
Lists and Iterators 11/14/2019

1

1

Shortest Paths

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

2

Weighted Graphs
 In a weighted graph, each edge has an associated numerical

value, called the weight of the edge
 Edge weights may represent, distances, costs, etc.
 Example:

 In a flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

ORD PVD

MIA
DFW

SFO

LAX

LGA
HNL

1

2

Lists and Iterators 11/14/2019

2

3

Shortest Paths
 Given a weighted graph and two vertices u and v, we want to

find a path of minimum total weight between u and v.
 Length of a path is the sum of the weights of its edges.

 Example:
 Shortest path between Providence and Honolulu

 Applications
 Internet packet routing
 Flight reservations
 Driving directions

ORD PVD

MIA
DFW

SFO

LAX

LGA
HNL

4

Shortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other
vertices

Example:
Tree of shortest paths from Providence

ORD PVD

MIA
DFW

SFO

LAX

LGA
HNL

3

4

Lists and Iterators 11/14/2019

3

5

Dijkstra’s Algorithm
 The distance of a vertex

v from a vertex s is the
length of a shortest path
between s and v

 Dijkstra’s algorithm
computes the distances
of all the vertices from a
given start vertex s

 Assumptions:
 the graph is connected
 the edges are

undirected
 the edge weights are

nonnegative

 We grow a “cloud” of vertices,
beginning with s and eventually
covering all the vertices

 We store with each vertex v a
label D[v] representing the
distance of v from s in the
subgraph consisting of the cloud
and its adjacent vertices

 At each step
 We add to the cloud the vertex

u outside the cloud with the
smallest distance label, D[u]

 We update the labels of the
vertices adjacent to u

6

Edge Relaxation
 D[v] = the shortest distance

of v from s found so far
 Consider an edge e  (u, z)

such that
 u is the vertex most recently

added to the cloud
 z is not in the cloud

 The relaxation of edge e
updates distance d(z) as
follows:
D[z]  min{D[z], D[u] weight(e)}

D[z] 75
D[u] 50

zs
u

D[z] 60
D[u] 50

zs
u

e

e

D[v] = the distance of v from s

5

6

Lists and Iterators 11/14/2019

4

7

Example

CB

A

E

D

F

0

428

 

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 11

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

8

Example (cont.)

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

7

8

Lists and Iterators 11/14/2019

5

Alg. Dijkstra(V, E)
Input: A weighted directed graph G =(V, E), V ={1, 2, …, n};
Output: The distance from vertex 1 to every other vertex in G;

1. X ={1}; YV – {1}; D [1]0;
2. for y 2 to n
3. if (y is adjacent to 1) { D [y]length[1, y]; p[y]  1 }
4. else D [y];
5. for j  2 to n
6. Let y Y s.t. D [y] is minimum; // y = argminy Y { D[y] }
7. X X  {y}; // add vertex y to cloud X
8. Y Y – {y}; //delete vertex y from Y
9. for each edge (y, w) in E // edge relaxation
10. if (w Y and D [y]+length[y, w]<D [w])
11. { D [w]D [y]+length[y, w]; p[w]  y; }

Dijkstra’s Algorithm: Details

parent of y

10

Analysis of Dijkstra’s Algorithm
 Graph operations

 We find all the incident edges once for each vertex
 Label operations

 We set/get the distance and locator labels of vertex z O(deg(z)) times
 Setting/getting a label takes O(1) time

 Priority queue operations
 Each vertex is inserted once into and removed once from the priority

queue, where each insertion or removal takes O(log n) time
 The key of a vertex in the priority queue is modified at most deg(w)

times, where each key change takes O(log n) time
 Dijkstra’s algorithm runs in O((n  m) log n) time provided the

graph is represented by the adjacency list/map structure
 Recall that v deg(v) 2m

 The running time can also be expressed as O(m log n) since the
graph is connected (m > n-2).

9

10

Lists and Iterators 11/14/2019

6

Possible Quiz Question
Find the shortest paths from A to all other vertices
and draw the tree found by Dijkstra’s Algorithm.

12

Why Dijkstra’s Algorithm Works
 Dijkstra’s algorithm is based on the greedy method.

It adds vertices to cloud by increasing distance.

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

 Suppose it didn’t find all shortest
distances. Let w be the first wrong
vertex the algorithm processed.

 When the previous node, u, on the
true shortest path was considered,
its distance was correct

 But the edge (u,w) was relaxed at
that time!

