
Lists and Iterators 11/14/2019

1

1

Shortest Paths

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

2

Weighted Graphs
 In a weighted graph, each edge has an associated numerical

value, called the weight of the edge
 Edge weights may represent, distances, costs, etc.
 Example:

 In a flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

ORD PVD

MIA
DFW

SFO

LAX

LGA
HNL

1

2

Lists and Iterators 11/14/2019

2

3

Shortest Paths
 Given a weighted graph and two vertices u and v, we want to

find a path of minimum total weight between u and v.
 Length of a path is the sum of the weights of its edges.

 Example:
 Shortest path between Providence and Honolulu

 Applications
 Internet packet routing
 Flight reservations
 Driving directions

ORD PVD

MIA
DFW

SFO

LAX

LGA
HNL

4

Shortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other
vertices

Example:
Tree of shortest paths from Providence

ORD PVD

MIA
DFW

SFO

LAX

LGA
HNL

3

4

Lists and Iterators 11/14/2019

3

5

Dijkstra’s Algorithm
 The distance of a vertex

v from a vertex s is the
length of a shortest path
between s and v

 Dijkstra’s algorithm
computes the distances
of all the vertices from a
given start vertex s

 Assumptions:
 the graph is connected
 the edges are

undirected
 the edge weights are

nonnegative

 We grow a “cloud” of vertices,
beginning with s and eventually
covering all the vertices

 We store with each vertex v a
label D[v] representing the
distance of v from s in the
subgraph consisting of the cloud
and its adjacent vertices

 At each step
 We add to the cloud the vertex

u outside the cloud with the
smallest distance label, D[u]

 We update the labels of the
vertices adjacent to u

6

Edge Relaxation
 D[v] = the shortest distance

of v from s found so far
 Consider an edge e (u, z)

such that
 u is the vertex most recently

added to the cloud
 z is not in the cloud

 The relaxation of edge e
updates distance d(z) as
follows:
D[z] min{D[z], D[u] weight(e)}

D[z] 75
D[u] 50

zs
u

D[z] 60
D[u] 50

zs
u

e

e

D[v] = the distance of v from s

5

6

Lists and Iterators 11/14/2019

4

7

Example

CB

A

E

D

F

0

428

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 11

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

8

Example (cont.)

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

7

8

Lists and Iterators 11/14/2019

5

Alg. Dijkstra(V, E)
Input: A weighted directed graph G =(V, E), V ={1, 2, …, n};
Output: The distance from vertex 1 to every other vertex in G;

1. X ={1}; YV – {1}; D [1]0;
2. for y 2 to n
3. if (y is adjacent to 1) { D [y]length[1, y]; p[y] 1 }
4. else D [y];
5. for j 2 to n
6. Let y Y s.t. D [y] is minimum; // y = argminy Y { D[y] }
7. X X {y}; // add vertex y to cloud X
8. Y Y – {y}; //delete vertex y from Y
9. for each edge (y, w) in E // edge relaxation
10. if (w Y and D [y]+length[y, w]<D [w])
11. { D [w]D [y]+length[y, w]; p[w] y; }

Dijkstra’s Algorithm: Details

parent of y

10

Analysis of Dijkstra’s Algorithm
 Graph operations

 We find all the incident edges once for each vertex
 Label operations

 We set/get the distance and locator labels of vertex z O(deg(z)) times
 Setting/getting a label takes O(1) time

 Priority queue operations
 Each vertex is inserted once into and removed once from the priority

queue, where each insertion or removal takes O(log n) time
 The key of a vertex in the priority queue is modified at most deg(w)

times, where each key change takes O(log n) time
 Dijkstra’s algorithm runs in O((n m) log n) time provided the

graph is represented by the adjacency list/map structure
 Recall that v deg(v) 2m

 The running time can also be expressed as O(m log n) since the
graph is connected (m > n-2).

9

10

Lists and Iterators 11/14/2019

6

Possible Quiz Question
Find the shortest paths from A to all other vertices
and draw the tree found by Dijkstra’s Algorithm.

12

Why Dijkstra’s Algorithm Works
 Dijkstra’s algorithm is based on the greedy method.

It adds vertices to cloud by increasing distance.

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

 Suppose it didn’t find all shortest
distances. Let w be the first wrong
vertex the algorithm processed.

 When the previous node, u, on the
true shortest path was considered,
its distance was correct

 But the edge (u,w) was relaxed at
that time!

