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Graph Terminology and 
Representations

Presentation for use with the textbook, Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015
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Graphs
 A graph is a pair (V, E), where

 V is a set of nodes, called vertices
 E is a collection of pairs of vertices, called edges
 Vertices and edges are positions and store elements

 Example:
 A vertex represents an airport and stores the three-letter airport code
 An edge represents a flight route between two airports and stores the 

mileage of the route
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Edge Types
 Directed edge

 ordered pair of vertices (u,v)
 first vertex u is the origin
 second vertex v is the destination
 e.g., a flight

 Undirected edge
 unordered pair of vertices (u,v)
 e.g., a flight route

 Directed graph
 all the edges are directed
 e.g., route network

 Undirected graph
 all the edges are undirected
 e.g., flight network

ORD PVDflight
AA 1206

ORD PVD849
miles
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Applications
 Electronic circuits

 Printed circuit board
 Integrated circuit

 Transportation networks
 Highway network
 Flight network

 Computer networks
 Local area network
 Internet
 Web

 Databases
 Entity-relationship diagram
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Terminology
 End vertices (or endpoints) of 

an edge
 U and V are the endpoints of a

 Edges incident on a vertex
 a, d, and b are incident on V

 Adjacent vertices
 U and V are adjacent

 Degree of a vertex
 X has degree 5 

 Parallel edges
 h and i are parallel edges

 Loop
 j is a loop

XU

V

W

Z

Y

a

c

b

e
d

f

g

h

i

j
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P1

Terminology (cont.)
 Path

 sequence of alternating 
vertices and edges 

 begins with a vertex
 ends with a vertex
 each edge is preceded and 

followed by its endpoints
 it contains at least one edge

 Simple path
 path such that all its vertices 

and edges are distinct
 Examples

 P1=(V,b,X,h,Z) is a simple path
 P2=(U,c,W,e,X,g,Y,f,W,d,V) is a 

path that is not simple
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Terminology (cont.)
 Cycle

 circular sequence of alternating 
vertices and edges 

 each edge is preceded and 
followed by its endpoints

 Simple cycle
 cycle such that all its vertices 

and edges are distinct
 Examples

 C1=(V,b,X,g,Y,f,W,c,U,a,) is a 
simple cycle

 C2=(U,c,W,e,X,g,Y,f,W,d,V,a,)
is a cycle that is not simple

 Edges can be dropped if no 
multiple edges exist.

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2

From now on, the default is 
that a graph has no multiple 
edges. 
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Properties
Notation

n number of vertices
m number of edges

deg(v) degree of vertex v

Property 1
v deg(v) 2m

Proof: each edge is 
counted twice

Property 2
In an undirected graph 

with no loops and no 
multiple edges
m  n (n  1)2

Proof: each vertex has 
degree at most (n  1)

What is the bound for a 
directed graph?

Example
 n 4
 m 6
 deg(v) 3

7
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Vertices and Edges
 A graph is a collection of vertices and edges. 
 A Vertex is can be an abstract unlabeled object 

or it can be labeled (e.g., with an integer 
number or an airport code) or it can store other 
objects

 An Edge can likewise be an abstract unlabeled 
object or it can be labeled (e.g., a flight 
number, travel distance, cost), or it can also 
store other objects.

Relations vs Graph
 A relation R on the set A is a subset of AA.
 There is 1-to-1 correspondence between R and (directed) G=(A, R).

 Example: Let A = {1, 2, 3, 4}. Which ordered pairs are in the 
relation R = {(a, b) | a < b} ?

1

4

2

3

R = { (1,2), (1,3), (1,4), (2,3), (2,4), (3,4) }

9
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Representing Relations Using Digraphs
 Example: Display the digraph with V = {a, b, c, d}, 
E = {(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)}.

a
b

cd

An edge of the form (b, b) is called a loop.

