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Minimum Spanning Trees

Presentation for use with the textbook, Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015
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Minimum Spanning Trees
Spanning subgraph

 Subgraph of a graph G
containing all the vertices of G

Spanning tree
 Spanning subgraph that is 

itself a (free) tree
Minimum spanning tree (MST)

 Spanning tree of a weighted 
graph with minimum total 
edge weight

 Applications
 Communications networks
 Transportation networks
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Cycle Property
Cycle Property:

 Let T be a minimum 
spanning tree of a 
weighted graph G

 Let e be an edge of G
that is not in T and C let 
be the cycle formed by e
with T

 For every edge f of C,
weight(f)  weight(e)

Proof:
 By contradiction
 If weight(f) weight(e) we 

can get a spanning tree 
of smaller weight by 
replacing e with f
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Replacing f with e yields
a better spanning tree 
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Partition Property
Partition Property:

 Consider a partition of the vertices of 
G into subsets U and V

 Let e be an edge of minimum weight 
across the partition

 There is a minimum spanning tree of 
G containing edge e

Proof:
 Let T be an MST of G
 If T does not contain e, consider the 

cycle C formed by e with T and let  f
be an edge of C across the partition

 By the cycle property,
weight(f)  weight(e)

 Thus, weight(f) weight(e)
 We obtain another MST by replacing 

f  with e
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Prim-Jarnik’s Algorithm
 Similar to Dijkstra’s algorithm
 We pick an arbitrary vertex s and we grow the MST as 

a cloud of vertices, starting from s
 We store with each vertex v label d(v) representing 

the smallest weight of an edge connecting v to a 
vertex in the cloud 

 At each step:
 We add to the cloud the vertex u outside the cloud with the 

smallest distance label
 We update the labels of the vertices adjacent to u

 Input: A weighted directed graph G =(V, E), where V ={1, 2, …, n};
 Output: The distance from vertex 1 to every other vertex in G;

 1.  X ={1}; YV – {1}; D[1]0;
 2.  for y 2 to n 
 3.       if (y is adjacent to 1) { D[y]length[1, y]; p[y]  1 }
 4.       else D[y];
 5.  for j  2 to n 
 6.       Let y Y be such that D[y] is minimum;
 7.       X X  {y};             // add vertex y to X
 8.       Y Y – {y};               //delete vertex y from Y
 9.       for each edge (y, w)
 10.          if (w Y and D[y]+length[y, w]<D[w])
 11.                { D[w]D[y]+length[y, w]; p[w]  y; }

Dijkstra’s Algorithm: Details
Prim-Jarnik’s
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Example
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Example (contd.)
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Possible Quiz Question
Find and draw the minimum spanning tree using 
Prim-Jarnik’s Algorithm and list the nodes in the 
order of entering the cloud.

Kruskal’s Approach
 Maintain a partition of the vertices into 

clusters
 Initially, single-vertex clusters
 Keep an MST for each cluster
 Merge “closest” clusters and their MSTs

 A priority queue stores the edges outside 
clusters
 Key: weight
 Element: edge

 At the end of the algorithm
 One cluster and one MST 10
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Example of Kruskal’s Algorithm
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Example (contd.)

four steps
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Kruskal’s Algorithm
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Data Structure for Kruskal’s Algorithm
 The algorithm maintains a forest of trees
 Sort all edges into non-decreasing order
 An edge is accepted if it connects distinct trees
 We need a data structure that maintains a 

partition, i.e., a collection of disjoint sets, with 
operations:
 find(u): return the set storing u
 union(A, B): replace sets A and B with their union
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Implementation with Union-Find
 Kruskal’s Algorithm 

 Cluster merges as unions 
 Cluster locations as finds

 Running time O(m log n)
 Sorting: O(m log m) = O(m log n)
 Union-Find operations: (practically) O(n + m)

15

Possible Quiz Question
Find and draw the minimum spanning tree using 
Kruskal’s Algorithm and list the edges in the MST in 
the order of entering the MST.
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Baruvka’s Algorithm
 Like Kruskal’s Algorithm, Baruvka’s algorithm grows many 

clusters at once and maintains a forest T
 Each iteration of the while loop halves the number of 

connected components in forest T
 The running time: O(m log n)

Algorithm BaruvkaMST(G)
T  V {just the vertices of G}
while T has fewer than n  1 edges do

for each connected component C in T do
Let edge e be the smallest-weight edge from C to another component in T
if e is not already in T then

Add edge e to T
return T

Example of Baruvka’s Algorithm 
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Data Structure for Baruvka’s Algorithm
 Maintain the forest T subject to edge insertion, O(1) using 

linked list for T.
 Each vertex remembers its tree number, which is updated 

by DFS (O(n) time) after each round.
 For complexity analysis:

 Minimum weight edges are obtained by going through 
all the edges in one tree (O(m) time) in each round.

 Since the number of trees in T is halved after each 
round, there are at most O(log n) rounds. So the total 
complexity is O((n+m)log n).
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Possible Quiz Question
Find and draw the minimum spanning tree using 
Baruvka’s Algorithm and list the edges in the MST in 
the order of entering the MST.

19

20


