
X

i=1

d(ai, F1)
p

! 1

p

≤

 

m
X

i=1

d(ai, H)p

! 1

p

+
δ

k

 

m
X

i=1

‖ai‖
p

! 1

p

,

with probability at least

1−

„

δ

k

«k/δ

.

Let π1 be the orthogonal projection onto (HS1
)⊥. Consider

a new set of points π1(ai) and a new subspace π1(F1) of
dimension j ≤ k−1. Using Lemma 4 for the new points and
subspace, we get that there exists a j-dimensional subspace



F2 in (HS1
)⊥ such that dim(F2 ∩ π1(HS2

)) ≥ min{j, 1} and

 

m
X

i=1

d(π1(ai), F2))
p

! 1

p

≤

 

m
X

i=1

d(π1(ai), π1(F1))
p

! 1

p

+
δ

k − 1

 

m
X

i=1

‖π1(ai)‖
p

! 1

p

≤

 

m
X

i=1

d(ai, F1)
p

! 1

p

+
δ

k − 1

 

m
X

i=1

‖ai‖
p

! 1

p

≤

 

m
X

i=1

d(ai, H)p

! 1

p

+ δ

„

1

k
+

1

k − 1

«

 

m
X

i=1

‖ai‖
p

! 1

p

,

with probability at least

 

1−

„

δ

k

«k
δ

! 

1−

„

δ

k − 1

«
k−1

δ

!

.

Proceeding similarly for k steps, we have a subspace Fk in
the orthogonal complement of HS1∪···∪Sk−1

such that (1)
dim(Fk) ≤ 1, (2) dim(Fk ∩ πk−1(HSk

)) ≥ min{dim(Fk), 1},
where πt denotes projection to the orthogonal complement
of HS1∪···∪St , and (3)

 

m
X

i=1

d(πk−1(ai), Fk)p

! 1

p

≤

 

m
X

i=1

d(ai, H)p

! 1

p

+ δ

„

1

k
+

1

k − 1
+ · · · + 1

«

 

m
X

i=1

‖ai‖
p

! 1

p

,

with probability at least
„

1 −
δ

k

«„

1 −
δ

k − 1

«

· · · ≥
1 − δ

k
≥

1

2k
.

The conditions (1) and (2) imply that Fk ⊆ πk−1(HSk
).

Therefore with S = S1 ∪ · · · ∪ Sk, we have d(ai, HS) =
‖πk(ai)‖ ≤ d(πk−1(ai), πk−1(HSk

)) ≤ d(πk−1(ai), Fk), for
all i. Hence,

 

m
X

i=1

d(ai, HS)p

! 1

p

≤

 

m
X

i=1

d(ai, H)p

! 1

p

+ δ O(log k)

 

m
X

i=1

‖ai‖
p

! 1

p

=

 

m
X

i=1

d(ai, H)p

! 1

p

+ ε

 

m
X

i=1

‖ai‖
p

! 1

p

,

with probability at least 1/2k. Repeating this O(k log k)
times boosts the success probability to 1− 1/k.

5. ADAPTIVE SAMPLING
By adaptive sampling we mean picking a subset S of points

and then sampling new points with probabilities propor-
tional to their distances from HS. The benefits of doing this
were implicit in the previous sections, but here we introduce
the most important one: additive error drops exponentially
with the number of rounds of adaptive sampling.

5.1 Exponential drop in additive error
Proposition 6. Suppose we have an initial subspace V

of R
n. Then we can find a sample S of Õ

`

k · (k/ε)p+1
´

rows
such that

 

m
X

i=1

d(ai, span(V ∪HS))p

! 1

p

≤

 

m
X

i=1

d(ai, H)p

! 1

p

+ ε

 

m
X

i=1

d(ai, V )p

! 1

p

,

with probability at least 1− 1/k.

Proof. Use a new points set π(ai) and a new subspace
π(H), where π(·) is orthogonal projection onto V ⊥. Now
using Theorem 5 we get

 

m
X

i=1

d(π(ai), π(HS))p

! 1

p

≤

 

m
X

i=1

d(π(ai), π(H))p

! 1

p

+ ε

 

m
X

i=1

‖π(ai)‖
p

! 1

p

.

And the proof follows by using

d(ai, span(V ∪HS)) ≤ d(π(ai), π(HS)), for all i.

