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Abstract

This paper introduces a parametric model of oriented, navigable
surfaces in virtual environments. An oriented, navigable surface in
3D space is modeled as a ribbon which has a central axis and can
be twisted around the central axis. The axis is represented with a
cubic spline curve and is approximately arc-length parameterized.
The profile of the ribbon along the axis is described by a slant func-
tion. With the representation of the ribbon axis and the ribbon pro-
file, a point on the ribbon surface can be expressed as a function of
two parameters: the arc length along the axis and the offset from
the axis. The parametric model of a ribbon naturally forms a local
ribbon coordinate system which provides a frame of reference for
behavior code. In order to provide an uniform, continuous frame of
reference for an agent to navigate through connected ribbons, we
unite the ribbons to form a ribbon called a path.

CR Categories: I.6.3 [SIMULATION AND MODELING]: Ap-
plications; K.7.m [SIMULATION AND MODELING]: Simulation
Support Systems—Environments

Keywords: virtual environments, surface modeling, navigation

1 Introduction

Ground surfaces are a vital component of virtual environment mod-
els. The ground establishes a frame of reference for determining the
perceptual ”up” direction and provides a platform and visible sup-
port structure for buildings and objects. Terrain is most commonly
represented by either a height field or a patchwork of polygons.
While height fields and polygons accurately represent the geome-
try of ground surfaces, they provide a poor foundation on which
to build the programs that control the movements of autonomous
agents that give life to the virtual world. More structured represen-
tations are needed to support navigation of synthetic vehicles and
pedestrians.

Many of the surfaces on which we move have a natural orientation
that defines a preferred direction of movement. For example, roads
have a ribbon-like shape that is cross-sectionally divided into lanes.
For the most part, vehicles travel within their lanes moving in par-
allel streams running tangent to local orientation of the road. Roads
have complex shapes that bend and curve with the contour of the
underlying terrain and twist on banked turns (see Figure 1). In this
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paper, we present a parametric representation for oriented surfaces
based on mathematical ribbons. By making local orientation ex-
plicit in the parameterization, we greatly simplify computations for
motion guidance. We also explain how to piece together surface
fragments to construct continuous composite ribbons.

We represent a ribbon by a 3D space curve. This curve acts as a
central axis or spine for this section of road with fixed width. In
addition, we define a slant function to represent how the ribbon sur-
face twists around its axis in 3D space. Both the central axis and the
slant of the ribbon are functions parameterized by arc length of the
central axis. With the central axis, the slant function, and the width
of a ribbon specified, the geometry of the ribbon is fixed. The arc-
length parameter of the axis and the slant of the ribbon can be seen
as a longitudinal measure for a position on the ribbon. The offset of
a position on a ribbon from the axis of the ribbon is a lateral mea-
sure of the position. The longitudinal measure and lateral measure
together can uniquely define a position on a ribbon. With these two
measures, a parametric model for the ribbon is uniquely defined to
represent a road surface in 3D space. This parametric model forms
a frame of reference for behavior code. However, this reference is
interrupted when an autonomous agent transfers from one road to
an adjacent road. In order to provide a continuous frame of ref-
erence for an agent to navigate through connected roads, ribbons
representing adjacent roads are united to form a composite ribbon
on which the steering behaviors are constructed.

Figure 1: An example road surface
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2 Related work

Road geometry is often modeled using sections of analytical curves
in driving simulators [Artz 1995] [Evans 1995] [Carles and Espie
1999] [Papelis and Bahauddin 1995] [Donikian 1997]. A represen-
tative work in analytical roadway modeling is by Artz et al. [Artz
1995]. This work presented an analytical road segment database
that was implemented at the Ford Driving Simulator. This road seg-
ment database is used by vehicle dynamics computations to keep
track of which segment each tire is on and to query the database for
height, surface normal, and any other information needed.

