Lists and Iterators

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Shortest Paths

Lightning strike, 2009. U.S. government image. NOAA.

s

Weighted Graphs

u]

In a weighted graph, each edge has an associated numerical
value, called the weight of the edge

Edge weights may represent, distances, costs, etc.
Example:

= Ina flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

11/14/2019

Lists and Iterators 11/14/2019

Shortest Paths

" o Given a weighted graph and two vertices u and v, we want to
find a path of minimum total weight between u and v.
= Length of a path is the sum of the weights of its edges.
o Example:
= Shortest path between Providence and Honolulu
o Applications
= Internet packet routing
= Flight reservations
= Driving directions

3
Shortest Path Properties
Property 1:
A subpath of a shortest path is itself a shortest path
Property 2:
There is a tree of shortest paths from a start vertex to all the other
vertices
Example:
Tree of shortest paths from Providence
4
4

Lists and Iterators

Dijkstra’ s Algorithm

o The distance of a vertex o We grow a “cloud” of vertices,

v from a vertex s is the beginning with s and eventually
length of a shortest path covering all the vertices
between s and v a We store with each vertex v a
o Dijkstra’ s algorithm label D[v] representing the
computes the distances distance of v from s in the
of all the vertices from a subgraph consisting of the cloud
given start vertex s and its adjacent vertices
o Assumptions: o At each step
= the graph is connected = We add to the cloud the vertex
= the edges are u outside the cloud with the
undirected smallest distance label, D[u]
= the edge weights are = We update the labels of the
nonnegative vertices adjacent to u

Edge Relaxation

D[v] = the distance of v from s
o D[v] = the shortest distance
of v from s found so far D[] =50,
a Consider an edge e =(u, 2) . :
such that ;
= Uuis the vertex most recently"\\

added to the cloud
= 7z is not in the cloud

o The relaxation of edge e
updates distance d(z) as
follows:

mﬂemqmqom+m@md

11/14/2019

Lists and Iterators

Example
o (D

11/14/2019

Lists and Iterators

Dijkstra’s Algorithm: Details

HEREOONOUAWN

i

Alg. Dijkstra(V, E)

Input: A weighted directed graph G=(V, £), V={1, 2, ..., n};
Output: The distance from vertex 1 to every other vertex in G;

X={1}; YV —{1}; D[1]«0; parent of y

for y<2ton
if (yis adjacentto 1) { D[y]«/length 1, yl; ply] < 1}
else D[y]«;
for j«2ton
Let y eV s.t. D[y] is minimum; // 'y = argmin,_,{ D[y] }
X< Xu{y}; // add vertex yto cloud X
Y<Y—{y}; //delete vertex y from Y
for each edge (y, w) in E // edge relaxation
if (weVYand D[yl+/lengthly, wi<D[w])
{ D[Wl<D[yl+lengtily, wl; plw] < y; }

Analysis of Dijkstra’ s Algorithm

Q

Graph operations
= We find all the incident edges once for each vertex

Label operations
= We set/get the distance and locator labels of vertex z O(deg(z)) times
= Setting/getting a label takes O(1) time

Priority queue operations

= Each vertex is inserted once into and removed once from the priority
queue, where each insertion or removal takes O(log n) time

= The key of a vertex in the priority queue is modified at most deg(w)
times, where each key change takes O(log n) time

Dijkstra’ s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list/map structure

s Recall that X, deg(v) = 2m
The running time can also be expressed as O(m log n) since the
graph is connected (m > n-2).

10

10

11/14/2019

Lists and Iterators

Possible Quiz Question

Find the shortest paths from A to all other vertices
and draw the tree found by Dijkstra’ s Algorithm.

11

o Dijkstra’ s algorithm is based on the greedy method.
It adds vertices to cloud by increasing distance.

= Suppose it didn’ t find all shortest
distances. Let w be the first wrong
vertex the algorithm processed.

= When the previous node, u, on the
true shortest path was considered,
its distance was correct

= But the edge (u,w) was relaxed at
that time!

= Thus, so long as D[w]>D[u], W’ s
distance cannot be wrong. That s,
there is no wrong vertex

Why Dijkstra’ s Algorithm Works

(u,w) = (D,F) in this example

12

12

11/14/2019

Lists and Iterators 11/14/2019

Why It Doesn’ t Work for Negative-
Weight Edges

Dijkstra’ s algorithm is based on the greedy
method. It adds vertices by increasing distance.