Theorem 7. Suppose we have an initial subspace V of
R

n. Then using t rounds of adaptive sampling we can find
subsets S1, S2, . . . , St ⊆ [m] with

|S1 ∪ S2 ∪ · · · ∪ St| = Õ
`

tk · (k/ε)p+1
´

,

such that
 

m
X

i=1

d(ai, span(V ∪HS1∪···∪St))
p

! 1

p

≤
1

1 − ε

 

m
X

i=1

(ai, H)p

! 1

p

+ εt

 

m
X

i=1

d(ai, V )p

! 1

p

,

with probability at least (1− 1/k)t.

Proof. using Proposition 6 in t rounds by induction.

5.2 Combining volume and adaptive sampling
We can combine volume sampling and adaptive sampling

to give a bi-criteria algorithm for subspace approximation.
The algorithm (implicit in Theorem 8 below) finds a

Õ
`

k2(k/ε)p+1
´

-dimensional subspace whose error is at most
(1 + ε) times the error of the best k-dimensional subspace.

Theorem 8. Let V = span(S0), where S0 is a k-subset
of rows picked by Approximate Volume Sampling procedure
(see Subsection 3.2), t = O(k log k), and S1, S2, . . . , St as in
Theorem 7. Then

 

m
X

i=1

d(ai, HS0∪···∪St)
p

! 1

p

≤ (1 + ε)

 

m
X

i=1

d(ai, H)p

! 1

p

,



with probability 1/k. Repeating O(k) times we can boost this
success probability to 3/4, and the subset we find is of size

|S0 ∪ S1 ∪ . . . ∪ St| = Õ
`

k2(k/ε)p+1
´

.

Computation of these subsets takes time effectively
Õ
`

mn · k3(k/ε)p+1
´

.

Proof. Immediate from Theorem 7.

6. DIMENSION REDUCTION FOR
SUBSPACE APPROXIMATION

Dimension Reduction

Input: a1, a2, . . . , am ∈ R
n, k > 0, and a subspace V of

dimension at least k.
Output: a subset S ⊆ [m] of
O
`

(k/ε)p · k2/ε · log(k/ε)
´

.

1. Initialize S = ∅. While |S| <
O
`

(20k/ε)p · k2/ε · log(k/ε)
´

do:

(a) Pick a point ai from the following distribution:

Pr (picking ai) ∝ d(ai, span(V ∪HS))p.

(b) S ← S ∪ {ai}.

2. Output S.

Theorem 9. Using a subspace V of dimension at least k
with the guarantee

 

m
X

i=1

d(ai, V )p

! 1

p

≤ 2

 

m
X

i=1

d(ai, H
∗
k)p

! 1

p

,

the above algorithm finds, with probability that is at least

1 − (ε/2k)2k2/ε, S such that span(V ∪ HS) contains a k-
dimensional subspace H ′ satisfying

 

m
X

i=1

d(ai, H
′)p

! 1

p

≤ (1 + ε)

 

m
X

i=1

d(ai, H
∗
k )p

! 1

p

.

Proof. Let δ = ε
2k

. For simplicity, we divide the steps
of our algorithm into phases. Phase j, for 0 ≤ j ≤ k, means
that for the current sample S, there exists a k-dimensional
subspace Fj such that dim(Fj ∩ span(V ∪HS)) ≥ j and

 

m
X

i=1

d(ai, Fj)
p

! 1

p

≤ (1 + δ)j

 

m
X

i=1

d(ai, H
∗
k )p

! 1

p

.

So once a step is in phase j, all the steps following it must
be in phase j′, for some j′ ≥ j. Reaching phase k implies
that we are done because then Fk ⊆ span(V ∪HS) and

 

m
X

i=1

d(ai, Fk)p

! 1

p

≤ (1 + δ)k

 

m
X

i=1

d(ai, H
∗
k)p

! 1

p

≤ (1 + ε)

 

m
X

i=1

d(ai, H
∗
k)p

! 1

p

.

At the beginning of the algorithm, say dim(V ∩ H∗
k ) = j.

Then we attempt to execute the first step of the algorithm
in phase j by taking Fj = H∗

k .
Consider the situation when we are attempting to ex-

ecute the first step in phase j. Let us call G = Fj ∩

span(V ∪ HS); G will be a j-dimensional subspace. Let
F o

j and V o be the orthogonal complements of G in Fj and
span(V ∪ HS), respectively. Let l be the line in F o

j that
makes the smallest angle with V o, and lo be the line in V o

that makes this angle with l. This smallest angle must be
positive because we are trying to execute in phase j. Let
F̂ o be the rotation of F o

j so as to contain lo, and F̂ be

the k-dimensional subspace given by span(F̂ o ∪ G). Note

that dim(F̂ ∩ span(V ∪ HS)) = j′, for some j′ > j. If
“

Pm
i=1 d(ai, F̂ )p

”1/p

≤ (1+δ)
`Pm

i=1 d(ai, Fj)
p
´1/p

, then we

do not execute in phase j but attempt to execute it in phase
j′ with Fj′ = F̂ .

