Lists and Iterators 10/15/2019

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Fast Sorting and Selection

Oklahoma Earthquakes Magnitude 3.0 and greater

160 N ==
Asof May 2, 2014

140 |

Earthquakesin
allof 2013

Number of Earthquakes per year
8 5 8 8 8 B

Ly

, 6/year D II

2001 2003 2005 2007 2009 2011 201

goil

Year
Souece: URGH NI CornCot 8 Olshorms Gasioge Surv, My 2, 2014

USGS NEIC. Public domain government image.

A Lower Bound for Worst Case

Theorem: Any comparison sort algorithm requires
Q(n lg n) comparisons in the worst case.

Proof:

o |Suffices to determine the height of a decision tree.
o' The number of leaves is at least 7' (# outputs)

o The number of internal nodes > nl-1

o The height is at least log (n—1) = Q(nlg n)

Lists and Iterators 10/15/2019

Can we do better?

o Linear sorting algorithms

Bucket Sort

Counting Sort (special case of Bucket Sort)

Radix Sort
o Make certain assumptions about the data

o Linear sorts are NOT “comparison sorts”

Application: Constructing Histograms

o One common computation in data visualization and
analysis is computing a histogram.

o For example, n students might be assigned integer
scores in some range, such as 0 to 100, and are then
placed into ranges or “buckets” based on these
scores. . (Aorithns: Total seore |

25

LA o " 13
11 1
10 9
6
Sr 3 3
oot F e
P = RN o i i [P

mmmmmmmmmmmmmmmmmmmmmm

&

3

A histogram of scores from a recent Algorithms course.

Lists and Iterators

Application: An Algorithm for
Constructing Histograms

Q

When we think about the algorithmic issues in constructing a

histogram of n scores, it is easy to see that this is a type of sorting

problem.

But it is not the most general kind of sorting problem, since the keys
being used to sort are simply integers in a given range.

So a natural question to ask is whether we can sort these values
faster than with a general comparison-based sorting algorithm.

The answer is “yes.” In fact, we can sort them in O(n) time.

4 [Rlzeritine: Total score

wwwwwwwwwwwww

wwwwwwww

Bucket-Sort

o Let be S be a sequence of n

(key, element) items with keys
in the range [0, r — 1]

o Bucket-sort uses the keys as

indices into an auxiliary array B
of sequences (buckets)

Phase 1: Empty sequence S by
moving each entry (k, 0) into
its bucket B[K]

Phase 2: Fori=0,...,r—1, move
the entries of bucket B[i] to the
end of sequence S
o Analysis:
= Phase 1 takes O(n) time
= Phase 2 takes O(n +r) time

Bucket-sort takes O(n +r) time

Algorithm bucketSort(S):

Input: Sequence S of entries with
integer keys in the range [0, r — 1]
Output: Sequence S sorted in
nondecreasing order of the keys
let B be an array of N sequences,
each of which is initially empty

for each entry e in S do
k = the key of e
remove e from S
insert e at the end of bucket B[k]
fori=0tor-1do
for each entry e in B[i] do
remove e from BJ[i]

insert e at the end of S

10/15/2019

Lists and Iterators

Example f

o Key range [0, 9] (r=10)

7.d —1,c | {3a] 7,9 —3.b | [7e

Phase 1
4 (l-/wHan]
%
0 1 2 3 4 5 6 7 8 9

ﬂ Phase 2

Lej—Gal—ab}—d—o)—0e)

Array-based Implementation:
Counting Sort

o Assumptions:
= h integers which are in the range [O ... r-1]
= r has the same growth rate as n, that is, r
= O(n)
o Idea:

= For each element x, find the number of
occurrences of x and store it in the counter

= Place several copies of x into its correct
position in the output array using the
counter as the number of copies.
8

