

Weighted Graphs In a weighted graph, each edge has an associated numerical value, called the weight of the edge □ Edge weights may represent, distances, costs, etc. Example: • In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports 849 **PVD** 1843 142 ORD SFC 802 1205 1743 LGA 381 ζ. 2555 HNL 1233 DFW 1120 MIA 2

Dijks	stra's Algo	ori	thm
 The d r fron length betwee Dijkst comp of all given Assun the the the 	istance of a vertex n a vertex s is the n of a shortest path een s and v ra's algorithm utes the distances the vertices from a start vertex s nptions: e graph is connected e edges are idirected e edge weights are onnegative		 We grow a "cloud" of vertices, beginning with <i>s</i> and eventually covering all the vertices We store with each vertex <i>v</i> a label <i>D</i>[<i>v</i>] representing the distance of <i>v</i> from <i>s</i> in the subgraph consisting of the cloud and its adjacent vertices At each step We add to the cloud the vertex <i>u</i> outside the cloud with the smallest distance label, <i>D</i>[<i>u</i>] We update the labels of the vertices adjacent to <i>u</i>
			5

How to compute transitive closure			
• The relation $R^* = R^1 \cup R^2 \cup R^3 \cup \cup R^{n-1}$, where n is the number of nodes, is called the transitive closure of R.			
 To decide if (a, b) in R*, we need to decide if there is a path from a to b in G = (A, R). 			
// Pre : R[,] is the relation over {1, 2,, n}			
// Post: T is the transitive closure of R.			
for $i = 1$ to n			
T[i,j] = R[i,j]; // R[.,.] is 0/1 incidence matrix for relation R.			
for k= 1 to n			
for $j = 1$ to n			
for i = 1 to n			
T[i,j] = T[i,j] (T[i,k] && T[k,j]);			