Now consider the situation after zero or more steps have
executed in phase j, when we may have added a few dimen-
sions to get our new span(V ∪HS). Let l be the line in F o

j

that is closest to the new V o, i.e., orthogonal complement
of the old G in the new span span(V ∪HS), and α′

j be the
sine of its angle to the new V o, i.e., there exists a line lo in
V o such that α′

j is the sine of the angle between l and lo.
There are some cases:

1. α′
j = 0 means that dim(Fj ∩ span(V ∪HS)) = j′, for

some j′ > j and we will attempt to execute the next
step in phase j′ with Fj′ = Fj .

2. α′
j > 0. As before, let F̂ o be the rotation of F o

j so

as to contain lo, and F̂ be the k-dimensional subspace
given by span(F̂ o ∪ G).

(a) If it is the case that
“

Pm
i=1 d(ai, F̂ )p

”1/p

≤ (1 +

δ)
`
Pm

i=1 d(ai, Fj)
p
´1/p

, then as before we con-
sider the next step in some phase j′ > j with
Fj′ = F̂ .

(b) Otherwise, we consider the next step in phase j
itself.

Once we attempt to execute a step in phase k, then all
subsequent steps will simply execute in phase k. Thus we
have completely classified all the steps of our algorithm into
(k + 1) phases. Now we will show that the algorithm suc-
ceeds, i.e., it executes some step in phase k, with high prob-
ability. To do this, we need to show that each phase contains
few steps. Let us call a step of the algorithm good if (i) ei-
ther the step executes in phase k, or (ii) the step executes
in some phase j < k and the point ai sampled in the step
has the property that d(ao

i , F̂
o) > (1 + δ/2)d(ao

i , F
o
j ), where

for any point ai, ao
i denotes the projection of ai into the

orthogonal complement of G.
Consider some phase j < k in which we execute one or

more steps. We bound the number of good steps in phase
j. Let us use αj to denote the sine of the angle between `o

and ` before the execution of the first step in the phase, and
α′

j to denote the same quantity at any subsequent point in
the phase. We first bound αj . Let āi denote the projection
of ai onto Fj , and āo

i denote the projection of āi into the
orthogonal complement of G. Focussing on the beginning of
phase j, we have



αj

 

m
X

i=1

‖āo
i ‖

p

! 1

p

≤

 

m
X

i=1

d(āo
i , V

o)p

! 1

p

=

 

m
X

i=1

d(āi, span(V ∪HS))p

! 1

p

≤

 

m
X

i=1

d(āi, ai)
p

! 1

p

+

 

m
X

i=1

d(ai, span(V ∪HS))p

! 1

p

(by Minkowski’s inequality)

=

 

m
X

i=1

d(ai, Fj)
p

! 1

p

+

 

m
X

i=1

d(ai, span(V ∪HS))p

! 1

p

≤
“

2 + (1 + δ)j
”

 

m
X

i=1

d(ai, H
∗
k )p

! 1

p

≤ 4

 

m
X

i=1

d(ai, H
∗
k )p

! 1

p

, (5)

where in the penultimate inequality we use δ < 1/2k and
our initial assumption about V .

If a step in phase j is good, then by Lemma 12, there is
a line in span(ao

i , l
o) for which the sine of its angle with F o

j

is at most (1 − δ/4) times the value of α′
j before the step.

(Here ai is the point that is sampled in the good step.) That
is, the value of α′

j after the step is at most (1 − δ/4) times
its previous value.