Artz [Artz 1995] defines a local coordinate system for each road
segment. He divides road segments into straight segments, curve
segments, and spiral segments. He designs different algorithms
for mapping between local coordinates and world coordinates. A
straight segment connects two points in the world by a straight line
when viewed from above. A simple rectangular coordinate system
is constructed for the straight segment with one of the two points
at the origin and the local x axis passing through the second point
at a positive value. The width of the road is then defined in the
local y dimension using a right-handed system with z up. Road pa-
rameters such as crown are stored as functions of local x and y. A
curve segment appears as a circular arc with fixed radius R and arc
length Q when viewed from above. For curve segments, a cylindri-
cal coordinate system is defined in a right-handed system, with the
origin at the center of the circle that includes the arc, one of the end
points at (R,0) and the other at (R,Q) where Q is positive. The road
parameters such as crown are again stored as functions of r and q
where R−W/2 ≤ r ≤ R +W/2 (W is the horizontal width of the
road surface) and 0 ≤ q ≤ Q. Transition spirals are used to connect
straight segments to curve segments. Curvature of a transition spi-
ral changes linearly with road distance from 0 at the beginning end
to a maximum value 1

R at the ending point, where R is the radius
of the curve segment to which it connects. For transition spirals, a
rectangular coordinate system is used to define the spiral and two
other measures called local road pseudo-coordinates are used to de-
fine the road parameters. The rectangular coordinate system has
its origin at the beginning of the spiral where the curvature is zero.
The positive x direction is tangent to the spiral at this point. Posi-
tive z is up and y is defined accordingly in a right-handed system.
The two other measures are x′, the distance along the spiral, and y′,
the shortest distance to the spiral. An important contribution of this
work is that they emphasized the importance of having a local coor-
dinate system for behavior control. A disadvantage of this approach
is that the local coordinate systems are different for different kinds
of road segments.

Donikian and colleagues developed the Virtual Urban Environment
Modeling System (VUEMS) [Donikian 1997] for modeling urban
road networks for traffic simulation. Their model connects multiple
levels of representation of roads by assembling geometric, topolog-
ical and semantic data in an integrated database. Road geometry is
based on a parametric curve that represents an axial line. Roads and
intersections are classified according to structure into 11 different
categories. In contrast, we’ve focused on generic representations
that can model a wide variety of road and intersection configura-
tions.

Geographers have examined techniques to extract information
about roads from aerial imagery. For example, Koutaki and
Uchimura use active contours called ribbon snakes to model road
boundaries on maps [Koutaki and Uchimura 2004].

In [Willemsen et al. 2003], we presented a real-time database mod-
eling complex networks of intersecting roads and walkways in vir-
tual urban environments. Our representation of a road network is

based on a network of interconnected ribbons. Each ribbon rep-
resents a section of a road. The strength of our approach is that
we provided a uniform representation of ribbons to model different
kinds of road segments in 3D space. As a result, we can build uni-
form local coordinate systems for different road segments, which
provide a basis for us to unite connected, different road segments
to form a frame of reference across the boundaries of these road
sections for behavior code. While this paper explains arc-length
parameterization of the central axis of a ribbon and mapping com-
putations between Cartesian and ribbon coordinates, it didn’t give
the parametric model for ribbons representing the general naviga-
ble surfaces in 3D space, which may be curved both horizontally
and vertically and twisted. In [Wang et al. 2005], we described how
our ribbon based model of a road network introduced in [Willemsen
et al. 2003] benefits behavior control of virtual vehicles. We believe
the reason why our ribbon based model of a road network greatly
simplifies our behavior control is that we have a good geometric
model for ribbons which is used to model oriented, navigable sur-
faces such as roads. In this paper, we describe this geometric model
for ribbons and how the ribbons based on this geometric model are
united to form a composite ribbon as an uniform, continuous frame
of reference for behavior code. The contributions of this paper are
a parametric model for ribbons representing the general navigable
surfaces in 3D space and the construction of a composite ribbon
as a continuous frame of reference for behavior code from adja-
cent ribbons defined by the parametric model. In contrast to other
virtual environment systems [Donikian 1997] [Artz 1995], which
have different mathematical models for navigable surfaces in dif-
ferent shapes such as straight roads, circular roads and spiral roads,
we use one parametric model to represent navigable surfaces in dif-
ferent shapes, which may be curved both vertically and horizontally
and twisted,

3 A parametric model for navigable sur-

faces

We use a 3-dimensional space curve to define the central axis of
a road ribbon. Parametric cubic splines are the curves of choice
to define space curves for the purpose of motion control. They
are widely used in computer animation and virtual environments
to define motion paths [Willemsen et al. 2003]. As the parameter
variable ranges over the interval of definition, the computed po-
sition traces a smooth curve in space. To model the central axis
of a road ribbon, we sample a set of points on the central axis,
(x0,y0,z0),(x1,y1,z1), . . . ,(xn,yn,zn), where (x0,y0,z0) is the start
point of the central axis of the road and (xn,yn,zn) is the ending
point of the central axis of the road. We further assume we have
a beginning tangent vector (tan0x, tan0y, tan0z) and an ending tan-
gent vector (tan1x, tan1y, tan1z).

