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Shortest Paths

Presentation for use with the textbook, Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015
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Weighted Graphs
 In a weighted graph, each edge has an associated numerical 

value, called the weight of the edge
 Edge weights may represent, distances, costs, etc.
 Example:

 In a  flight route graph, the weight of an edge represents the 
distance in miles between the endpoint airports
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Shortest Paths
 Given a weighted graph and two vertices u and v, we want to 

find a path of minimum total weight between u and v.
 Length of a path is the sum of the weights of its edges.

 Example:
 Shortest path between Providence and Honolulu

 Applications
 Internet packet routing 
 Flight reservations
 Driving directions
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Shortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other 
vertices

Example:
Tree of shortest paths from Providence
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Dijkstra’s Algorithm
 The distance of a vertex 

v from a vertex s is the 
length of a shortest path 
between s and v

 Dijkstra’s algorithm 
computes the distances 
of all the vertices from a 
given start vertex s

 Assumptions:
 the graph is connected
 the edges are 

undirected
 the edge weights are 

nonnegative

 We grow a “cloud” of vertices, 
beginning with s and eventually 
covering all the vertices

 We store with each vertex v a 
label D[v] representing the 
distance of v from s in the 
subgraph consisting of the cloud 
and its adjacent vertices

 At each step
 We add to the cloud the vertex 

u outside the cloud with the 
smallest distance label, D[u]

 We update the labels of the 
vertices adjacent to u
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Edge Relaxation
 D[v] = the shortest distance 

of v from s found so far
 Consider an edge e  (u, z)

such that
 u is the vertex most recently 

added to the cloud
 z is not in the cloud

 The relaxation of edge e 
updates distance d(z) as 
follows:
D[z]  min{D[z], D[u] weight(e)}

D[z] 75
D[u] 50

zs
u

D[z] 60
D[u] 50

zs
u

e

e

D[v] = the distance of v from s
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Example
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Example (cont.)
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Alg. Dijkstra(V, E)
Input: A weighted directed graph G =(V, E), V ={1, 2, …, n};
Output: The distance from vertex 1 to every other vertex in G;

1.  X ={1}; YV – {1}; D [1]0;
2.  for y 2 to n 
3.       if (y is adjacent to 1) { D [y]length[1, y]; p[y]  1 }
4.       else D [y];
5.  for j  2 to n 
6.       Let y Y s.t. D [y] is minimum; // y = argminy Y { D[y] }
7.       X X  {y};             // add vertex y to cloud X
8.       Y Y – {y};             //delete vertex y from Y
9.       for each edge (y, w) in E // edge relaxation
10.          if (w Y and D [y]+length[y, w]<D [w])
11.                { D [w]D [y]+length[y, w]; p[w]  y; }

Dijkstra’s Algorithm: Details

parent of y
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Analysis of Dijkstra’s Algorithm
 Graph operations

 We find all the incident edges once for each vertex
 Label operations

 We set/get the distance and locator labels of vertex z O(deg(z)) times
 Setting/getting a label takes O(1) time

 Priority queue operations
 Each vertex is inserted once into and removed once from the priority 

queue, where each insertion or removal takes O(log n) time
 The key of a vertex in the priority queue is modified at most deg(w) 

times, where each key change takes O(log n) time 
 Dijkstra’s algorithm runs in O((n  m) log n) time provided the 

graph is represented by the adjacency list/map structure
 Recall that v deg(v) 2m

 The running time can also be expressed as O(m log n) since the 
graph is connected (m > n-2).

9

10



Lists and Iterators 11/14/2019

6

Possible Quiz Question
Find the shortest paths from A to all other vertices 
and draw the tree found by Dijkstra’s Algorithm.

12

Why Dijkstra’s Algorithm Works
 Dijkstra’s algorithm is based on the greedy method. 

It adds vertices to cloud by increasing distance.
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 Suppose it didn’t find all shortest 
distances. Let w be the first wrong 
vertex the algorithm processed.