Relations on a Set
 How many different relations can we define on a 
set A with n elements?
 A relation on a set A is a subset of AA.
 How many elements are in AA ?
 The number of subsets that we can form out of a set 
with m elements is 2m. Therefore, 2n2 subsets can be 
formed out of AA.
 Answer: We can define 2n2 different relations 
on A. As a result, we have that much directed graphs on n 
points.

11
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Possible Quiz Question

13

• How many different undirected graphs 
over n points?

• How many different loop-free directed 
graphs over n points?

Properties of Relations

 Definition: A relation R on a set A is called 
reflexive if (a, a)R for every element aA.

 The graph that each node has a loop represents a 
reflexive relation.

13
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Properties of Relations 

Definitions:
 A relation R on a set A is called symmetric if (b, a)R whenever 
(a, b)R for all a, bA. 

 Every undirected graph represents a symmetric relation.

 A relation R on a set A is called antisymmetric if 
a = b whenever (a, b)R and (b, a)R.

 (N, ) is antisymmetric

 A relation R on a set A is called asymmetric if 
(a, b)R implies that (b, a)R for all a, bA. 

 (N, <) is asymmetric

What is the relation between “antisymmetric” and “asymmetric”?
 R is asymmetric iff R is antisymmetric and has no loops.

Properties of Relations

 Definition: A relation R on a set A is called 
transitive if whenever (a, b)R and (b, c)R, then (a, 
c)R for a, b, cA. 

 Whenever there is a path that goes from a to b, then 
there is an edge (a, b) in the graph, then the graph 
represents a transitive relation.

 Are the following relation on {1, 2, 3} transitive?

R = {(1, 1), (1, 2), (2, 1), (3, 3)}

15
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Combining Relations

 Definition: Let R be a relation from a set A to a set B 
and S a relation from B to a set C. The composite of R 
and S is the relation consisting of ordered pairs (a, c), 
where aA, cC, and for which there exists an element 
bB such that (a, b)R and (b, c)S. We denote the 
composite of R and S by SR.

 If A = B = C, and S = R, then RR can be written as R2.

 If R is represented by a graph, then (a, b) is in R2 iff
there is a path of length 2 from a to b. 
 In general, (a, b) is in Rk iff there is a path of length k 
from a to b. 

Combining Relations
 Definition: Let R be a relation on the set A. The powers
Rk, k = 1, 2, 3, …, are defined inductively by
 R1 = R
 Rk+1 = RkR

 In other words: Rk = RR … R  (k times the letter R)

 The relation R* = R1  R2  R3  …  Rn-1, where n is the 
number of nodes, is called the transitive closure of R.

 To decide if (a, b) in R*, we need to decide if there is a 
path from a to b in G = (A, R).

17

18



Lists and Iterators 11/7/2019

10

19

Combining Relations
 Theorem: The relation R on a set A is transitive 
if and only if Rk  R for all positive integers k. 

Remember the definition of transitivity:
 Definition: A relation R on a set A is called transitive if 
whenever (a, b)R and (b, c)R, then (a, c)R for a, b, 
cA. 

 The composite of R with itself contains exactly these pairs (a, c). 
 Therefore, for a transitive relation R, RR does not contain any pairs 
that are not in R, so RR  R.
 Since RR does not introduce any pairs that are not already in R, it 
must also be true that (RR)R  R, and so on, so that Rk  R.

Equivalence Relations 

 Equivalence relations are used to relate objects that 
are similar in some way.

 Definition: A relation on a set A is called an 
equivalence relation if it is reflexive, symmetric, and 
transitive.

 Two elements that are related by an equivalence relation 
R are called equivalent.

 The best representation of an equivalence relation is 
Sets.

19
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Adjacency List Structure
 Incidence sequence 

for each vertex
 sequence of 

references to edge 
objects of incident 
edges

 Augmented edge 
objects
 references to 

associated 
positions in 
incidence 
sequences of end 
vertices

22

Adjacency Matrix Structure
 Edge list structure
 Augmented vertex 

objects
 Integer key (index) 

associated with vertex
 2D-array adjacency 

array
 Reference to edge 

object for adjacent 
vertices

 Null for non 
nonadjacent vertices

 The “old fashioned”
version just has 0 for 
no edge and 1 for edge e, f, g, h can be replaced 

by 1; blanks by 0. 

