Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Shortest Paths

Weighted Graphs

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge
- Edge weights may represent, distances, costs, etc.
- Example:
- In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports

Shortest Paths

- Given a weighted graph and two vertices \boldsymbol{u} and \boldsymbol{v}, we want to find a path of minimum total weight between \boldsymbol{u} and \boldsymbol{v}.
- Length of a path is the sum of the weights of its edges.
- Example:
- Shortest path between Providence and Honolulu
- Applications
- Internet packet routing
- Flight reservations

3

3

Shortest Path Properties

Property 1:
A subpath of a shortest path is itself a shortest path
Property 2:
There is a tree of shortest paths from a start vertex to all the other vertices
Example:
Tree of shortest paths from Providence

Dijkstra' s Algorithm

- The distance of a vertex v from a vertex s is the length of a shortest path between s and v
- Dijkstra's algorithm computes the distances of all the vertices from a given start vertex s
- Assumptions:
- the graph is connected
- the edges are undirected
- the edge weights are nonnegative
- We grow a "cloud" of vertices, beginning with s and eventually covering all the vertices
- We store with each vertex va label $D[v]$ representing the distance of v from s in the subgraph consisting of the cloud and its adjacent vertices
- At each step
- We add to the cloud the vertex u outside the cloud with the smallest distance label, D[u]
- We update the labels of the vertices adjacent to u

Edge Relaxation

$D[v]=$ the distance of v from s

- $D[v]=$ the shortest distance of v from s found so far
- Consider an edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{z})$ such that
- \boldsymbol{u} is the vertex most recently: added to the cloud

- The relaxation of edge \boldsymbol{e} updates distance $d(z)$ as follows:
$D[z] \leftarrow \min \left\{D[z], D[u]+\right.$ weight $\left(e_{\lambda}\right.$

Example

Example (cont.)

Dijkstra's Algorithm: Details

Alg. Dijkstra(V, E)
I nput: A weighted directed graph $G=(V, E), V=\{1,2, \ldots, n\}$;
Output: The distance from vertex 1 to every other vertex in G;

1. $X=\{1\} ; Y \leftarrow V-\{1\} ; D[1] \leftarrow 0$; parent of y
2. for $y \leftarrow 2$ to n
3. if (y is adjacent to 1) $\{D[\nu] \leftarrow$ length $[1, y] ; \mathrm{p}[y] \leftarrow 1\}$
4. else $D[\nu] \leftarrow \infty$;
5. for $j \leftarrow 2$ to n
6. Let $y \in Y$ s.t. $D[y]$ is minimum; $/ / y=\operatorname{argmin}_{y \in Y}\{D[y]\}$
7. $\quad X \leftarrow X \cup\{y\} ; \quad / /$ add vertex y to cloud X
8. $Y \leftarrow Y-\{y\} ; \quad$ //delete vertex y from Y
9. for each edge (y, w) in $E / /$ edge relaxation
10. if $(w \in Y$ and $D[y]+$ length $[y, w]<D[w])$
11. $\quad\left\{D[w] \leftarrow D[y]+\right.$ length $\left.[y, w] ; p[w] \leftarrow y_{1}\right\}$

Analysis of Dijkstra's Algorithm

- Graph operations
- We find all the incident edges once for each vertex
- Label operations
- We set/get the distance and locator labels of vertex $\boldsymbol{z} \boldsymbol{O}(\operatorname{deg}(z))$ times
- Setting/getting a label takes $\boldsymbol{O}(1)$ time
- Priority queue operations
- Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $O(\log \boldsymbol{n})$ time
- The key of a vertex in the priority queue is modified at most deg(w) times, where each key change takes $O(\log n)$ time
- Dijkstra's algorithm runs in $\boldsymbol{O}((\boldsymbol{n}+\boldsymbol{m}) \log \boldsymbol{n})$ time provided the graph is represented by the adjacency list/map structure
- Recall that $\Sigma_{\boldsymbol{v}} \operatorname{deg}(v)=2 \boldsymbol{m}$
- The running time can also be expressed as $\mathbf{O}(\boldsymbol{m} \log \boldsymbol{n})$ since the graph is connected ($m>n-2$).

Possible Quiz Question

Find the shortest paths from A to all other vertices and draw the tree found by Dijkstra's Algorithm.

Why Dijkstra' s Algorithm Works

- Dijkstra's algorithm is based on the greedy method. It adds vertices to cloud by increasing distance.
- Suppose it didn't find all shortest distances. Let w be the first wrong vertex the algorithm processed.
- When the previous node, u, on the true shortest path was considered, its distance was correct
- But the edge (u, w) was relaxed at that time!
- Thus, so long as $D[w] \geq D[u], w^{\prime} s$ distance cannot be wrong. That is,

$(u, w)=(D, F)$ in this example there is no wrong vertex

Why It Doesn' t Work for NegativeWeight Edges

- Dijkstra's algorithm is based on the greedy method. It adds vertices by increasing distance.
- If a node with a negative incident edge were to be added late to the cloud, it could mess up distances for vertices already in the cloud.
- Example: The shortest path from A to C is through B : the distance is $3+-2=1$.