Using cubic spline interpolation, we get a parametric representation
of a cubic spline curve Q(t) = (x(t),y(t),z(t)),

x(t) = ax,i(t − ti)3 +bx,i(t − ti)2 + cx,i(t − ti)+dx,i
y(t) = ay,i(t − ti)3 +by,i(t − ti)2 + cy,i(t − ti)+dy,i
z(t) = az,i(t − ti)3 +bz,i(t − ti)2 + cz,i(t − ti)+dz,i

(1)

where t is from t0 to tn, n is the number of spline segments, and
{t0, t1, t2, · · ·, tn} are the break points, dx

dt |t=t0 = tan0x, dy
dt |t=t0 =

tan0y, dz
dt |t=t0 = tan0z, dx

dt |t=tn = tan1x, dy
dt |t=tn = tan1y, dz

dt |t=tn =

tan1z. The values of x(t), y(t), z(t), dx
dt , dy

dt , dz
dt , d2x

dt2 , d2y
dt2 and d2z

dt2 are
continuous on [t0, tn].
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With the spline functions defined for the central axis of a road rib-
bon, naively, one might compute a position on the central axis using
the parameter variable directly. However, more often we locate a
new position based on a known position plus the distance from the
known position to the new position. For example, a popular way
to steer a vehicle on a road in virtual environments is to have the
vehicle aim for a position called a pursuit point which is one looka-
head distance away from the current position of the vehicle. Here,
we need to compute the position of the pursuit point by the current
position plus the lookahead distance. Let’s assume the vehicle runs
on the central axis of the road. The pursuit point can be computed
from the parameter value that corresponds to the current position
of the vehicle plus a parameter interval that corresponds to the arc
length of the road axis equal to the lookahead distance. However,
this parameter interval is very expensive to compute in real-time
applications.

In addition, we often use arc length between two positions on the
central axis of a road to consider their relationship. For example,
we determine if two vehicles running on the central axis of a road
are too close to each other from the arc length of the axis between
their positions. The arc length that corresponds to the parameter
interval is very expensive to compute in real-time applications.

The proceeding analysis tells us it is very hard to derive an arc-
length interval and the corresponding parameter interval on a road
axis from each other because the parameter variable and curve
length are not, in general, linearly related [Farouki and Sakkalis
1991] ( For example, see the left graph in Figure 2.) However, this
problem will be gone if we have the central axis of the road arc-
length parameterized. Therefore, we want the central axis of the
road to be parameterized by arc length.
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Figure 2: A spiral curve with the points at constant parameter inter-
val (‘*’) and constant arc-length interval (‘o’)

For the cubic spline curve defined in formula 1, the first step to
compute the arc-length parameterization is to compute arc length
s as a function of parameter t, s = A(t). The function A(t) is an
integral shown in formula 2,

A(t) =
∫ t

t0

(

(x′(t))2 +(y′(t))2 +(z′(t))2)1/2dt. (2)

In general, the integral for a cubic spline curve cannot be computed
analytically. Therefore, the arc-length parameterization for cubic

spline curves cannot be expressed as a combination of elementary
functions and must be evaluated numerically.

Our method computes an approximately arc-length parameterized
curve to approximate the central axis of a ribbon defined in formula
1. The approximation curve is computed in three steps [Wang et al.
2002a]. First, the arc lengths of all the cubic segments in the input
spline curve, Q(t), are computed and summed to determine the arc
length L of Q(t). The second step is to find m + 1 points equally
spaced along Q(t), (x̃0, ỹ0, z̃0), (x̃1, ỹ1, z̃1), ..., (x̃m, ỹm, z̃m). The
third step is to compute a new spline curve using the equally spaced
points as knots. We reparameterize the spline curve by interpolat-
ing [(s0, x̃0), (s1, x̃1), ..., (sm, x̃m)], [(s0, ỹ0), (s1, ỹ1), ..., (sm, ỹm)]
and [(s0, z̃0), (s1, z̃1), ..., (sm, z̃m)]. In this interpolation, we inter-
polate x, y and z to arc length s and get the cubic spline functions in
formula 3 [Atkinson 2002] [Wang et al. 2002a],

x̃(s) = ãx,i(s− si)3 + b̃x,i(s− si)2 + c̃x,i(s− si)+ d̃x,i
ỹ(s) = ãy,i(s− si)3 + b̃y,i(s− si)2 + c̃y,i(s− si)+ d̃y,i
z̃(s) = ãz,i(s− si)3 + b̃z,i(s− si)2 + c̃z,i(s− si)+ d̃z,i,