21
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Possible Quiz Question

23

Suppose direct graph G = (V, E) is 
represented by 0/1 adjacency matrix A and 
k is a positive integer.

• Let B = Ak. If B is the 0/1 adjacency 
matrix for another graph H over V, what is 
the relationship between H and G in 
terms of paths in G?

• How to compute Ak efficiently?

Graph Representations

Option 1:

Class Node

String: Name

Boolean: Visited

List<Node>: Neighbors

List<Integer>: Costs

End Node

Option 2:

Class Node

String: Name

Boolean: Visited

List<Edge>: Edges

End Node

Class Edge

Integer: Cost

Node: toNode

Node: fromNode

End Edge

23
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Performance
(All bounds are big-oh running times, except  for “Space”)
 n vertices, m edges
 no parallel edges
 no self-loops

Edge
List

Adjacency
List

Adjacency 
Matrix

Space n  m n  m n2

incidentEdges(v) m deg(v) n

areAdjacent (v, w) m min(deg(v), deg(w)) 1

insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1

removeVertex(v) m deg(v) n2

removeEdge(e) 1 deg(v) 1

26

Subgraphs
 A subgraph S of a graph 

G is a graph such that 
 The vertices of S are a 

subset of the vertices of G
 The edges of S are a 

subset of the edges of G
 A spanning subgraph of G 

is a subgraph that 
contains all the vertices 
of G

Subgraph

Spanning subgraph

25
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Application: Web Crawlers
 A fundamental kind of algorithmic operation that we 

might wish to perform on a graph is traversing the 
edges and the vertices of that graph. 

 A traversal is a systematic procedure for exploring a 
graph by examining all of its vertices and edges. 

 For example, a web crawler, which is the data 
collecting part of a search engine, must explore a 
graph of hypertext documents by examining its 
vertices, which are the documents, and its edges, 
which are the hyperlinks between documents. 

 A traversal is efficient if it visits all the vertices and 
edges in linear time.

27

28

Connectivity
 A graph is connected 

if there is a path 
between every pair of 
vertices

 A connected 
component of a 
graph G is a maximal 
connected subgraph 
of G

Connected graph

Non connected graph with two 
connected components

27
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Trees and Forests
 A (free) tree is an 

undirected graph T such 
that
 T is connected
 T has no cycles
This definition of tree is 

different from rooted
trees

 A forest is an undirected 
graph without cycles

 The connected 
components of a forest 
are trees

Tree

Forest

30

Spanning Trees and Forests
 A spanning tree of a 

connected graph is a 
spanning subgraph that is 
a tree

 A spanning tree is not 
unique unless the graph is 
a tree

 Spanning trees have 
applications to the design 
of communication 
networks

 A spanning forest of a 
graph is a spanning 
subgraph that is a forest

Graph

Spanning tree

29
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Depth-First Search
 Depth-first search (DFS) 

is a general technique 
for traversing a graph

 A DFS traversal of a 
graph G 
 Visits all the vertices and 

edges of G
 Determines whether G is 

connected
 Computes the connected 

components of G
 Computes a spanning 

forest of G

 DFS on a graph with n
vertices and m edges takes 
O(n m ) time

 DFS can be further extended 
to solve other graph 
problems
 Find and report a path 

between two given 
vertices

 Find a cycle in the graph
 Depth-first search can be 

done iteratively or 
recursively, and the results 
are different if a node has 
multiple children.

Depth-First Traversal with Marking
DFS_recur(Node: node)

<Process node>

node.Visited = True

for each edge in node.Edges

if (not edge.toNode.Visited) then

DFS_recur(edge.toNode)

edge.toNode.parent = node

end if

end for

end DFS_recur

Complexity: O(n + m), 

n and m are the numbers of nodes and edges, resp.