10/15/2019

Lists and Iterators

Step 1 Find the number of times A[i] appears in 4

(i.e., frequencies)

input array A;‘3‘6‘4‘1‘3‘4‘1‘4‘

allocate C ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ (r=7) for (I = 0; i<n; i++)
CIA[i]]++;

i=1, Al1]=3 ‘ 0 ‘ 0 ‘ t]o ‘ oo ‘ CIAN=C3l= 1

=2, A[2]=6 ‘ 0 ‘ 0 ‘ 1 ‘ 0 ‘ 0|1 ‘ CIAR]=C8]=1

i=3, A[3]=4 ‘ 0 ‘ 0 ‘ 1 ‘ 1 ‘ 0| 1 ‘ CIA3[=Cl4]=1

2 3 4 5 &
i=8, Alg]=4 ‘ ‘ ‘ ‘ ‘ ‘1‘ CIAB]I=CI4I=3

C[i] = number of times element i appears in A

9
Step 2
;| intindex = 0
2 Fori=0tor-1
3, For j = 1 to C[i]
4, Alindex++] =i
// Copy value i into the array C[i] times
Example:
i: 0123456
C=[0202301]
A=[11334446]
10
10

10/15/2019

Lists and Iterators

o Key-type Property

= The keys are used as
indices into an array
and cannot be arbitrary
objects

= No external comparator

o Stable Sort Property

= The relative order of
any two items with the
same key is preserved
after the execution of
the algorithm

Properties and Extensions

Extensions ‘

= Integer keys in the range [a, b]
+ Put entry (k, 0) into bucket
B[k —a]
= Float numbers round to
integers
» String keys from a set D of
possible strings, where D has
constant size (e.g., names of
the 50 U.S. states)
+ Sort D and compute the rank
r(k) of each string k of D in
the sorted sequence
+ Put entry (k, o) into bucket
Blr(k)]

11

11

Example - Bucket Sort R = [0..0.99]

39 2| 26| —— 21| ——23]/ |

Distribute
Into buckets

A-11.78 B of /
2| .17 1| 7] —{12] /7 |
3
4| 26 3| —
5| 72 ny
6| .94 5| /
7] 21 6| —[.68] /
8| .12 7| 78] 72|/ |
o .23 8| /
101 .68 9 —f .04

12

10/15/2019

Lists and Iterators

Example - Bucket Sort

1| 2] 7]/ |

| HEHE =

=

4l Sort within each

bucket: because
the mapping from

6| —68]/ | keys to bucket is

o I oy e Wy many-to-one.
8 /
of —.94]/

13

13

Example - Bucket Sort
L D

/
—t{ 2] 7] 1 |

— 21| 23] —f{26] 1 |
=

/ Concatenate the lists from
_ m 0 to k — 1 together, in order
—t{.72] 78] 1 |

/

—{ .94 / 14

14

10/15/2019

Lists and Iterators

Analysis of Extended Bucket Sort

A4(z.: BUCKET-SORT(A, n)

fori—1ton
. L . . O(n)
do insert A[i] into list B[LnA[i1]] }

fori—Otor-1] r O(n/r log(n/r))

do sort list B[i] with merge sort =0(n log(n/r))
(average case)

concatenate lists B[O], B[1], .. ., B[r-1]
together in order 1 O(n+r)
return the concatenated lists

Note: If the mapping from keys to buckets is 1-to-1, O(n) (if r=6(n))

there is no need to sort each bucket, and the time is
the worst case, not the average case.

15

Lexicographic Order

a A d-tuple is a sequence of d keys (k;, k,, ..., k;), where
key k; is said to be the i-th dimension of the tuple

o Example:
= The Cartesian coordinates of a point in 3D space are a 3-tuple

o The lexicographic order of two d-tuples is recursively
defined as follows

(X17X29 T Xd)<lex (yl: yZ: Pr yd)
=

Xi <Y1 VX =Y A (Xgs oo Xg) gy Yy -5 V)
I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.
Example: (1, 2, 5) <, (1,2, 9)