Hence, if we encounter O(1/δ log 1/δ) good steps in phase
j, then after these steps we have α′

j ≤ (δ/4)αj . Hence,

 

m
X

i=1

d(ai, F̂ )p

! 1

p

≤

 

m
X

i=1

d(ai, āi)
p

! 1

p

+

 

m
X

i=1

d(āi, F̂ )p

! 1

p

(by Minkowski’s inequality)

≤

 

m
X

i=1

d(ai, Fj)
p

! 1

p

+

 

m
X

i=1

d(āi, F̂ )p

! 1

p

=

 

m
X

i=1

d(ai, Fj)
p

! 1

p

+

 

m
X

i=1

d(āo
i , F̂

o)p

! 1

p

≤

 

m
X

i=1

d(ai, Fj)
p

! 1

p

+ α′
j

 

m
X

i=1

‖āo
i ‖

p

! 1

p

≤

 

m
X

i=1

d(ai, Fj)
p

! 1

p

+
δ

4
αj

 

m
X

i=1

‖āo
i ‖

p

! 1

p

≤ (1 + δ)

 

m
X

i=1

d(ai, Fj)
p

! 1

p

,

where in the last inequality we used equation (5). This im-
plies that the next step will be in phase j′, for some j′ > j,

according to our case analysis of phases. We conclude that
a phase will not see more than O(1/δ log 1/δ) good steps.

Our algorithm executes N = O ((10/δ)p · k/δ · log(1/δ))
steps. The event that it fails to reach phase k in these many
steps implies the event that it had less than O(k/δ log 1/δ)
good steps in its entire execution. From Lemma 10, we know
that a step is good with probability at least (δ/10)p. Thus
the probability that the algorithm fails to reach phase k in
N steps is bounded by δk/δ.

Therefore, with probability at least 1 − δk/δ, in the end
span(V ∪HS) contains a subspace H ′ of dimension k such
that

 

m
X

i=1

d(ai, H
′)p

! 1

p

≤ (1 + δ)k

 

m
X

i=1

d(ai, H
∗
k)p

! 1

p

≤ (1 + ε)

 

m
X

i=1

d(ai, H
∗
k )p

! 1

p

.

Lemma 10. Suppose that the current step of our algo-
rithm is in phase j < k. Then with probability at least
(δ/10)p, the point ai sampled in the step has the property

that d(ao
i , F̂

o) > (1 + δ/2)d(ao
i , F

o
j ).

Proof. We must have

 

m
X

i=1

d(ai, F̂ )p

! 1

p

> (1 + δ)

 

m
X

i=1

d(ai, Fj)
p

! 1

p

, (6)

according to our case analysis of phases. We call a point ai

“witness” if

d(ai, F̂ ) >

„

1 +
δ

2

«

d(ai, Fj).

Let W ⊆ [m] correspond to the set of all “witness” points.
We claim that

 

X

i∈W

d(ai, span(V ∪HS))p

! 1

p

≥
δ

10

 

m
X

i=1

d(ai, span(V ∪HS))p

! 1

p

,

for the current sample S, that is, with probability at least
(δ/10)p our algorithm picks a “witness” point ai in the next
step. Suppose this is not the case. Then, let hi be the
projection of ai onto span(V ∪HS).

We have d(ai, F̂ ) ≤
`

1 + δ
2

´

d(ai, Fj) for i ∈ [m] \W , and
for i ∈ W , we have

d(ai, F̂ ) ≤ d(ai, hi) + d(hi, F̂ )

≤ d(ai, hi) + d(hi, Fj)

(because for any h ∈ span(V ∪HS), d(h, F̂ ) ≤ d(h, Fj))

≤ 2d(ai, hi) + d(ai, Fj)

≤

„

1 +
δ

2

«

d(ai, Fj) + 2d(ai, hi).



Using these with Minkowski’s inequality, we get

 

m
X

i=1

d(ai, F̂ )p

! 1

p

≤

„

1 +
δ

2

«

 

m
X

i=1

d(ai, Fj)
p

! 1

p

+ 2

 

X

i∈W

d(ai, hi)
p

! 1

p

≤

„

1 +
δ

2

«

 

m
X

i=1

d(ai, Fj)
p

! 1

p

+
2δ

10

 

m
X

i=1

d(ai, span(V ∪HS))p

! 1

p

≤

„

1 +
δ

2

«

 

m
X

i=1

d(ai, Fj)
p

! 1

p

+
2δ

5

 

m
X

i=1

d(ai, H
∗
k )p

! 1

p

(by initial assumption on V in Theorem 9)

≤ (1 + δ)

 

m
X

i=1

d(ai, Fj)
p

! 1

p

,

which is a contradiction to our assumption (see equation
(6)).

Therefore, with probability at least (δ/10)p, the point ai

picked in the next step is a “witness” point. This means

d(ao
i , F̂

o) = d(ai, F̂ )

>

„

1 +
δ

2

«

d(ai, Fj)

=

„

1 +
δ

2

«

d(ao
i , F

o
j ).