31
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Depth-First Traversal with Time-Stamp

DFS_recur(Node: node)

<Process node>

node.StartTime = ++time  // time is global

for each edge in Edges

if (edge.toNode.StartTime == 0) then

DFS_recur(edge.toNode)

edge.toNode.parent = node

end if

end for

node.FinishTime = ++time // optional

end DFS_recur

Color of a node: white if StartTime is undefined; gray if StartTime is defined but 
FinishTime is undefined; black if FinishTime is defined.

34

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

tree (discovery) edge
back edge

A visited vertex
A unexplored vertex

unexplored edge

33
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Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

Non-Recursive DFS 
DepthFirstTraverse(Node: start_node)

start_node.Visited = True   // Visit this node.

// Make a stack and put the start node in it.

Stack[Node]: stack;    stack.Push(start_node);

// Repeat as long as the stack isn’t empty.

while not stack.IsEmpty() do

Node node = stack.Pop() // Get the next node from the stack.

for each edge in node.Edges // Process the node’s Edges.

// if toNode hasn’t been visited…

if (not Edge.toNode.Visited) then

// Mark the node as visited and may set StartTime

Edge.toNode.Visited = True

Edge.toNode.parent = node

stack.Push(Edge.toNode) // Push the node onto the stack.

end if

end for   // may set FinishTime of node.

end while // Continue processing the stack until empty

end DepthFirstTraverse

3 stages of a node: not visited (white), in stack (grey), exited stack (black)

35
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Depth-First Search
 Starting from a, give the finishing time for each 

vertex when the recursive DFS is used.
 Repeat the above exercise when non-recursive 

DFS is used. 

d

e

c b g

f

a

h

i

j

Possible Quiz Question
 Starting from A, using Depth-First Search to give 

the finishing time for each vertex when the 
recursive DFS is used. Neighbors of any vertex 
are listed in alphabet order.

 Repeat the above exercise when non-recursive 
DFS is used. 

37
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DFS and Maze Traversal 
 The DFS algorithm is 

similar to a classic 
strategy for exploring 
a maze
 We mark each 

intersection, corner 
and dead end (vertex) 
visited

 We mark each corridor 
(edge ) traversed

 We keep track of the 
path back to the 
entrance (start vertex) 
by means of a rope 
(recursion stack)

40

Properties of DFS
Property 1

DFS(G, v) visits all the 
vertices and edges in the 
connected component of v

Property 2
The tree  (discovery) 
edges labeled by DFS(G, 
v) form a spanning tree of 
the connected component 
of v  (Recursive and Non-
recursive DFS produce 
different trees, and different 
start and finish times).

DB

A

C

E

39
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The General DFS Algorithm
 Perform a DFS from each unexplored vertex, 

and produce a forest of DFS trees:

41

42

Analysis of DFS
 Setting/getting a vertex/edge label takes O(1) time
 Each vertex is labeled twice 

 once as UNEXPLORED initially 
 once as VISITED

 Each edge in an undirected graph is seen twice
 once as TREE (i.e., DISCOVERY edge)
 once as BACK

 Each edge in a directed graph is seen once
 as TREE, BACK, CROSS, or FORWARD edges

 DFS runs in O(n  m) time if the graph is represented 
by the adjacency list structure
 Recall that v deg(v) 2m

41
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Breadth-First Search
 Breadth-first search 

(BFS) is a general 
technique for traversing 
a graph

 A BFS traversal of a 
graph G 
 Visits all the vertices and 

edges of G
 Determines whether G is 

connected
 Computes the connected 

components of G
 Computes a spanning 

forest of G

 BFS on a graph with n
vertices and m edges 
takes O(n m ) time

 BFS can be further 
extended to solve other 
graph problems
 Find and report a path 

with the minimum 
number of edges 
between two given 
vertices 

 Find a simple cycle, if 
there is one

44

Example

CB

A

E

D

discovery edge
cross edge

A visited vertex
A unexplored vertex

unexplored edge

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

43
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Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2
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Example (cont.)