16

16

10/15/2019

Lists and Iterators

Lexicographic-Sort

a Let C, be the comparator Algorithm lexicographicSort(S)
that compares two tuples by Input sequence S of d-tuples
their i-th dimension Output sequence S sorted in

o Let stableSort(S, C) be a lexicographic order
stable sorting algorithm that
uses comparator C for i <« d downto 1

o Lexicographic-sort sorts a stableSort(S, C))
sequence of d-tuples in // C; compares i-th dimension

lexicographic order by

executing d times algorithm E le:

stableSort, one per Xample:

dimension (7:4,6) (5,1,5) (2,4,6) (2, 1,4) 3,2, 4)
Q Lexicographic-sort runs in _

O(dT(n)) time, where T(n)is (2. 1,4) (3, 2,4) (5.1,5) (7.:4,6) (2,4.6)

the running time of @2, 1,4)(5,1,5) (3, 2, 4) (7,4,6) (2,4,6)

stableSort
(2,1,4)(2,4,6)(3,2,4) (5,1,5) (7.,4,6)

17

Correctness of Alg. lexicographicSort(S)

. Theorem: Alg. lexicographicSort(S) sorts S by

lexicographic order.

Proof: Induction on d, for d-tuples.
o Base case: d=1, stableSort(S, C,) will do the job.
o Inductive case:
= Induction hypothesis: Theorem is true for d” <d.
Suppose (X, Xa, -5 Xg) <jex (Y15 Y25 -5 Ya)-
If X, <y, then the last round places (X,, X,, ..., Xy) before (y,, Y,
ceos Yg)-
If X, =y, then (X,, ...y Xg) <jex Va5 05 Vo)

By induction hypothesis, the previous rounds will place (X,, ...,
Xy) before (Y,, ..., ¥4). And we use a stable sort the last round, so

(X5 X35 ..., Xg) goes before (Y, Yo, -5 Yg)-

18

18

10/15/2019

Lists and Iterators

Radix-Sort

o Radix-sort is a special
case of lexicographic-
sort that uses bucket-
sort as the stable
sorting algorithm in
each dimension.

o Radix-sort is applicable
to tuples where the
keys in each dimension i
are integers in the
range [0, r — 1]

o Radix-sort runs in time
Ood(n+r))

o Ifdis constant and ris
O(n), then this is O(n).

Algorithm radixSort(S, N)
Input sequence S of d-tuples such
that (0, ..., 0) < (Xg, ..., X,) and
Kgp een X =S(r=1,...,r=1)
for each tuple (X, ..., X;)in S
Output sequence S sorted in
lexicographic order

boolean procedure C; (X, Y)
Input x = (X, ..., X,),

Y=g - Yp), 1 £1<d
return (X; <Y;)

fori< 1tod
bucketSort(S, r, C;)

19

19
Radix Sort Example
o Represents keys as d-digit numbers in some base-r
key = X4 ... XoX; Where 0<x;<r-1
o Example: key=479654321
key = X4 ... XpX4,d=9, r=10 where 0<x,<9
So we can sort US population by SSN in linear time.
How to implement boolean procedure C; (X, Y) ?
20

10/15/2019

10

Lists and Iterators

Radix Sort Example

o Sorting looks at one column at a time
= For a d digit number, sort the least
significant digit first
= Continue sorting on the next least

significant digit, until all digits have been
sorted

= Requires only d passes through the list

21

326
453
608
835
751
435
704
690

21

RADIX-SORT

. Alg.: RADIX-SORT(A, d)
fori—1tod

(stable sort: preserves order of identical elements)

sorted

P

326 640] 4 [3bo
453 741 R aBs
608 493 Db 453
835 74 3k 6hs
751 = 345 3 T lebo
435 415 sh 7h4
204 316 5B 751
690 6(s] ob 8p5

do use a stable bucket sort of array A on digit i

22

22

10/15/2019

11

Lists and Iterators 10/15/2019

Analysis of Radix Sort

o Given n numbers of d digits each, where each digit may

take up to k possible values, RADIX-SORT correctly sorts

the numbers in O(d(nh+r))