(3)

where s ∈ [si,si+1], i = 0,1,2, ...,m− 1, and the values for x̃, ỹ,
and z̃ are of class C2 on [0,L]. The tangent vectors of the derived
curve at the beginning point and the ending point are set to be equal
to the normalized tangent vectors of the original curve at the be-
ginning point and the ending point, respectively. The result is an
approximately arc-length parameterized piecewise spline curve di-
vided into m cubic segments.

When we sample the points (x0,y0,z0), (x1,y1,z1),. . .,and
(xn,yn,zn) used in formula 1 in order to model the central axis of
a road, we can also sample the normal of the road surface at each
of these points in order to model the road. However, the normal
at each of these points must be perpendicular to the central axis.
As a result, we have only one degree of freedom when we sample
the normal of the road surface at a point on the central axis. In
order to quantify this degree of freedom, we draw the plane which
is perpendicular to the tangent of the central axis at this point. We
assume the road surface is not crowned. The plane intersects the
road surface at a cross sectional line. Two unit vectors v1 and v2
are drawn on the plane starting from the point on the central axis.
Vector v1 points to the left side along the horizontal direction seen
in the direction of the tangent of the central axis. Vector v2 is along
the cross sectional line to the left side seen in the same direction.
This degree of freedom can be quantified by the angle between vec-
tor v1 and vector v2, which defines the slant of the road surface.
Instead of directly sampling the normal of the road surface at the
sampled point on the central axis of the road, we sample the slant
angle, θ , which is shown in figure 3. For each of the sampled points
on the central axis of the road, we sample such an angle. Without
loss of generality, we assume angle θ is positive if it is clockwise
from vector v1 to vector v2 and negative otherwise. We get a set of
slant-angle values θ0,θ1,θ2, . . ., θn at the sampled points. By cubic
spline interpolation, we get a cubic function for the slant of the road
surface,

θ(t) = aθ ,i(t − ti)3 +bθ ,i(t − ti)2 + cθ ,i(t − ti)+dθ ,i, (4)

where t, t0, t1, t2, · · ·, and tn have the same meaning as in equation
1, dθ

dt |t=t0 = θ1 −θ0, and dθ
dt |t=tn = θn −θn−1.

For consistency between parameters of the slant and the central axis
of a road, the slant of the road should be reparameterized with arc
length. We have solved t̃0,t̃1,...,t̃m that correspond to the equally
spaced points (x̃0, ỹ0, z̃0), (x̃1, ỹ1, z̃1), ..., (x̃m, ỹm, z̃m) on the central
axis of the ribbon when we compute arc-length parameterization.
Using the cubic spline function in formula 4, we compute the slant
of the road at these equally space points on the central axis of the
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Figure 3: Two vectors v1 and v2 on the plane perpendicular to the
central axis of a road seen in the direction of the tangent of the
central axis

road ribbon, θ̃0,θ̃1,· · ·, θ̃m. We reparameterize the slant function in
formula 4 by interpolating [(s0, θ̃0),(s1, θ̃1), · · ·, (sm, θ̃m)] and get
the new slant function,

θ̃(s) = ãθ ,i(s− si)
3 + b̃θ ,i(s− si)

2 + c̃θ ,i(s− si)+ d̃θ ,i, (5)

where s0 = 0, s1 = l̃, s2 = 2 · l̃, ..., sm = m · l̃, dθ̃
ds |s=s0 = θ̃1−θ̃0

l̃ ,
dθ̃
ds |s=sm = θ̃m−θ̃m−1

l̃ , l̃ = L
m , and L is the arc length of the central

axis of the road ribbon.