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2
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Properties
Notation

Gs: connected component of s
Property 1

BFS(G, s) visits all the vertices and 
edges of Gs

Property 2
The discovery edges labeled by 
BFS(G, s) form a spanning tree Ts
of Gs

Property 3
For each vertex v in Li
 The path of  Ts from s to v has i

edges 
 Every path from s to v in Gs has at 

least i edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

48

BFS Algorithm
 The algorithm uses “levels” Li and  a mechanism for setting and getting 

“labels” of vertices and edges.

47
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Breadth-First Traversal
BreadthFirstTraverse(Node: start_node)

start_node.Visited = True   // Visit this node.

// Make a stack and put the start node in it.

Queue[Node]: queue;    queue.add(start_node);

// Repeat as long as the stack isn’t empty.

While <queue isn’t empty>

Node node = queue.remove() // Get the next node from the queue.

// Process the node’s Edges.

For each edge In node.Edges

// if toNode hasn’t been visited…

If (Not Edge.toNode.Visited) Then

// Mark the node as visited and set StartTime

Edge.toNode.Visited = True

// Push the node onto the stack.

stack.Push(Edge.toNode)

End If

End for   // Set FinishTime of node.

Loop // Continue processing the queue until empty

End DepthFirstTraverse

3 stages of a node: not visited (white), in queue (grey), exited queue (black)

50

Analysis
 Setting/getting a vertex/edge label takes O(1) time
 Each vertex is labeled twice 

 once as UNEXPLORED
 once as VISITED

 Each edge is labeled twice
 once as UNEXPLORED
 once as DISCOVERY or CROSS

 Each vertex is inserted once into a sequence Li

 Method incidentEdges is called once for each vertex
 BFS runs in O(n  m) time provided the graph is 

represented by the adjacency list structure
 Recall that v deg(v) 2m

49
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Applications
 We can use the BFS traversal algorithm, for a 

graph G, to solve the following problems in 
O(n  m) time
 Compute the connected components of G
 Compute a spanning forest of G
 Find a simple cycle in G, or report that G is a 

forest
 Given two vertices of G, find a path in G between 

them with the minimum number of edges, or 
report that no such path exists

52

DFS vs. BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Applications DFS BFS
Spanning forest, connected 
components, paths, cycles  

Shortest paths 

Biconnected components 

51
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DFS vs. BFS (cont.)
Back edge (v,w)

 w is an ancestor of v in 
the DFS tree

Cross edge (v,w)
 w is in the same level as 

v or in the next level

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

54

Recall: Digraphs
 A digraph is a 

shorthand for 
directed graph whose 
edges are all directed

 Applications
 one-way streets
 flights
 task scheduling A

C

E

B

D

53
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Digraph Properties

 A graph G=(V,E) such that
 Each edge goes in one direction:
 Edge (a, b) goes from a to b, but not b to a

 If G is simple, m  n(n  1)

 If we keep in-edges and out-edges in separate 
adjacency lists, we can perform listing of 
incoming edges and outgoing edges in time 
proportional to their size

A

C

E

B

D

56

Digraph Application
 Scheduling: edge (a,b) means task a must be 

completed before b can be started

The good life
cs4330, cs4340
cs4350, …

cs2820

cs3330 cs3620cs2260

cs2230cs2210cs1210

cs4640

cs3820

cs3640

55
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DFS for Directed Graphs
 We can specialize the traversal 

algorithms (DFS and BFS) to 
digraphs by traversing edges only 
along their direction

 In the directed DFS algorithm, we 
have four types of edges
 tree edges 
 back edges
 forward edges
 cross edges 

 A directed DFS starting at a vertex 
s determines the vertices 
reachable from s

AA

CC

EE

BB

DD

A

C

E

B

D

Edge classification by DFS
Tree edges: parent to child
Forward edges: descendent to ancestor
Back edges: descendent to ancestor
Cross edges: none of above

b

a

d

c

The edge classification 
depends on the 
particular DFS tree!