 When the previous node, u, on the 
true shortest path was considered, 
its distance was correct

 But the edge (u,w) was relaxed at 
that time!

 Thus, so long as D[w]>D[u], w’s 
distance cannot be wrong.  That is, 
there is no wrong vertex

(u,w) = (D,F) in this example

11
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Why It Doesn’t Work for Negative-
Weight Edges

 If a node with a negative 
incident edge were to be added 
late to the cloud, it could mess 
up distances for vertices already 
in the cloud. 

 Example: The shortest path 
from A to C is through B: the 
distance is 3 + -2 = 1.

Dijkstra’s algorithm is based on the greedy 
method. It adds vertices by increasing distance.
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The All-Pairs Shortest Path Problem

 Let G =(V, E) be a directed graph in which each edge 
(i, j) has a non-negative length w[i, j]. If there is no 
edge from vertex i to vertex j, then w[i, j]=.

 The problem is to find the minimal distance from 
each vertex to all other vertices, where the distance 
from vertex x to vertex y is the sum of the edge 
lengths in a path from x to y.
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The All-Pairs Shortest Path Problem

 Example:

a

b c

2
8

1
9

6

w a b c
a 0 2 9
b 8 0 6
c 1 - 0

D a b c
a 0 2 8
b 7 0 6
c 1 3 0

Weight:

Distance:

Design a Dynamic Programming Solution

 How are the subproblems formulated?

 Where are the solutions stored?

 How are the base values computed?

 How do we compute each entry from other entries in the 
table?

 What is the order in which we fill in the table?

15
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Two DP algorithms for All-pairs shortest paths
 Both are correct. Both produce correct values for all-pairs 

shortest paths.

 The difference is the subproblem formulation, and hence in the 
running time.

 Be prepared to provide one or both of these algorithms, and to 
be able to apply it to an input (on some exam, for example).

Dynamic Programming
First attempt: let {1,2,…,n} denote the set of vertices.  

Subproblem formulation:
M[i,j,k] = min length of any path from i to j that uses at most               

k edges.

All paths have at most n-1 edges, so 1 ≤ k ≤ n-1.

When k=1, M[i,j,1] = w[i,j], the edge weight from i to j.

Minimum paths from i to j are found in M[i,j,n-1]

 Question: How to set M[i,j,k] from other entries?

17
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 How to set M[i,j,k] from other entries, for k>1?

 Consider a minimum weight path from i to j that has 
at most k edges. 
 Case 1: The minimum weight path has at most k-1 

edges. 
 M[i,j,k] = M[i,j,k-1]

 Case 2: The minimum weight path has exactly k 
edges. 
 M[i,j,k] = min{ M[i,x,k-1] + w(x,j) : x in V}

 Combining the two cases: 
M[i,j,k] = min{min{M[i,x,k-1] + w(x,j) : x in V}, M[i,j,k-1]}

Finishing the design
 How are the subproblems defined?

Subproblem formulation:
M[i,j,k] = min length of any path from i to j that uses at most  k edges.

 Where is the answer stored?
 Minimum paths from i to j are found in M[i,j,n-1]

 How are the base values computed?
 When k=1, M[i,j,1] = w[i,j], the edge weight from i to j.

 How do we compute each entry from other entries?
 M[i,j,k] = min{min{M[i,x,k-1] + w(x,j) : x in V}, M[i,j,k-1]}

 What is the order in which we fill in the matrix?
 For k from 1 to n-1, compute M[i,j,k].

 Running time?

19
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Pseudo-Code and Complexity Analysis

 How many entries do we need to compute?  O(n3)
1 ≤ i ≤ n; 1 ≤ j  ≤ n; 1 ≤ k ≤ n-1

 How much time does it take to compute each entry?  O(n)
 Total time: O(n4)                   Total space: O(n3)  (or O(n2))

for j = 1 to n  for i = 1 to n 
M[i,j,1] = w[i,j];   

for k = 2 to n-1
for j = 1 to n
for i = 1 to n { 

// 
minx = M[i,j,k-1];
for x = 1 to n

if (minx > M[i,x,k-1] + w(x,j)) minx = M[i,x,k-1] + w(x,j);
M[i,j,k] = minx;

}

Next DP approach: Marshall’s Algorithm 
 Try a new subproblem formulation!