Unit vector v1 in figure 3 is given by,

v1 = (−
dỹ
ds

√

( dx̃
ds )

2 +( dỹ
ds )

2
,

dx̃
ds

√

( dx̃
ds )

2 +( dỹ
ds )

2
,0), (6)

where x̃ and ỹ are the spline functions of the central axis of the
ribbon defined in formula 3. Vector v2 in figure 3 is given by [Hill
2001],

v2 =





c+qu2
x quyux − ruz quzux + ruy

quxuy + ruz c+qu2
y quzuy − rux

quxuz − ruy quyuz + rux c+qu2
z



v′

1, (7)

where c = cos(θ), r = sin(θ), q = 1−c, (ux,uy,uz) are the compo-
nents of the unit tangent vector of the central axis of the road, and
v′

1 is the transpose of v1 computed in formula 6. If the widths of the
left and right sides of the road are wl and wr respectively, the road
surface can be expressed as the below parametric form,

p(s,w) = (x̃(s), ỹ(s), z̃(s))+w∗ v2, (8)

where s is the parameter of arc length of the central axis of the
road, (x̃(s),ỹ(s),z̃(s)) are the spline functions of the central axis of
the road defined in formula 3, w is the parameter of lateral distance
between a point on the road and the central axis of the road, and w∈
[−wr,wl ]. This parametric presentation enforces another constraint
on the geometry of a ribbon that the boundaries of the ribbon on
both ends must be perpendicular to the central axis. The boundaries
at the start and ending ends are formed by ranging the parameter w
between [−wr,wl ] while the parameter of s is kept at 0 and the arc
length of the central axis respectively. In figure 5, we show a ribbon
defined by the parametric model in formula 8 that models the road
surface shown in figure 4.

4 A ribbon coordinate system based on the

parametric model of navigable surfaces

The parametric model of navigable surfaces defined in formula 8
gives a natural coordinate system in which points on a ribbon are

Figure 4: A road surface in a 3D scene

Figure 5: The underlined parametric model of the road surface in
figure 4

expressed in coordinates of (s,w) where s and w are the two param-
eters of the parametric model. However, in virtual environments
we are interested in not only the positions on navigable surfaces,
but also the positions that are locally around navigable surfaces. In
order to express a position p that is locally around a ribbon, we
project the position perpendicularly to the ribbon surface. The pro-
jection p2 can be expressed by the coordinates of (s,w). Position
p can be expressed with two coordinates (s,w), which determine
position p2, plus a coordinate of loft L above or below the ribbon
surface.

The ribbon establishes a curvilinear coordinate system in which 3-
dimensional points are expressed in coordinates of distance along
the spine, D, offset on the ribbon surface from the spine, O, and loft
above or below the ribbon surface (positive if it is a displacement
above the ribbon and negative if it is a displacement below the rib-
bon) as shown in figure 6. Figure 7 shows the ribbon coordinates of
the position in figure 6 in the ribbon coordinate system.

Ribbons provide a natural basis for behavior code. A ribbon pro-
vides a frame of reference for interpreting the location of an object.
The distance coordinate D is a longitudinal measure of the location
on road surface. The offset coordinate O is a lateral measure of the
location on road surface. The loft coordinate L helps to define a po-
sition that is above or below road surface. Therefore, behavior code
can control tracking based on ribbon coordinates. The ribbon also
provides a frame of reference for interpreting the spatial relations
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Figure 6: A position around a road in 3D space
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Figure 7: Ribbon coordinates of the position in figure 6

among nearby objects on the same road. By comparing its distance
coordinate and those of other nearby objects, an object can deter-
mine what is ahead of it, what is behind it, and how far away these
objects are from it. By comparing its offset coordinate and those
of other nearby objects, an object can determine what is on its left
side, what is on its right side, and if any of these objects forms a
threat of collision with it. Therefore, behavior code can control in-
teraction between objects based on their ribbon coordinates after
they are projected into a same ribbon coordinate system.

Some care must be taken in interpreting the distance coordinate D.
It roughly corresponds to a mile marker on the road. On multi-lane
roads, vehicles may track the ribbon at different offsets from the
central axis corresponding to different lanes. On curved roads, this
means that D will compress distances on outside lanes and expand
distances on inside lanes (track runners are well aware of the dif-
ferent lengths inside and outside lanes.) The mile marker measure
means that vehicles at the same value D lie on a cross-section of
the road. This is natural for determining important spatial relations
such as who is to the left and who is to the right. In our experience,
the small distortions in longitudinal distances are inconsequential
for behavior controllers.