57
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Edge classification by DFS

b

a

c

b

a

c
Both are valid

The edge classification 
depends on the 
particular DFS tree!

Tree edges: parent to child
Forward edges: descendent to ancestor
Back edges: descendent to ancestor
Cross edges: none of above

Edge classification by DFS
Edge (u,v) of G is classified as:

(1) Tree edge iff u discovers v during the DFS: P[v] = u

i.e., v.StartTime is undefined (v is white).

If (u,v) is NOT a tree edge then it is:
(2) Back edge iff u is a descendant of v in the DFS tree

i.e., v.FinishTime is undefined (v is grey).
(3) Forward edge iff u is an ancestor of v in the DFS tree

i.e., v.FinishTime is defined (v is black) and 
u.StartTime < v.StartTime and P[v] != u

(4) Cross edge iff u is neither an ancestor nor a descendant of v
i.e. v.FinishTime is defined (v is black) and 
u.StartTime > v.FinishTime (v is black).

59
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Reachability
 DFS tree rooted at v: vertices reachable 

from v via directed paths

A

C

E

B

D

F
A

C

E D

A

C

E

B

D

F

DAGs and back edges

 Can there be a back edge in a DFS on a 
Directed Acyclic Graph (DAG)?

 NO! Back edges form a cycle!
 A graph G is a DAG <=> there is no back 

edge classified by DFS(G)

61
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DAGs and Topological Ordering
 A directed acyclic graph (DAG) is a 

digraph that has no directed cycles
 A topological ordering of a digraph 

is a numbering 
v1 , …, vn

of the vertices such that for every 
edge (vi , vj), we have i  j

 Example: in a task scheduling 
digraph, a topological ordering a 
task sequence that satisfies the 
precedence constraints

Theorem
A digraph admits a topological 
ordering if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological 
ordering of G

v1

v2

v3

v4 v5

64

write c.s. program

play

Topological Sorting
 Number vertices, so that (u,v) in E implies u < v

wake up

eat

nap

study computer sci.

more c.s.

work out

sleep
dream about graphs

A typical student day1

2 3

4 5

6

7

8

9

10
11

bake cookies
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 Note: This algorithm is different than the 
one in the book

 Running time: O(n + m)

Algorithm for Topological Sorting

Algorithm TopologicalSort(G)
H  G // Temporary copy of G
t  1
while H is not empty do

Let v be a vertex with no ingoing edges
Label v  t
t  t + 1
Remove v from H

66

Topological Sorting Example
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Topological sorting with DFS
 Simulate the algorithm by 

using depth-first search
 O(n+m) time.

Algorithm topologicalDFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the vertices of G

in the connected component of v
setLabel(v, VISITED)
for all e  G.outEdges(v) 

{ outgoing edges }
w  theOtherEnd(v, e)
if getLabel(w) UNEXPLORED

{ e is a discovery edge }
topologicalDFS(G, w)

else
{ e is a forward or cross edge }

Label v with topological number t
t  t – 1

Algorithm topologicalDFS(G)
Input dag G
Output topological ordering of G

t  G.numVertices()
for all u  G.vertices()

setLabel(u, UNEXPLORED)
for all v  G.vertices()

if getLabel(v) UNEXPLORED
topologicalDFS(G, v)

Topological number = n – finishTime + 1

68

Topological Sorting Example
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Topological Sorting Example

9
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Topological Sorting Example
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Topological Sorting Example

7
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
2
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4

8

56

1

3
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Strong Connectivity
 Each vertex can reach all other vertices

a

d

c

b

e

f

g
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Application: Networking
 A computer network can be modeled as a 

graph, where vertices are routers and edges 
are network connections between edges.

 A router can be considered critical if it can 
disconnect the network for that router to fail.

 It would be nice to identify which routers are 
critical.

 We can do such an identification by solving 
the biconnected components problem.