 Thus, so long as D[w]>D[u], w’s
distance cannot be wrong. That is,
there is no wrong vertex

(u,w) = (D,F) in this example

11

12

Lists and Iterators 11/14/2019

7

13

Why It Doesn’t Work for Negative-
Weight Edges

 If a node with a negative
incident edge were to be added
late to the cloud, it could mess
up distances for vertices already
in the cloud.

 Example: The shortest path
from A to C is through B: the
distance is 3 + -2 = 1.

Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

CB

A
0

23

3

-2
2

The All-Pairs Shortest Path Problem

 Let G =(V, E) be a directed graph in which each edge
(i, j) has a non-negative length w[i, j]. If there is no
edge from vertex i to vertex j, then w[i, j]=.

 The problem is to find the minimal distance from
each vertex to all other vertices, where the distance
from vertex x to vertex y is the sum of the edge
lengths in a path from x to y.

13

14

Lists and Iterators 11/14/2019

8

The All-Pairs Shortest Path Problem

 Example:

a

b c

2
8

1
9

6

w a b c
a 0 2 9
b 8 0 6
c 1 - 0

D a b c
a 0 2 8
b 7 0 6
c 1 3 0

Weight:

Distance:

Design a Dynamic Programming Solution

 How are the subproblems formulated?

 Where are the solutions stored?

 How are the base values computed?

 How do we compute each entry from other entries in the
table?

 What is the order in which we fill in the table?

15

16

Lists and Iterators 11/14/2019

9

Two DP algorithms for All-pairs shortest paths
 Both are correct. Both produce correct values for all-pairs

shortest paths.

 The difference is the subproblem formulation, and hence in the
running time.

 Be prepared to provide one or both of these algorithms, and to
be able to apply it to an input (on some exam, for example).

Dynamic Programming
First attempt: let {1,2,…,n} denote the set of vertices.

Subproblem formulation:
M[i,j,k] = min length of any path from i to j that uses at most

k edges.

All paths have at most n-1 edges, so 1 ≤ k ≤ n-1.

When k=1, M[i,j,1] = w[i,j], the edge weight from i to j.

Minimum paths from i to j are found in M[i,j,n-1]

 Question: How to set M[i,j,k] from other entries?

17

18

Lists and Iterators 11/14/2019

10

 How to set M[i,j,k] from other entries, for k>1?

 Consider a minimum weight path from i to j that has
at most k edges.
 Case 1: The minimum weight path has at most k-1

edges.
 M[i,j,k] = M[i,j,k-1]

 Case 2: The minimum weight path has exactly k
edges.
 M[i,j,k] = min{ M[i,x,k-1] + w(x,j) : x in V}

 Combining the two cases:
M[i,j,k] = min{min{M[i,x,k-1] + w(x,j) : x in V}, M[i,j,k-1]}

Finishing the design
 How are the subproblems defined?

Subproblem formulation:
M[i,j,k] = min length of any path from i to j that uses at most k edges.

 Where is the answer stored?
 Minimum paths from i to j are found in M[i,j,n-1]

 How are the base values computed?
 When k=1, M[i,j,1] = w[i,j], the edge weight from i to j.

 How do we compute each entry from other entries?
 M[i,j,k] = min{min{M[i,x,k-1] + w(x,j) : x in V}, M[i,j,k-1]}

 What is the order in which we fill in the matrix?
 For k from 1 to n-1, compute M[i,j,k].

 Running time?

19

20

Lists and Iterators 11/14/2019

11

Pseudo-Code and Complexity Analysis

 How many entries do we need to compute? O(n3)
1 ≤ i ≤ n; 1 ≤ j ≤ n; 1 ≤ k ≤ n-1

 How much time does it take to compute each entry? O(n)
 Total time: O(n4) Total space: O(n3) (or O(n2))

for j = 1 to n for i = 1 to n
M[i,j,1] = w[i,j];

for k = 2 to n-1
for j = 1 to n
for i = 1 to n {

//
minx = M[i,j,k-1];
for x = 1 to n

if (minx > M[i,x,k-1] + w(x,j)) minx = M[i,x,k-1] + w(x,j);
M[i,j,k] = minx;

}

Next DP approach: Marshall’s Algorithm
 Try a new subproblem formulation!

 Q[i,j,k] = minimum weight of any path from i to j that uses
internal vertices drawn from {1,2,…,k}.