In real-time simulation, while some computations are most effec-
tively implemented using ribbon coordinates, other computations
are most effectively implemented using Cartesian coordinates. For
example, behavior modules that track roads and avoid obstacles,
are most easily expressed with object locations represented in rib-
bon coordinates. However, the dynamics code that computes object
motions from control parameters set by object behaviors is most
simply written in Cartesian coordinates. Because these computa-
tions are performed at very high frequency, it is essential to have
efficient and robust code to map from ribbon coordinates to Carte-
sian coordinates and to compute the inverse mapping from Carte-
sian coordinates to local ribbon coordinates. In [Wang 2005], we
defined efficient algorithms to compute the mapping between lo-
cal ribbon coordinates (D,O,L) and global Cartesian coordinates
(X ,Y,Z).

5 Ribbon networks and composite ribbons

Roads join at intersections to form an interconnected network of
ribbons. In general, there is no predominant direction of motion
through an intersection and, hence, no natural orientation. Vehicles
tracks criss-cross as they drive through an intersection. Reflecting
this isotropism, we model an intersection as a non oriented surface
with a polygonal boundary. To assure a smooth and continuous
surface at (road, intersection) boundaries, we require that the ter-
minating edge of the road be coincident with an edge of the inter-
section polygon and that the normal of the road surface be aligned
with the normal of the intersection along their common boundary.
This means that road axes must be perpendicular to the intersection
boundary where they make contact with the intersection.

To guide agents across an intersection, we overlay the intersection
with corridors that link incoming lanes to outgoing lanes. For ex-
ample, in figure 8, a corridor C1 connects a lane of road R1 to a lane
of road R4. A corridor is a virtual one-lane road – internally ”visi-
ble” to the synthetic agents, but not rendered on the image. Agents
track corridors across the intersection surface. In addition, the cor-
ridors provide a frame of reference to interpret the locations and
movements of other cars in the vicinity. This local frame of refer-
ence is critical for gap acceptance and collision avoidance behav-
iors. Thus, vehicles on or approaching the corridor to be traversed
present an potential hazard for the vehicle intending to track the
corridor through the intersection. Corridors are also used to specify
right of way rules that regulate access to the intersection for safe
traversal.

The change in coordinate systems at the boundary between one rib-
bon and another creates a bookkeeping challenge that can lead to
awkward and complicated code in the programs that control vehi-
cle behavior. For example, consider the vehicle on road R1 in figure
8 as it approaches the intersection. To compute a pursuit point for
tracking, it must take into account the section of ribbon it is travers-
ing and the section of the ribbon corridor it plans to track through
the intersection. This requires mapping of the two coordinate sys-
tems into a single, consistent frame of reference. The axes of the
ribbons are offset which further complicates code and the axes are
in opposite directions creating the potential for a sign error.

To relieve the programmer from the chore of tedious conversion
code, we created a data object called a ”path” that unites connected,
aligned lanes on roads and corridors on intersections to form a log-
ically continuous ribbon. A path has a single axis from the start to
end. On a path, we build an uniform ribbon coordinate system that
crosses the boundaries between roads and intersections.

A path [Willemsen 2000] [Willemsen et al. 2003] is defined as a
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tations, and offset axes
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Figure 9: A path crosses an intersection and several roads

connected sequence of lanes on roads and corridors on intersections
that an agent has traversed, is traversing, or will traverse in the near
future. It is a one-lane ribbon overlaid on the road network (see fig-
ure 9). It is oriented and has a beginning and an end. Through the
path, an agent can query the roads and intersections on the path, in-
cluding the road or intersection the agent is currently traversing and
the roads and intersections the agent has traversed or will traverse in
the near future. The path of an agent is dynamically extended as the
agent goes forward. It is an ephemeral data structure representing
the immediate plan of action for the agent.

A path is composed of a sequence of strips from adjacent ribbons.
The path data object performs conversions to map path queries into
the local coordinates of the constituent ribbons. We define a local
ribbon coordinate system (D,O,L) for the path of an object, where
D is the distance on the central axis of the path between the current
position of the object and the start position of the path, O is the
offset of the position from the central axis of the path, and L is the
loft of the position from the surface of the path. By the definition of
ribbon coordinates in section 4, the distance coordinate D is based
on the arc length of the central axis of a path, which is the sum of
the arc lengths of the central axes of the roads and the intersection

corridors on the path.

Geometrically, a path is smooth and continuous. Shifts in the offset
of the axes on the underlying ribbons may cause an abrupt change
in the parameterization if the ribbons join on a curved section of
roadway. For example, the axis of one ribbon may place a lane on
the inside of a turn (compressing distances along the center line of
the lane). If the axes of the next ribbon runs down the center of
the lane, then there will be a discontinuous change in the parame-
terization on the join. In practice this has caused no problems for
the behavior code. The compression is minimal on most roads and
typically intersections do not occur on highly curved sections of
roads.