Strongly Connected Components
 Any directed graph can be partitioned into 

a unique set of strong components.
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Strongly Connected Components 

 The algorithm for finding the strong components 
of a directed graph G uses the transpose of the 
graph.
 The transpose GT has the same set of vertices 

V as graph G, but a new edge set consisting 
of the edges of G but with the opposite 
direction. 

Strongly Connected Components 

 Execute the depth-first search dfs() for the 
graph G which creates the list dfsList
consisting of the vertices in G in the reverse 
order of their finishing times.

 Generate the transpose graph GT.
 Using the order of vertices in dfsList, make 

repeated calls to dfs() for vertices in GT.  The 
list returned by each call is a strongly 
connected component of G.
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Strongly Connected Components 

Running Time of strongComponents()

 Recall that the depth-first search has running 
time O(V+E), and the computation for GT is 
also O(V+E). It follows that the running time 
for the algorithm to compute the strong 
components is O(V+E).

83

84



Lists and Iterators 11/7/2019

43

dfsList: [A,  B,  C,  E,  D,  G,  F]
Using the order of vertices in dfsList, make successive
calls to dfs() for graph GT

Vertex A:  dfs(A) returns the list [A, C, B] of vertices reachable
from A in GT. 

Vertex E:   The next unvisited vertex in dfsList is E. Calling dfs(E)
returns the list [E]. 

Vertex D:  The next unvisited vertex in dfsList is D; dfs(D) returns
the list [D, F, G] whose elements form the last
strongly connected component.. 

Strongly Connected Components 

86

 Pick a vertex v in G
 Perform a DFS from v in G

 If there’s a w not visited, print “no”
 Let G’ be G with edges reversed
 Perform a DFS from v in G’

 If there’s a w not visited, print “no”
 Else, print “yes”

 Running time: O(n+m)

Strong Connectivity 
Algorithm

G:

G’:
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Separation Edges and Vertices
 Definitions

 Let G be a connected graph
 A separation edge (bridge edge) of G is an edge whose removal 

disconnects G 
 A separation (articulation) vertex of G is a vertex whose removal 

disconnects G 

 Example
 DFW, LGA and LAX are separation vertices
 (DFW,LAX) is a separation edge

ORD PVD

MIADFW

SFO

LAX

LGA

HNL

Finding Articulation (Separation) 
Points in a Graph
 A vertex v in an undirected graph G with more than 

two vertices is called an articulation point if there 
exist two vertices u and w different from v such that 
any path between u and w must pass through v.

 If G is connected, the removal of v and its incident 
edges will result in a disconnected subgraph of G.

 A graph is called biconnected if it is connected and 
has neither articulation points nor points of degree 1.
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Finding Articulation (Separation) 
Points in a Graph

 Example: c, b, g, h are articulation points. 

d

e

c b g

f

a

h

i

j

Finding Articulation (Separation) 
Points in a Graph

 To find the set of articulation points, we perform a 
depth-first search traversal on G. 

 During the traversal, we maintain two labels with each 
vertex v V :  [v] and  [v]. 

  [v] is simply v’s start time in the depth-first search 
algorithm.  [v] is initialized to  [v], but may change 
later on during the traversal.
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Finding Articulation (Separation) 
Points in a Graph

 For each vertex v visited, we let  [v] be the minimum of 
the following:

  [v]
  [u] for each vertex u such that (v, u) is a back edge
  [w] for each vertex w such that (v, w) is a tree edge

Thus, [v] is the smallest  of those points that 
v can reach through back edges or tree edges.

Finding Articulation (Separation) 
Points in a Graph

The articulation points are determined as follows:

• The root is an articulation point if and only if it has 
two or more children in the depth-first search tree.

• A vertex v other than the root is an articulation point 
if and only if v has a child w with  [w] [v].
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Finding Articulation (Separation) 
Points in a Graph
 Input: A connected undirected graph G=(V, E);
 Output: Boolean array artpoint[1…n] indicates the 

articulation points of G, if any.