 Q[i,j,k] = minimum weight of any path from i to j that uses 
internal vertices drawn from {1,2,…,k}.

21
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Designing a DP solution
 How are the subproblems formulated?

 Q[i,j,k] = minimum weight of any path from i to j that uses 
internal vertices (other than i and j) drawn from {1,2,…,k}.

 Where is the answer stored?
 Q[i,j,n] stores the min length from i to j.

 How are the base values computed?
 Base cases: Q[i,j,0] = w[i,j] for all i,j

 How do we compute each entry from other entries?

 What is the order in which we fill in the matrix?

Solving subproblems
 Q[i,j,k] = minimum weight of any path from i to j that uses 

internal vertices drawn from {1,2,…,k}.

 Such minimum cost path either includes vertex k or does not 
include vertex k.

 If the minimum cost path P includes vertex k, then you can divide 
P into the path P1 from i to k, and P2 from k to j.

 What is the weight of P1?

 What is the weight of P2?

 Thus the weight of P is Q[i,k,k-1] + Q[k,j,k-1].

Q[i,k,k-1] (why??).

Q[k,j,k-1] (why??).
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Marshall’s Algorithm 
for j = 1 to n 

for i = 1 to n 
Q[i,j,0] = w[i,j]

for k= 1 to n
for j = 1 to n 

for i = 1 to n 
Q[i,j,k] = min{Q[i,j,k-1], 

Q[i,k,k-1] + Q[k,j,k-1]}

 Each entry only takes O(1) time to compute
 There are O(n3) entries
 Hence, O(n3) time.
 Total space: O(n3)  (or O(n2))

Reusing the space 
// Use R[i,j] for Q[i,j,0], Q[i,j,1], …, Q[i,j,n].
for j = 1 to n  

for i = 1 to n 
R[i,j] = w[i,j];

for k= 1 to n
for j = 1 to n 

for i = 1 to n 
R[i,j] = min{R[i,j], R[i,k] + R[k,j]}

Claim: For any k, min path of i to j <= R[i,j] <= Q[i,j,k].

25
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How to check negative cycles

// Use R[i,j] for Q[i,j,0], Q[i,j,1], …, Q[i,j,n].
for j = 1 to n  

for i = 1 to n 
R[i,j] = w[i,j];

for k= 1 to n
for j = 1 to n 

for i = 1 to n 
R[i,j] = min{R[i,j], R[i,k] + R[k,j]};

for i = 1 to n 
if (R[i,i] < 0) print(“There is a negative cycle”);

How to compute transitive closure

 The relation R* = R1  R2  R3  …  Rn-1, where n is the number 
of nodes, is called the transitive closure of R.
 To decide if (a, b) in R*, we need to decide if there is a path from 
a to b in G = (A, R).

// Pre: R[,] is the relation over {1, 2, .., n}
// Post: T is the transitive closure of R.
for j = 1 to n  

for i = 1 to n 
T[i,j] = R[i,j];  // R[.,.] is 0/1 incidence matrix for relation R.

for k= 1 to n
for j = 1 to n 

for i = 1 to n 
T[i,j] = T[i,j] || (T[i,k] && T[k,j]);

27

28



Lists and Iterators 11/14/2019

15

29

Shortest Paths in DAG 
 We can produce a specialized 

shortest-path algorithm for 
directed acyclic graphs (DAGs)

 Works even with negative-
weight edges

 Uses topological order
 It doesn’t use any fancy data 

structures
 It’s much faster than Dijkstra’s 

algorithm.
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DAG-based Algorithm: Details 
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What is the complexity? Running time: O(n+m).

Possible Quiz Question
Given a DAG, how to find the longest paths from
one vertex to other vertices efficiently?
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