The All-Pairs Shortest Path Problem

- Let $G=(V, E)$ be a directed graph in which each edge (i, j) has a non-negative length $w[i, j]$. If there is no edge from vertex i to vertex j, then $w[i, j]=\infty$.
- The problem is to find the minimal distance from each vertex to all other vertices, where the distance from vertex x to vertex y is the sum of the edge lengths in a path from x to y.

The All-Pairs Shortest Path Problem

- Example:

Weight:	w	a	b	c
	a	0	2	9
	b	8	0	6
	c	1	-	0

15

Design a Dynamic Programming Solution

- How are the subproblems formulated?
- Where are the solutions stored?
- How are the base values computed?
- How do we compute each entry from other entries in the table?
- What is the order in which we fill in the table?

Two DP algorithms for All-pairs shortest paths

- Both are correct. Both produce correct values for all-pairs shortest paths.
- The difference is the subproblem formulation, and hence in the running time.
- Be prepared to provide one or both of these algorithms, and to be able to apply it to an input (on some exam, for example).

Dynamic Programming

First attempt: let $\{1,2, \ldots, \mathrm{n}\}$ denote the set of vertices.
Subproblem formulation:
$M[i, j, k]=$ min length of any path from i to j that uses at most k edges.

All paths have at most $n-1$ edges, so $1 \leq k \leq n-1$.
When $k=1, M[i, j, 1]=w[i, j]$, the edge weight from i to j.
Minimum paths from i to j are found in $M[i, j, n-1]$

- Question: How to set $M[i, j, k]$ from other entries?
- How to set $M[i, j, k]$ from other entries, for $k>1$?
- Consider a minimum weight path from i to j that has at most k edges.
- Case 1: The minimum weight path has at most $k-1$ edges.
- $M[i, j, k]=M[i, j, k-1]$
- Case 2: The minimum weight path has exactly k edges.
- $M[i, j, k]=\min \{M[i, x, k-1]+w(x, j): x$ in $V\}$
- Combining the two cases:
$M[i, j, k]=\min \{\min \{M[i, x, k-1]+w(x, j): x$ in $V\}, M[i, j, k-1]\}$

Finishing the design

- How are the subproblems defined?

Subproblem formulation:
$M[i, j, k]=$ min length of any path from i to j that uses at most k edges.

- Where is the answer stored?
- Minimum paths from i to j are found in $M[i, j, n-1]$
- How are the base values computed?
- When $\mathrm{k}=1, \mathrm{M}[\mathrm{i}, \mathrm{j}, 1]=\mathrm{w}[i, j]$, the edge weight from i to j .
- How do we compute each entry from other entries?
- $M[i, j, k]=\min \{\min \{M[i, x, k-1]+w(x, j): x$ in $V\}, M[i, j, k-1]\}$
- What is the order in which we fill in the matrix?
- For k from 1 to $\mathrm{n}-1$, compute $\mathrm{M}[\mathrm{i}, \mathrm{j}, \mathrm{k}]$.
- Running time?

Pseudo-Code and Complexity Analysis

```
for j=1 ton for i=1 to n
        M[i,j,1] = w[i,j];
    for k=2 to n-1
    for j=1 to n
        fori=1 to n{
            // M[i,j,k]=min{min{M[i,x,k-1]+w(x,j):x in V},M[i,j,k-1]}
            minix = M[i,j,k-1];
            for x=1 to n
            if (minx>M[i,x,k-1] +w(x,j)) minx =M[i,x,k-1] +w(x,j);
            M[i,j,k] = minx;
        }
```

- How many entries do we need to compute? $\mathrm{O}\left(\mathrm{n}^{3}\right)$ $1 \leq \mathrm{i} \leq \mathrm{n} ; 1 \leq \mathrm{j} \leq \mathrm{n} ; 1 \leq \mathrm{k} \leq \mathrm{n}-1$
- How much time does it take to compute each entry? $\mathrm{O}(\mathrm{n})$
- Total time: $\mathrm{O}\left(\mathrm{n}^{4}\right) \quad$ Total space: $\mathrm{O}\left(\mathrm{n}^{3}\right)$ (or $\mathrm{O}\left(\mathrm{n}^{2}\right)$)

Next DP approach: Marshall's Algorithm

- Try a new subproblem formulation!
- $\mathrm{Q}[\mathrm{i}, \mathrm{j}, \mathrm{k}]=$ minimum weight of any path from i to j that uses internal vertices drawn from $\{1,2, \ldots, k\}$.

Designing a DP solution

- How are the subproblems formulated?
- $\mathrm{Q}[\mathrm{i}, \mathrm{j}, \mathrm{k}]=$ minimum weight of any path from i to j that uses internal vertices (other than i and j) drawn from $\{1,2, \ldots, \mathrm{k}\}$.
- Where is the answer stored?
- Q[i,j,n] stores the min length from i to j .
- How are the base values computed?
- Base cases: $Q[i, j, 0]=w[i, j]$ for all i, j
- How do we compute each entry from other entries?
a What is the order in which we fill in the matrix?