= One pass of sorting per digit takes O(n+r) assuming

that we use bucket sort
= There are d passes (one for each digit)

23

23

Summary: Beating the lower bound

o We can beat the lower bound if we don’t base
our sort on comparisons:
s Counting sort for keys in [0..r], r=0(n)

» Bucket sort for keys which can map to small range
of integers (uniformly distributed)

» Radix sort for keys with a fixed number of “digits”

24

12

Lists and Iterators

Possible Quiz Question

o Suppose the binary representation of a number x <

10° is B, = (bs, by, ..., by, b;) where 0<b,<1. We
divide B, into 6 equal parts, (ps, Ps, P4s Pz, P2s P1)s
each part p; contains 5 bits, representing a number
0<p,<31. Please write an efficient algorithm (in
pseudo code) using the radix sort with d=6 and
r=32 to sort n numbers which are in the range of 0
to 10° — 1. You may assume that bucketSort(S, r, C) is
available, where S is a list of n numbers, r is the
number of buckets, and C is the comparator for
numbers in S. Please analyze the complexity of your
algorithm, assuming bucketSort(S, r, C) takes O(n+r).

25

Finding Medians

o A common data analysis tool is to compute a median, that is, a

value taken from among n values such that there are at most n/2
values larger than this one and at most n/2 elements smaller.

Of course, such a number can be found easily if we were to sort
the scores, but it would be ideal if we could find medians in O(n)
time without having to perform a sorting operation.

Median ~ —

Gl WA

(J
Y Y
< 50% below < 50% above

26

26

10/15/2019

13

Lists and Iterators

Selection: Finding the Median and
the Ath Smallest Element

a The median of a sequence of n sorted numbers A[1...1]
is the “middle” element.

a If nis odd, then the middle element is the (r+1)/2th
element in the sequence.

a If nis even, then there are two middle elements
occurring at positions 77/2 and n/2+1. In this case, we
will choose the /2t smallest element.

o Thus, in both cases, the median is the [7/2 I smallest
element.

o The Ath smallest element is a general case.

27

The Selection Problem ‘i@]

o Given an integer k and n elements xy, X,, ..., X,,
taken from a total order, find the k-th smallest
element in this set.

o Of course, we can sort the set in O(n log n) time
and then index the k-th element.

k=3 (74962524679 |

o We want to solve the selection problem faster.

28

28

10/15/2019

14

Lists and Iterators

Quick-Select

o Quick-select is a randomized
selection algorithm based on D
the prune-and-search [J oL O
paradigm:

= Prune: pick a random element x
(called pivot) and partition S into

+ L: elements less than x |:| |:| |:| |:|

+ E: elements equal x — Y ——

+ G: elements greater than x L E G
= Search: depending on k, either Kk < |L| k> [L[+E]|
answer is in E, or we need to — k’=k-|L|-|E|
recur in either L or G
IL| <k <|L[+E|
(done)
29

29

Pseudo-code

Algorithm quickSelect(S, k):
Input: Sequence S of n comparable elements, and an integer k € [1,n]
QOutput: The kth smallest element of S
if n = 1 then
return the (first) element of S
pick a random element z of S
remove all the elements from S and put them into three sequences:

e [, storing the elements in .S less than

e E. storing the elements in S equal to

e (, storing the elements in S greater than z.
if k < |L| then

quickSelect(L, k)
else if & < |L| + |E| then

return = /l each element in E is equal to =
else

quickSelect(G, k — |L| — |E|)

o Note that partitioning takes O(n) time.