= If a node with a negative
incident edge were to be added
late to the cloud, it could mess
up distances for vertices already
in the cloud.

= Example: The shortest path
from A to C is through B: the
distanceis 3 + -2 = 1.

13

13

The All-Pairs Shortest Path Problem

o Let G=(V, £) be a directed graph in which each edge
(4, 7)) has a non-negative length w[/ j]. If there is no
edge from vertex /to vertex j, then w[/, j]=co.

o The problem is to find the minimal distance from
each vertex to all other vertices, where the distance
from vertex x to vertex yis the sum of the edge
lengths in a path from xto y.

14

Lists and Iterators

The All-Pairs Shortest Path Problem

o Example:
Weight:
0 9
(:> 0 6
/ G 0
2 1
fo N,
@ @ Distance:
6 2 8
0 6
C 3 0

15

Design a Dynamic Programming Solution

]

Q

How are the subproblems formulated?
Where are the solutions stored?
How are the base values computed?

How do we compute each entry from other entries in the
table?

What is the order in which we fill in the table?

16

11/14/2019

Lists and Iterators 11/14/2019

Two DP algorithms for All-pairs shortest paths

o Both are correct. Both produce correct values for all-pairs
shortest paths.

o The difference is the subproblem formulation, and hence in the
running time.

o Be prepared to provide one or both of these algorithms, and to
be able to apply it to an input (on some exam, for example).

17

Dynamic Programming

First attempt: let {1,2,...,n} denote the set of vertices.

Subproblem formulation:

MT[i,j,k] = min length of any path from i to j that uses at most
k edges.

All paths have at most n-1 edges, so 1 < k < n-1.
When k=1, M[i,j, 1] = w[i,j], the edge weight from i to j.

Minimum paths from i to j are found in M[i,j,n-1]

o Question: How to set M[i,j, k] from other entries?

18

Lists and Iterators 11/14/2019

o How to set M[i,j, k] from other entries, for k>1?

o Consider a minimum weight path from i to j that has
at most k edges.
= Case 1: The minimum weight path has at most k-1

edges.

+ M[i,j,k] = M[ij,k-1]
= Case 2: The minimum weight path has exactly k

edges.

* M[i,j, k] = min{ M[i,x,k-1] + w(x,j) : x in V}

o Combining the two cases:
MIi,j,k] = min{min{M[i,x,k-1] + w(x,j) : x in V}, M[i,j,k-11}

19

Finishing the design

o How are the subproblems defined?
Subproblem formulation:
MT[i,j,k] = min length of any path from i to j that uses at most k edges.

o Where is the answer stored?
+ Minimum paths from i to j are found in M[i,j,n-1]
o How are the base values computed?
+ When k=1, M[i,j,1] = w[i,j], the edge weight from i to j.
o How do we compute each entry from other entries?
* M[i,j,k] = min{min{M[i,x,k-1] + w(x,j) : xin V}, M[i,j, k-1]}
a What is the order in which we fill in the matrix?
+ For k from 1 to n-1, compute M[i,j,k].

o Running time?

20

10

Lists and Iterators 11/14/2019

Pseudo-Code and Complexity Analysis

»

forj=1ton fori=1ton
MI[i.j,1] = wii,jf;
fork=2ton-1
forj=1ton
fori=1ton{
I M[i,j.k] = min{min{M[i x k-1]+ w(x,j) : x in V}, M[i,j.k-1]}
minx = Mi,j,k-1];
forx=1ton
if (minx > M[i,x,k-1] + w(x,j)) minx = M[i,x,k-1] + w(Xx,j);
M[i,j,k] = minx;
}

s

o How many entries do we need to compute? O(n3)
1<i<n1<j<n1<ksgnl
o How much time does it take to compute each entry? O(n)

o Total time: O(n%) Total space: O(n3) (or O(n2))
21
Next DP approach: Marshall’s Algorithm
) o Try a new subproblem formulation!
o Ql[i,j,k] = minimum weight of any path from i to j that uses
internal vertices drawn from {1,2,...,k}.
22

11

Lists and Iterators

Q

]

Designing a DP solution

How are the subproblems formulated?