 Thus, so long as D[w]>D[u], w’s
distance cannot be wrong. That is,
there is no wrong vertex

(u,w) = (D,F) in this example

11

12

Lists and Iterators 11/14/2019

7

13

Why It Doesn’t Work for Negative-
Weight Edges

 If a node with a negative
incident edge were to be added
late to the cloud, it could mess
up distances for vertices already
in the cloud.

 Example: The shortest path
from A to C is through B: the
distance is 3 + -2 = 1.

Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

CB

A
0

23

3

-2
2

The All-Pairs Shortest Path Problem

 Let G =(V, E) be a directed graph in which each edge
(i, j) has a non-negative length w[i, j]. If there is no
edge from vertex i to vertex j, then w[i, j]=.

 The problem is to find the minimal distance from
each vertex to all other vertices, where the distance
from vertex x to vertex y is the sum of the edge
lengths in a path from x to y.

13

14

Lists and Iterators 11/14/2019

8

The All-Pairs Shortest Path Problem

 Example:

a

b c

2
8

1
9

6

w a b c
a 0 2 9
b 8 0 6
c 1 - 0

D a b c
a 0 2 8
b 7 0 6
c 1 3 0

Weight:

Distance:

Design a Dynamic Programming Solution

 How are the subproblems formulated?

 Where are the solutions stored?

 How are the base values computed?

 How do we compute each entry from other entries in the
table?

 What is the order in which we fill in the table?

15

16

Lists and Iterators 11/14/2019

9

Two DP algorithms for All-pairs shortest paths
 Both are correct. Both produce correct values for all-pairs

shortest paths.

 The difference is the subproblem formulation, and hence in the
running time.

 Be prepared to provide one or both of these algorithms, and to
be able to apply it to an input (on some exam, for example).

Dynamic Programming
First attempt: let {1,2,…,n} denote the set of vertices.

Subproblem formulation:
M[i,j,k] = min length of any path from i to j that uses at most

k edges.

All paths have at most n-1 edges, so 1 ≤ k ≤ n-1.

When k=1, M[i,j,1] = w[i,j], the edge weight from i to j.

Minimum paths from i to j are found in M[i,j,n-1]

 Question: How to set M[i,j,k] from other entries?

17

18

Lists and Iterators 11/14/2019

10

 How to set M[i,j,k] from other entries, for k>1?

 Consider a minimum weight path from i to j that has
at most k edges.
 Case 1: The minimum weight path has at most k-1

edges.
 M[i,j,k] = M[i,j,k-1]

 Case 2: The minimum weight path has exactly k
edges.
 M[i,j,k] = min{ M[i,x,k-1] + w(x,j) : x in V}

 Combining the two cases:
M[i,j,k] = min{min{M[i,x,k-1] + w(x,j) : x in V}, M[i,j,k-1]}

Finishing the design
 How are the subproblems defined?

Subproblem formulation:
M[i,j,k] = min length of any path from i to j that uses at most k edges.

 Where is the answer stored?
 Minimum paths from i to j are found in M[i,j,n-1]

 How are the base values computed?
 When k=1, M[i,j,1] = w[i,j], the edge weight from i to j.

 How do we compute each entry from other entries?
 M[i,j,k] = min{min{M[i,x,k-1] + w(x,j) : x in V}, M[i,j,k-1]}

 What is the order in which we fill in the matrix?
 For k from 1 to n-1, compute M[i,j,k].

 Running time?

19

20

Lists and Iterators 11/14/2019

11

Pseudo-Code and Complexity Analysis

 How many entries do we need to compute? O(n3)
1 ≤ i ≤ n; 1 ≤ j ≤ n; 1 ≤ k ≤ n-1

 How much time does it take to compute each entry? O(n)
 Total time: O(n4) Total space: O(n3) (or O(n2))

for j = 1 to n for i = 1 to n
M[i,j,1] = w[i,j];

for k = 2 to n-1
for j = 1 to n
for i = 1 to n {

//
minx = M[i,j,k-1];
for x = 1 to n

if (minx > M[i,x,k-1] + w(x,j)) minx = M[i,x,k-1] + w(x,j);
M[i,j,k] = minx;

}

Next DP approach: Marshall’s Algorithm
 Try a new subproblem formulation!

 Q[i,j,k] = minimum weight of any path from i to j that uses
internal vertices drawn from {1,2,…,k}.