30

30

10/15/2019

15

Lists and Iterators

Quick-Select Visualization

o An execution of quick-select can be visualized by a
recursion path

= Each node represents a recursive call of quick-select, and
stores k and the remaining sequence

(k=5, S=(7 4 9|§ 2651 38)

(k=2, S=(7 ﬁ 965 8) |
U@LS#ﬂﬂ 6 5))

(k=1,S=(7 6 5)

31
31
o Consider a recursive call of quick-select on a sequence of size s
= Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4
(72943761) (72943761)
e e o e
2431 797 7294376
Good call Bad call
o A call is good with probability 1/2
= 1/2 of the possible pivots cause good calls:
(12345678910111213141516 |
\ J \. ~ 7 \\ Y
Bad pivots Good pivots Bad pivots
32
32

10/15/2019

16

Lists and Iterators

Expected Running Time, Part 2

Probabilistic Fact: The expected number of coin tosses required in

Q

Q

order to get k heads is 2k
For a node of depth i, we expect
= /2 ancestors are good calls

= The size of the input sequence for the current call is at most (3/4)72n
Therefore, we have

= For a node of depth 2log,;n,
the expected input size is one

= The expected height of the
quick-sort tree is O(log n)

@ The amount or work done at the

nodes of the same depth is
O((3/4)"n)

@ Thus, the expected running time

of quick-sort is O(n)

expected height

O(log n)

total expected time: O(n

33

33

select.
o By Fact #2,

m T(n) <T(3n/4) + bn*(expected # of calls before a good call)

o By Fact #1,
= T(n) <T(3n/4) + 2bn

Expected Running Time @@

o Let T(n) denote the expected running time of quick-

o Thatis, T(n) is a geometric series:

= T(n) < 2bn + 2b(3/4)n + 2b(3/4)2n + 2b(3/4)3n + ...

a So T(n) is O(n).

o We can solve the selection problem in O(n) expected

time.

34

34

10/15/2019

17

Lists and Iterators 10/15/2019

Linear Time Selection Algorithm

o Also called Median Finding Algorithm.

a Find kth smallest element in O(n) time in
worst case.

o Uses Divide and Conquer strategy.

o Uses elimination in order to cut down the
running time substantially.

35
Deterministic Selection
ras

o If we select an element 7 among A4, then A can be

divided in to 3 parts:
L={alaisinA,a<m}
E=z{a|aisinA,a=m}
G={alaisinA,a>m}

o According to the number elements in L, £, G, there are
following three cases. In each case, where is the k+th
smallest element?

Case 1: |L| >= k The k-th element is in L

Case 2: |L| + |E| >= k> |L| The k-th element is in E

Case 3: |L| + |E| < k The k-th element is in 6
36

18

Lists and Iterators 10/15/2019

Deterministic Selection

o We can do selection in O(n) worst-case time.

o Main idea: recursively use the selection algorithm itself to find a
good pivot for quick-select:

= Divide S into n/5 groups of 5 each
= Find a median in each group
= Recursively find the median of the “baby” medians.

Min size
for L : ,

] : Min size
L -for G

Ul AW N =

37

37

Steps to solve the problem

o Step 1: If n is small, for example n<45, just
sort and return the kth smallest number in
constant time i.e; O(1) time.

o Step 2: Group the given numbers in subsets
of 5 in O(n) time.

o Step 3: Sort each of the group in O(n) time.
Find median of each group.

38

19

Lists and Iterators

Example:
o Given a set

18,26,36,30,25,39,47,56,71,91,61,44,28
having n elements.

(coreenn 2,6,8,19,24,54,5,87,9,10,44,32,21,13,3,4,

~ Armange the numbers in groups of five
................... (2) (4) (25) oo
.................. o) (5) (@
____________________)
____________________ OROROHCI
.................... () (71) o

10/15/2019

20

Lists and Iterators

Lo (2) (s)
e (&) (o)

8 10

O,
(13)

21

(32)

O,

28

()

47

Sort each group of 5 from top to bottom

Each group of 5 is sorted

41

recursively

Lo (2) (s)
e (&) (o)

O,
(13)

O,

Step 4: Find median of n/5 group medians

8 10

21

28

(32)

Median of each group

42

10/15/2019

21

Lists and Iterators 10/15/2019

There are s = n/5 groups, there are s/2 groups on the left of m
and s/2 groups on the right of m.