 1. for each vertex vV
 2.     { [v]   0; artpoint[v]  false; }
 3. time 0; rootdegree 0; root  s ;
 4. dfs2(s ); // s is the start vertex

 dfs2 (v)
 2. [v]   [v]  ++time;  // [v] is the start time 
 3. for each edge (v, w) in v.Edges
 4.     if ([w] == 0) then // (v, w) is a tree edge 
 5.         p[w]  v ; dfs2(w);
 6.         if (v == root ) then // v is the root
 7.             ++rootdegree;
 8.             if rootdegree > 1 then artpoint [v] true;
 9.         else // v is not the root; 
 10.            [v]  min{ [v],  [w]};
 11.           if  [w]   [v] then artpoint [v] true;
 12.       end if;
 13.     else if (p[v] != w)     // (v, w) is a back edge 
 14.     then  [v]  min{ [v],  [w]};
 15.     end if;
 16. end for;

Finding Articulation (Separation) 
Points in a Graph

93

94



Lists and Iterators 11/7/2019

48

 Example:

d

e

c b g

f

a

h

i

j

Finding Articulation (Separation) 
Points in a Graph

 Example: (c, b), (g, h), (h, i), (h, j) are bridges.

 An edge (u, v) is a bridge if u and v are either 
separation (articulation) points or degree 1.

d

e

c b g

f

a

h

i

j

How to find separation edges 
(bridges) in a Graph
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Biconnected Graph
 Equivalent definitions of a biconnected graph G

 Graph G has no separation edges and no separation vertices.
 For any two vertices u and v of G, there are two disjoint simple 

paths between u and v (i.e., two simple paths between u and v
that  share no other vertices or edges).

 For any two vertices u and v of G, there is a simple cycle 
containing u and v.

 Example ORD
PVD

MIADFW

SFO

LAX

LGA
HNL

Biconnected Components
 Biconnected component of a graph G

 A maximal biconnected subgraph of G, or
 A subgraph consisting of a separation edge of G and its end vertices

 Interaction of biconnected components
 An edge belongs to exactly one biconnected component
 A nonseparation vertex belongs to exactly one biconnected component
 A separation vertex belongs to two or more biconnected components

 Example of a graph with four biconnected components

ORD PVD

MIADFW

SFO

LAX

LGA

HNL
RDU

97

98



Lists and Iterators 11/7/2019

50

99

Equivalence Classes
 An equivalence relation R on S induces a partition of the 

elements of S into equivalence classes.
 For undirected graph, connectivity is an equivalence 

relation on points, which generate classes of points 
(components). 
 Let V be the set of vertices of an undirected graph G
 Define the relation

C = { (v,w)  VV such that G has a path from v to w}
 Relation C is an equivalence relation
 The equivalence classes of relation C are the vertices in 

each connected component of graph G
 For directed graph, strong connectivity is an equivalence 

classes on points (strongly connected components).

100

Biconnectivity Relation
 Edges e and f of connected 

graph G are biconnected if
 e f, or
 G has a simple cycle 

containing e and f
Theorem:

The biconnectivity relation 
on the edges of a graph is 
an equivalence relation
Proof Sketch:
 The reflexive and 

symmetric properties 
follow from the definition

 For the transitive 
property, consider two 
simple cycles sharing an 
edge

a
b

g

c
j

d

e

f

i

Equivalence classes of biconnected
edges: {a}  {b, c, d, e, f}  {g, i, j}

a
b

g

c
j

d

e

f

i
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Biconnected Components
 The biconnected components of a graph G are the equivalence 

classes of edges with respect to the biconnectivity relation
 A biconnected component of G is the subgraph of G induced by an 

equivalence class of linked edges
 A separation edge is a single-element equivalence class of linked 

edges
 A separation vertex has incident edges in at least two distinct 

equivalence classes of linked edge

ORD PVD

MIADFW

SFO

LAX

LGA

HNL
RDU
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