21

22

Lists and Iterators 11/14/2019

12

Designing a DP solution
 How are the subproblems formulated?

 Q[i,j,k] = minimum weight of any path from i to j that uses
internal vertices (other than i and j) drawn from {1,2,…,k}.

 Where is the answer stored?
 Q[i,j,n] stores the min length from i to j.

 How are the base values computed?
 Base cases: Q[i,j,0] = w[i,j] for all i,j

 How do we compute each entry from other entries?

 What is the order in which we fill in the matrix?

Solving subproblems
 Q[i,j,k] = minimum weight of any path from i to j that uses

internal vertices drawn from {1,2,…,k}.

 Such minimum cost path either includes vertex k or does not
include vertex k.

 If the minimum cost path P includes vertex k, then you can divide
P into the path P1 from i to k, and P2 from k to j.

 What is the weight of P1?

 What is the weight of P2?

 Thus the weight of P is Q[i,k,k-1] + Q[k,j,k-1].

Q[i,k,k-1] (why??).

Q[k,j,k-1] (why??).

23

24

Lists and Iterators 11/14/2019

13

Marshall’s Algorithm
for j = 1 to n

for i = 1 to n
Q[i,j,0] = w[i,j]

for k= 1 to n
for j = 1 to n

for i = 1 to n
Q[i,j,k] = min{Q[i,j,k-1],

Q[i,k,k-1] + Q[k,j,k-1]}

 Each entry only takes O(1) time to compute
 There are O(n3) entries
 Hence, O(n3) time.
 Total space: O(n3) (or O(n2))

Reusing the space
// Use R[i,j] for Q[i,j,0], Q[i,j,1], …, Q[i,j,n].
for j = 1 to n

for i = 1 to n
R[i,j] = w[i,j];

for k= 1 to n
for j = 1 to n

for i = 1 to n
R[i,j] = min{R[i,j], R[i,k] + R[k,j]}

Claim: For any k, min path of i to j <= R[i,j] <= Q[i,j,k].

25

26

Lists and Iterators 11/14/2019

14

How to check negative cycles

// Use R[i,j] for Q[i,j,0], Q[i,j,1], …, Q[i,j,n].
for j = 1 to n

for i = 1 to n
R[i,j] = w[i,j];

for k= 1 to n
for j = 1 to n

for i = 1 to n
R[i,j] = min{R[i,j], R[i,k] + R[k,j]};

for i = 1 to n
if (R[i,i] < 0) print(“There is a negative cycle”);

How to compute transitive closure

 The relation R* = R1  R2  R3  …  Rn-1, where n is the number
of nodes, is called the transitive closure of R.
 To decide if (a, b) in R*, we need to decide if there is a path from
a to b in G = (A, R).

// Pre: R[,] is the relation over {1, 2, .., n}
// Post: T is the transitive closure of R.
for j = 1 to n

for i = 1 to n
T[i,j] = R[i,j]; // R[.,.] is 0/1 incidence matrix for relation R.

for k= 1 to n
for j = 1 to n

for i = 1 to n
T[i,j] = T[i,j] || (T[i,k] && T[k,j]);

27

28

Lists and Iterators 11/14/2019

15

29

Shortest Paths in DAG
 We can produce a specialized

shortest-path algorithm for
directed acyclic graphs (DAGs)

 Works even with negative-
weight edges

 Uses topological order
 It doesn’t use any fancy data

structures
 It’s much faster than Dijkstra’s

algorithm.



0







48

7 1

-5 5

-2

3 9

1

2 43

6 5

30



-2

DAG Example



0







48

7 1

-5 5
3 9

Nodes are labeled with their D[v] values

-2

-28

0

4



48

7 1

-5 5
3 9



-2 4

-1

1 7

-25

0

1

-1

7

48

7 1

-5 5

-2

3 9
4



0







48

7 1

-5 5

-2

3 9

1

2 43

6 5

1

2 43

6 5

8

1

2 43

6 5

1

2 43

6 5

5

0

(two steps)

29

30

Lists and Iterators 11/14/2019

16

31

DAG-based Algorithm: Details



0







48

7 1

-5 5

-2

3 9

1

2 43

6 5

What is the complexity? Running time: O(n+m).

Possible Quiz Question
Given a DAG, how to find the longest paths from
one vertex to other vertices efficiently?

31

32