The path provides a convenient, egocentric frame of reference that
provides a good conceptual foundation for constructing steering be-
haviors.

6 Results and discussion

The model described in section 3 for navigable surfaces has been
implemented in the Hank virtual environment software and rig-
orously tested in psychological studies investigating the behavior
of children and adults riding a virtual bike on roadways populated
with simulated vehicles [Plumert et al. 2004]. Based on this model
and the ribbon coordinate system build on this model, we success-
fully developed complex steering behaviors [Wang et al. 2005] that
control virtual vehicles to run on road networks of virtual environ-
ments.

The core problem in modeling oriented, navigable surfaces is to
model its central axis. The quality of surface modeling is largely
dictated by the quality of axis modeling. We defined a measure
called match error to describe how well the arc-length parameter-
ized curve we derived fits the original axis of a ribbon generated
from the initial interpolation points. The shape of the derived curve
approximately matches the shape of the input curve. We call the
misfit of the derived curve from the input curve the match error. We
defined another measure called arc-length parameterization error to
describe how well the axis of a ribbon is arc-length parameterized.
We call the deviation from arc-length parameterization the param-
eterization error. Both of the two errors can be decreased by in-
creasing the number of segments in the derived curve. Experiments
showed that the match error decreases about 10 times, and the arc-
length parameterization error decreases more than 5 times for each
doubling of the number of spline segments in the arc-length param-
eterized curve.

Common database computations are efficient including computing
global Cartesian (X,Y,Z) coordinates, the surface normal, and the
tangent and curvature of a road given local ribbon coordinates. The
inverse mapping, from global Cartesian coordinates to local rib-
bon coordinates, is a nettlesome problem and frequent bottleneck
for real-time simulators. This mapping is successfully solved in
our navigable surface model. It is efficient and accurate in that
it converges to the required accuracy in a small number of iter-
ations. The key component in this mapping is the computation
of the closest point on the central axis of the ribbon to a three-
dimensional point expressed in Cartesian coordinates. We create
a two-stage method [Wang et al. 2002b] which takes the comple-
mentary strength of two optimization methods to solve this prob-
lem. This method is efficient and extremely robust. Its robustness
is demonstrated by rigorous testing over several years without fail-
ures.

The ribbon model for navigable surfaces presented in this paper
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provides a good basis on which we build steering behaviors. The
steering behaviors we have built include tracking, following, inter-
section, and lane changing behaviors. Tracking behavior controls a
virtual vehicle to keep its track and run smoothly with its desired
speed on the road network. Following behavior controls a virtual
vehicle to keep a safe distance behind its leader. Intersection behav-
ior controls a virtual vehicle to respond properly to the control sig-
nals and other vehicles on or coming toward an intersection. Lane
changing behavior controls a virtual vehicle to move laterally along
road surfaces in order to be able to take turns on intersections which
are necessary for achieving its long term strategical navigation goal.

The basic steering behaviors mentioned above are constructed in
the following way with the support of the parametric model of road
surfaces. The initial position of an object is able to be set by its
ribbon coordinates on a ribbon. In simulation, we use ribbon coor-
dinates of the object to determine the position on the ribbon of the
pursuit point for tracking. Based on the current position, the cur-
rent orientation and the pursuit point of the object, we compute the
new position and orientation of the object on the ribbon. This is the
basic tracking behavior. By the distance coordinate of an object on
a road, we can determine how far the road end is ahead and intro-
duce appropriate actions (for example, stopping) accordingly. This
forms a basis of intersection behavior which controls an agent to
navigate intersections safely. By projecting the leader into the rib-
bon coordinate system of an object, the agent can then determine
the distance between the object and its leader from their ribbon co-
ordinates. This distance is a measure the agent uses to compute an
appropriate acceleration for following behavior which controls the
object to keep a safe distance behind its leader. By projecting the
nearby objects into the ribbon coordinate system of a vehicle who
is planning lane change, the agent can determine if there is an ap-
propriate gap in the target lane for the vehicle to move in safely.
This is important for decision making in lane changing behavior
which controls a vehicle to change lanes on roads safely. In [Wang
et al. 2005], we described how these steering behaviors are realized
based on our parametric model of roadways. We are now working
to build more complex steering behaviors such as highway merging
behavior and roundabout-intersection behavior.
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