So there are 3/2s - 1 = 3n/10 - 1 numbers less than m and
~——3nf/10="1 numbers greater than m.

Find m, the median of medians

43

Step 5: Find the sets L, E, and G

o Compare each (n-1) elements in the top-right and bottom-left
regions with the median m and find three sets L, E, and G such
that every element in L is smaller than m, every element in E is
equal to m, and every element in G is greater than m.

3n/10 — |E| < [L| £ 7n/10 - |E|
L E G (|L is the size or cardinality of L)

3n/10 - |E| < |G| < 7n/10 - |E|

Min size
for L
Min size
for G

u D WIN

44

22

Lists and Iterators

=]

u]

Pseudo code: Finding the k-th
Smallest Element

Input: An array A[1...77] of nelements and an integer 4,
1<k<n;

Output: The Ath smallest element in 4;
1. select(A, n, K);

45

00000000000 0d oo

4,

Pseudo code: Finding the k-th
Smallest Element
select(A, n, k)

2.
3.

if 7 < 45 then sort 4 and return (A[4]);

Let g = [n/51. Divide Ainto g groups of 5 elements each.

If 5 does not divide n, then add max element;

Sort each of the g groups individually and extract its median.
Let the set of medians be M.

. m<«select(M, g, [g/21);
. Partition A into three arrays:

L={ala<m} E={ala=m}, G={a|a>m},

. case

|L|=k: return select (L, |L|, K);
| L|+]| El=k: return m;
|L|+]| E]l< k. return selecl G, |G|, &|L|-|£]);

. end case;

46

10/15/2019

23

Lists and Iterators

Complexity: Finding the k-th
Smallest Element (Bound time: T(n))

}

select(A, n, K)
2. if n < 45 then sort 4 and return (A[4]);
3. Let ¢ =[n/5]. Divide Ainto g groups of 5 elements each.
If 5 does not divide n, then add max element;
4. Sort each of the g groups individually and extract its median.
Let the set of medians be M.
. m<«selec(M, g, [g/21);
. Partition Ainto three arrays:
L={a|la<m} E={ala=m}, G={ala>m};
. case
|L|=k: return select (L, |L|, K);
| L|+]| El=k: return m;
|L|+]| E]l< k. return selecl G, |G|, &|L|-|£]);
8. end case;

Summary: T(n) = T(n/5) + T(7n/10) + a*n

N

I 1 1 1 1 1 I I 5 A 5 Y
a Ul

o(1)
O(n)

O(n)
T(n/5)
O(n)
T(70/10)

O(1)
T(7n/10)

47

Analysis: Finding the A-th Smallest
Element

o What is the best case time complexity of this
algorithm?
o O(n) when |L| < k < |L| + [E|

T(n) = T(n/5) +T(7n/10) + a*n

o The k-+th smallest element in a set of 7 elements
drawn from a linearly ordered set can be found in
O(n) time.

o T(n): the worst case time complexity of select(A, n, k)

48

10/15/2019

24

Lists and Iterators

Recursive formula
T(n)= T(n/5) +T(7n/10) + a*n

We will solve this equation in order to get the complexity.
We guess that T(n) < Cn for a constant, and then by induction on n.
The base case when n < 45 is trivial.
T(n) = T(n/5) + T(7n/10) + a*n
< C*n/5+ C*7*n/10 + a*n (by induction hypothesis)
= ((2C + 7C)/10 + a)n
= (9C/10 + a)n
<Cn if C29C/10+a,orC/10 2 4a,0or C > 10a
So we let C = 10a.
Then T(n) < Cn.
So T(n) = O(n).

49

Why group of 5??

o If we divide elements into groups of 3 then we will have
T(n) = a*n + T(n/3) + T(2n/3)
so T(n) cannot be O(n).....

If we divide elements into groups of more than 5,
finding the median of each group will be more, so
grouping elements in to 5 is the optimal situation.

50

10/15/2019

25