21

22

Lists and Iterators 11/14/2019

12

Designing a DP solution
 How are the subproblems formulated?

 Q[i,j,k] = minimum weight of any path from i to j that uses
internal vertices (other than i and j) drawn from {1,2,…,k}.

 Where is the answer stored?
 Q[i,j,n] stores the min length from i to j.

 How are the base values computed?
 Base cases: Q[i,j,0] = w[i,j] for all i,j

 How do we compute each entry from other entries?

 What is the order in which we fill in the matrix?

Solving subproblems
 Q[i,j,k] = minimum weight of any path from i to j that uses

internal vertices drawn from {1,2,…,k}.

 Such minimum cost path either includes vertex k or does not
include vertex k.

 If the minimum cost path P includes vertex k, then you can divide
P into the path P1 from i to k, and P2 from k to j.

 What is the weight of P1?

 What is the weight of P2?

 Thus the weight of P is Q[i,k,k-1] + Q[k,j,k-1].

Q[i,k,k-1] (why??).

Q[k,j,k-1] (why??).

23

24

Lists and Iterators 11/14/2019

13

Marshall’s Algorithm
for j = 1 to n

for i = 1 to n
Q[i,j,0] = w[i,j]

for k= 1 to n
for j = 1 to n

for i = 1 to n
Q[i,j,k] = min{Q[i,j,k-1],

Q[i,k,k-1] + Q[k,j,k-1]}

 Each entry only takes O(1) time to compute
 There are O(n3) entries
 Hence, O(n3) time.
 Total space: O(n3) (or O(n2))

Reusing the space
// Use R[i,j] for Q[i,j,0], Q[i,j,1], …, Q[i,j,n].
for j = 1 to n

for i = 1 to n
R[i,j] = w[i,j];

for k= 1 to n
for j = 1 to n

for i = 1 to n
R[i,j] = min{R[i,j], R[i,k] + R[k,j]}

Claim: For any k, min path of i to j <= R[i,j] <= Q[i,j,k].

25

26

Lists and Iterators 11/14/2019

14

How to check negative cycles

// Use R[i,j] for Q[i,j,0], Q[i,j,1], …, Q[i,j,n].
for j = 1 to n

for i = 1 to n
R[i,j] = w[i,j];

for k= 1 to n
for j = 1 to n

for i = 1 to n
R[i,j] = min{R[i,j], R[i,k] + R[k,j]};

for i = 1 to n
if (R[i,i] < 0) print(“There is a negative cycle”);

How to compute transitive closure

 The relation R* = R1 R2 R3 … Rn-1, where n is the number
of nodes, is called the transitive closure of R.
 To decide if (a, b) in R*, we need to decide if there is a path from
a to b in G = (A, R).

// Pre: R[,] is the relation over {1, 2, .., n}
// Post: T is the transitive closure of R.
for j = 1 to n

for i = 1 to n
T[i,j] = R[i,j]; // R[.,.] is 0/1 incidence matrix for relation R.

for k= 1 to n
for j = 1 to n

for i = 1 to n
T[i,j] = T[i,j] || (T[i,k] && T[k,j]);

27

28

Lists and Iterators 11/14/2019

15

29

Shortest Paths in DAG
 We can produce a specialized

shortest-path algorithm for
directed acyclic graphs (DAGs)

 Works even with negative-
weight edges

 Uses topological order
 It doesn’t use any fancy data

structures
 It’s much faster than Dijkstra’s

algorithm.

0

48

7 1

-5 5

-2

3 9

1

2 43

6 5

30

-2

DAG Example

0

48

7 1

-5 5
3 9

Nodes are labeled with their D[v] values

-2

-28

0

4

48

7 1

-5 5
3 9

-2 4

-1

1 7

-25

0

1

-1

7

48

7 1

-5 5

-2

3 9
4

0

48

7 1

-5 5

-2

3 9

1

2 43

6 5

1

2 43

6 5

8

1

2 43

6 5

1

2 43

6 5

5

0

(two steps)

29

30

Lists and Iterators 11/14/2019

16

31

DAG-based Algorithm: Details

0

48

7 1

-5 5

-2

3 9

1

2 43

6 5

What is the complexity? Running time: O(n+m).

Possible Quiz Question
Given a DAG, how to find the longest paths from
one vertex to other vertices efficiently?

31

32