= Q[i,j,k] = minimum weight of any path from i to j that uses
internal vertices (other than i and j) drawn from {1,2,...,k}.

Where is the answer stored?
= Qi j,n] stores the min length from i to j.

How are the base values computed?
» Base cases: Q[i,j,0] = wli,j] for all i,j

How do we compute each entry from other entries?

What is the order in which we fill in the matrix?

23

Q

Solving subproblems

Qli,j,k] = minimum weight of any path from i to j that uses
internal vertices drawn from {1,2,...,k}.

Such minimum cost path either includes vertex k or does not
include vertex k.

If the minimum cost path P includes vertex k, then you can divide
P into the path P, from i to k, and P, from k to j.

What is the weight of P,? Q[i,k,k-1] (why??).
What is the weight of P,? Q[k,j,k-1] (why??).

Thus the weight of P is Q[i,k k-1] + Q[k,j,k-11.

24

11/14/2019

12

Lists and Iterators 11/14/2019

Marshall’s Algorithm

N S S
forj=1ton
fori=1ton
Q[i,j,0]1 = w[i,j]
fork=1ton
forj=1ton
fori=1ton
Q[II]Ik] = mln{Q[IIJIk_]']I
Q[Ilklk_l] + Q[kl.]lk_l]}

Each entry only takes O(1) time to compute
There are O(n3) entries

Hence, O(n3) time.

Total space: O(n3) (or O(n2))

0O 0o 0O O

25

Reusing the space

// Use R[i,j] for Q[i,j,01, Q[i,j,1], .., Q[i,j,n].
forj=1ton
fori=1ton
R[i,j] = wlijl;
fork=1ton
forj=1ton
fori=1ton
R[i,j] = min{R[i,j], R[i,K] + R[k,jI}

Claim: For any k, min path of i to j <= R[i,j] <= Q[i,j,k]-

26

13

Lists and Iterators

How to check negative cycles

// Use R{[i,j] for Q[i,j,01, Q[i,j,1], ..., Q[i,j,n].
forj=1ton
fori=1ton
R[i,j] = w[i,jl;
fork=1ton
forj=1ton
fori=1ton
R[i,j1 = min{R[i,j], R[i,k] + R[k,jI};
fori=1ton
if (R[i,i] < 0) print("There is a negative cycle”);

27

How to compute transitive closure

a The relation R* = Rt U R2 U R3 U ... U R™, where n is the number
of nodes, is called the transitive closure of R.

o To decide if (a, b) in R*, we need to decide if there is a path from
atobinG=(A R).

// Pre: R[,] is the relation over {1, 2, .., n}
// Post: T is the transitive closure of R.
forj=1ton

fori=1ton

TI[i,i] = RI[,j]; // R[.,.]1is 0/1 incidence matrix for relation R.

fork=1ton

forj=1ton

fori=1ton
T3] = T3] 1 (T K] && TLK,j1);

28

11/14/2019

14

Lists and Iterators 11/14/2019

Shortest Paths in DAG

o We can produce a specialized
shortest-path algorithm for
directed acyclic graphs (DAGS)

o Works even with negative-
weight edges

o Uses topological order o)

o It doesn’t use any fancy data DT 2D
structures
S 5

a It's much faster than Dijkstra’ .
algorithm. G

29

29

DAG Example

Nodes are labeled with theirlD[v] values

6 5
(two steps) 30

30

15

Lists and Iterators

DAG-based Algorithm: Details

4
Algorithm DAGShortestPaths(G, s):
Input: A weighted directed acyclic graph (DAG) G with n vertices and m
edges, and a distinguished vertex s in G
Output: A label D[u], for each vertex u of G, such that D[u] is the distance
from v to w in G
Compute a topological ordering (v, vs,...,vy,) for G
D[s] + 0 1
for each vertex u # s of G do 8
D[u] « +o0
fori < 1ton—1do

/I Relax each outgoing edge from v; =
for each edge (v;, u) outgoing from v; do
if D[v;] + w((v;,u)) < D[u] then 5
D[u] < D[v;] + w((v;,u))
Output the distance labels D as the distances from s.

What is the complexity? Running time: O(n+m).

31

31

Possible Quiz Question

Given a DAG, how to find the longest paths from
one vertex to other vertices efficiently?

32

11/14/2019

16

