
Lists and Iterators 11/14/2019

1

1

Minimum Spanning Trees

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

2

Minimum Spanning Trees
Spanning subgraph

 Subgraph of a graph G
containing all the vertices of G

Spanning tree
 Spanning subgraph that is

itself a (free) tree
Minimum spanning tree (MST)

 Spanning tree of a weighted
graph with minimum total
edge weight

 Applications
 Communications networks
 Transportation networks

ORD
PIT

ATL

STL

DEN

DFW

DCA

10
1

9

8

6

3

25

7

4

1

2

Lists and Iterators 11/14/2019

2

3

Cycle Property
Cycle Property:

 Let T be a minimum
spanning tree of a
weighted graph G

 Let e be an edge of G
that is not in T and C let
be the cycle formed by e
with T

 For every edge f of C,
weight(f)  weight(e)

Proof:
 By contradiction
 If weight(f) weight(e) we

can get a spanning tree
of smaller weight by
replacing e with f

8
4

2 3
6

7

7

9

8
e

C

f

8
4

2 3
6

7

7

9

8

C

e

f

Replacing f with e yields
a better spanning tree

4

U V

Partition Property
Partition Property:

 Consider a partition of the vertices of
G into subsets U and V

 Let e be an edge of minimum weight
across the partition

 There is a minimum spanning tree of
G containing edge e

Proof:
 Let T be an MST of G
 If T does not contain e, consider the

cycle C formed by e with T and let f
be an edge of C across the partition

 By the cycle property,
weight(f)  weight(e)

 Thus, weight(f) weight(e)
 We obtain another MST by replacing

f with e

7
4

2 8
5

7

3

9

8 e

f

7
4

2 8
5

7

3

9

8 e

f

Replacing f with e yields
another MST

U V

3

4

Lists and Iterators 11/14/2019

3

5

Prim-Jarnik’s Algorithm
 Similar to Dijkstra’s algorithm
 We pick an arbitrary vertex s and we grow the MST as

a cloud of vertices, starting from s
 We store with each vertex v label d(v) representing

the smallest weight of an edge connecting v to a
vertex in the cloud

 At each step:
 We add to the cloud the vertex u outside the cloud with the

smallest distance label
 We update the labels of the vertices adjacent to u

 Input: A weighted directed graph G =(V, E), where V ={1, 2, …, n};
 Output: The distance from vertex 1 to every other vertex in G;

 1. X ={1}; YV – {1}; D[1]0;
 2. for y 2 to n
 3. if (y is adjacent to 1) { D[y]length[1, y]; p[y]  1 }
 4. else D[y];
 5. for j  2 to n
 6. Let y Y be such that D[y] is minimum;
 7. X X  {y}; // add vertex y to X
 8. Y Y – {y}; //delete vertex y from Y
 9. for each edge (y, w)
 10. if (w Y and D[y]+length[y, w]<D[w])
 11. { D[w]D[y]+length[y, w]; p[w]  y; }

Dijkstra’s Algorithm: Details
Prim-Jarnik’s

5

6

Lists and Iterators 11/14/2019

4

7

Example
B

D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

8 



B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 4

7

8

Example (contd.)

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 3

2

5 4

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 3

2

5 4

7

7

8

Lists and Iterators 11/14/2019

5

Possible Quiz Question
Find and draw the minimum spanning tree using
Prim-Jarnik’s Algorithm and list the nodes in the
order of entering the cloud.

Kruskal’s Approach
 Maintain a partition of the vertices into

clusters
 Initially, single-vertex clusters
 Keep an MST for each cluster
 Merge “closest” clusters and their MSTs

 A priority queue stores the edges outside
clusters
 Key: weight
 Element: edge

 At the end of the algorithm
 One cluster and one MST 10

9

10

Lists and Iterators 11/14/2019

6

11

Example of Kruskal’s Algorithm
B

G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

12

Example (contd.)

four steps

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

11

12

Lists and Iterators 11/14/2019

7

Kruskal’s Algorithm

13

Data Structure for Kruskal’s Algorithm
 The algorithm maintains a forest of trees
 Sort all edges into non-decreasing order
 An edge is accepted if it connects distinct trees
 We need a data structure that maintains a

partition, i.e., a collection of disjoint sets, with
operations:
 find(u): return the set storing u
 union(A, B): replace sets A and B with their union

14

13

14

Lists and Iterators 11/14/2019

8

Implementation with Union-Find
 Kruskal’s Algorithm

 Cluster merges as unions
 Cluster locations as finds

 Running time O(m log n)
 Sorting: O(m log m) = O(m log n)
 Union-Find operations: (practically) O(n + m)

15

Possible Quiz Question
Find and draw the minimum spanning tree using
Kruskal’s Algorithm and list the edges in the MST in
the order of entering the MST.

15

16

Lists and Iterators 11/14/2019

9

17

Baruvka’s Algorithm
 Like Kruskal’s Algorithm, Baruvka’s algorithm grows many

clusters at once and maintains a forest T
 Each iteration of the while loop halves the number of

connected components in forest T
 The running time: O(m log n)

Algorithm BaruvkaMST(G)
T  V {just the vertices of G}
while T has fewer than n  1 edges do

for each connected component C in T do
Let edge e be the smallest-weight edge from C to another component in T
if e is not already in T then

Add edge e to T
return T

Example of Baruvka’s Algorithm

18

1
5

4

3

2

3

4

49

6

8
7

6

5
4

9

6

8

1
5

4

3

2

3

4

49

6

8
7

6

5

17

18

Lists and Iterators 11/14/2019

10

Data Structure for Baruvka’s Algorithm
 Maintain the forest T subject to edge insertion, O(1) using

linked list for T.
 Each vertex remembers its tree number, which is updated

by DFS (O(n) time) after each round.
 For complexity analysis:

 Minimum weight edges are obtained by going through
all the edges in one tree (O(m) time) in each round.

 Since the number of trees in T is halved after each
round, there are at most O(log n) rounds. So the total
complexity is O((n+m)log n).

19

Possible Quiz Question
Find and draw the minimum spanning tree using
Baruvka’s Algorithm and list the edges in the MST in
the order of entering the MST.

19

20