Solving subproblems

- $\mathrm{Q}[i, j, k]=$ minimum weight of any path from i to j that uses internal vertices drawn from $\{1,2, \ldots, k\}$.
- Such minimum cost path either includes vertex k or does not include vertex k .
- If the minimum cost path P includes vertex k, then you can divide P into the path P_{1} from i to k, and P_{2} from k to j.
- What is the weight of P_{1} ? $Q[i, k, k-1]$ (why??).
- What is the weight of P_{2} ? $Q[k, j, k-1]$ (why??).
- Thus the weight of P is $Q[i, k, k-1]+Q[k, j, k-1]$.

Marshall's Algorithm

$$
\begin{aligned}
& \text { for } \mathrm{j}=1 \text { to } n \\
& \text { for } \mathrm{i}=1 \text { to } n \\
& \quad \mathrm{Q}[i, j, 0]=w[i, j] \\
& \text { for } k=1 \text { to } n \\
& \text { for } \mathrm{j}=1 \text { to } \mathrm{n} \\
& \text { for } \mathrm{i}=1 \text { to } n \\
& \quad \mathrm{Q}[i, j, k]=\min \{Q[i, j, k-1], \\
& \qquad Q[i, k, k-1]+Q[k, j, k-1]\}
\end{aligned}
$$

- Each entry only takes $\mathrm{O}(1)$ time to compute
- There are $O\left(n^{3}\right)$ entries
- Hence, $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time.
- Total space: $O\left(n^{3}\right)\left(\right.$ or $\left.O\left(n^{2}\right)\right)$

Reusing the space

// Use $R[i, j]$ for $Q[i, j, 0], Q[i, j, 1], \ldots, Q[i, j, n]$.
for $\mathrm{j}=1$ to n
for $i=1$ to n
$R[i, j]=w[i, j] ;$
for $k=1$ to n
for $\mathrm{j}=1$ to n
for $i=1$ to n
$R[i, j]=\min \{R[i, j], R[i, k]+R[k, j]\}$

Claim: For any k, min path of i to $\mathrm{j}<=\mathrm{R}[\mathrm{i}, \mathrm{j}]<=\mathrm{Q}[\mathrm{i}, \mathrm{j}, \mathrm{k}]$.

How to check negative cycles

```
// Use R[i,j] for \(Q[i, j, 0], Q[i, j, 1], \ldots, Q[i, j, n]\).
for \(\mathrm{j}=1\) to n
        for \(i=1\) to \(n\)
            \(R[i, j]=w[i, j] ;\)
    for \(k=1\) to \(n\)
        for \(\mathrm{j}=1\) to n
        for \(\mathrm{i}=1\) to n
            \(R[i, j]=\min \{R[i, j], R[i, k]+R[k, j]\} ;\)
    for \(\mathrm{i}=1\) to n
        if ( \(R[i, i]<0\) ) print("There is a negative cycle");
```


How to compute transitive closure

- The relation $R^{*}=R^{1} \cup R^{2} \cup R^{3} \cup \ldots \cup R^{n-1}$, where n is the number of nodes, is called the transitive closure of R.
- To decide if (a, b) in R^{*}, we need to decide if there is a path from a to b in $G=(A, R)$.
// Pre: $\mathrm{R}[$,$] is the relation over \{1,2, . ., \mathrm{n}\}$
// Post: T is the transitive closure of R.
for $\mathrm{j}=1$ to n
for $i=1$ to n
$T[i, j]=R[i, j] ; / / R[.$,$] is 0 / 1$ incidence matrix for relation R.
for $k=1$ to n
for $\mathrm{j}=1$ to n for $i=1$ to n
$T[i, j]=T[i, j] \|(T[i, k] \& \&[k, j]) ;$

Shortest Paths in DAG

- We can produce a specialized shortest-path algorithm for directed acyclic graphs (DAGs)
- Works even with negativeweight edges
- Uses topological order
- It doesn't use any fancy data structures
- It's much faster than Dijkstra's algorithm.

DAG Example

Nodes are labeled with their $\mathrm{D}[\mathrm{v}]$ values

DAG-based Algorithm: Details

Algorithm DAGShortestPaths (\vec{G}, s) :

Input: A weighted directed acyclic graph (DAG) \vec{G} with n vertices and m edges, and a distinguished vertex s in \vec{G}
Output: A label $D[u]$, for each vertex u of \vec{G}, such that $D[u]$ is the distance from v to u in \vec{G}
Compute a topological ordering $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ for \vec{G}
$D[s] \leftarrow 0$
for each vertex $u \neq s$ of \vec{G} do $D[u] \leftarrow+\infty$
for $i \leftarrow 1$ to $n-1$ do
// Relax each outgoing edge from v_{i} for each edge $\left(v_{i}, u\right)$ outgoing from v_{i} do if $D\left[v_{i}\right]+w\left(\left(v_{i}, u\right)\right)<D[u]$ then $D[u] \leftarrow D\left[v_{i}\right]+w\left(\left(v_{i}, u\right)\right)$

Output the distance labels D as the distances from s.

What is the complexity? Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$. 31

Possible Quiz Question

Given a DAG, how to find the longest paths from one vertex to other vertices efficiently?