7. DIMENSION REDUCTION FOR
PROJECTIVE CLUSTERING

Let A = {a1, . . . , am} ⊆ R
n be the set of input points, and

k, s > 0 be integer parameters. We wish to find subspaces

H[1], . . . , H[s] that minimize
`Pm

i=1 d(ai, H)p
´1/p

where, H
denotes H[1] ∪ · · · ∪ H[s]. Let H∗[1], . . . , H∗[s] denote the
optimal set of subspaces, and H∗ denote their union.

Dimension Reduction for Projective Clustering

Input: a1, a2, . . . , am ∈ R
n, k, s > 0, and a subspace V

of dimension at least k.
Output: a subset S ⊆ [m] of size Õ

““

k2

ε

”p
k4s
ε2

”

1. Initialize S = ∅. Until |S| < Õ
““

k2

ε

”p
k4s
ε2

”

do:

(a) Pick a point ai from the following distribution:

Pr (picking ai) ∝ d(ai, span(V ∪HS)).

(b) S ← S ∪ {ai}.

2. Output S.

Theorem 11. Using a subspace V of dimension at least
k with the guarantee

 

m
X

i=1

d(ai, V )p

!1/p

≤ 2

 

m
X

i=1

d(ai, H
∗)p

!1/p

,

the above algorithm finds, with probability at least 1−1/4ks,
S such that span(V ∪HS) contains a s k-dimensional sub-
spaces H ′[1], . . . , H ′[s] satisfying

 

m
X

i=1

d(ai, H
′)p

!1/p

≤ (1 + ε)

 

m
X

i=1

d(ai, H
∗)p

!1/p

,

where H ′ denotes H ′[1] ∪ . . . ∪H ′[s].

Proof. At a high level, the proof is analogous to that of
Theorem 9 but is omitted for lack of space.
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APPENDIX
A. ANGLE-DROP LEMMA

Lemma 12. Let F be a k-subspace in R
n for some k > 0,

l′ be any line, α(l′) the sine of the angle that l′ makes with
F , l the projection of l′ onto F (if α(l′) = 1 then take l to
be any line in F ), E the orthogonal complement of l in F ,

and F̂ the subspace spanned by E and l′. That is, F̂ is the
rotation of F so as to contain l′. Suppose that a ∈ R

n is
such that d(a, F̂ ) > (1+ δ/2)d(a, F ). Then there is a line l′′

in the subspace spanned by l′ and a such that α(l′′), the sine
of the angle made by l′′ with F , is at most (1− δ

4
)α(l′).

Proof. The proof is from [13], and is presented here for
completeness. Let πE(·) denote the projection onto E. Note
that πE(l′) is just the origin o. Let ā denote the projec-

tion of a onto F , and a′ the projection of ā onto F̂ . Since
d(a, F̂ ) > (1 + δ/2)d(a, F ), we have |aa′| > (1 + δ/2)|aā|.
Elementary geometric reasoning about the triangle 4aa′ā
(see for example Lemma 2.1 of [13]) tells us that there is a
point s on the segment a′a such that |ās| ≤ (1− δ/4)|āa′|.

Let â = πE(a) = πE(ā) = πE(a′). We verify that the
point q′ = a′ − â lies on the line l′. Considering 4aa′q′,

and recalling that s lies on a′a, we see that there is a point
q on the segment q′a such that q − s is a scaling of −â. (If
â = o, q′ and q degenerate to a′ and s respectively.) Let
e be the point on the line {ā − tâ|t ∈ R} closest to q. (If
â = o, then e = ā.) It is easy to verify that |eq| ≤ |ās| since
ā and s are on lines parallel to −â and |eq| is the distance
between these lines. Finally, let e′ be the projection of e
onto F̂ . Since e is a translation of ā by a vector that is scale
of −â and which therefore lies in F̂ , we have |āa′| = |ee′|.
So we have

|eq| ≤ |ās| ≤

„

1−
δ

4

«

|āa′| =

„

1 −
δ

4

«

|ee′|.

We take l′′ to be the line through q. Note that l′′ indeed
lies in the span of l′ and a. To bound α(l′′), it is enough
to bound the sine of the angle between l′′ and l(e), the line
through e, since e lies on F .

α(l′′) ≤
|eq|

|oe|
≤

„

1−
δ

4

«

|ee′|

|oe|
≤

„

1−
δ

4

«

α(l′), (7)

where the last inequality can be seen from the facts that
e lies on F , e′ is the projection of e onto F̂ , and F̂ is the
rotation of F through `′.


