Lists and Iterators 10/15/2019
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Fast Sorting and Selection
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A Lower Bound for Worst Case

Theorem: Any comparison sort algorithm requires
Q(n lg n) comparisons in the worst case.

Proof:

o |Suffices to determine the height of a decision tree.
o' The number of leaves is at least 7' (# outputs)

o The number of internal nodes > nl-1

o The height is at least log (n—1) = Q(nlg n)
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Can we do better?

o Linear sorting algorithms

Bucket Sort

Counting Sort (special case of Bucket Sort)

Radix Sort
o Make certain assumptions about the data

o Linear sorts are NOT “comparison sorts”

Application: Constructing Histograms

o One common computation in data visualization and
analysis is computing a histogram.

o For example, n students might be assigned integer
scores in some range, such as 0 to 100, and are then
placed into ranges or “buckets” based on these
scores. . (Aorithns: Total seore |
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A histogram of scores from a recent Algorithms course.
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Application: An Algorithm for
Constructing Histograms

Q

When we think about the algorithmic issues in constructing a

histogram of n scores, it is easy to see that this is a type of sorting

problem.

But it is not the most general kind of sorting problem, since the keys
being used to sort are simply integers in a given range.

So a natural question to ask is whether we can sort these values
faster than with a general comparison-based sorting algorithm.

The answer is “yes.” In fact, we can sort them in O(n) time.

4 [Rlzeritine: Total score
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Bucket-Sort

o Let be S be a sequence of n

(key, element) items with keys
in the range [0, r — 1]

o Bucket-sort uses the keys as

indices into an auxiliary array B
of sequences (buckets)

Phase 1: Empty sequence S by
moving each entry (k, 0) into
its bucket B[K]

Phase 2: Fori=0,...,r—1, move
the entries of bucket B[i] to the
end of sequence S
o Analysis:
= Phase 1 takes O(n) time
= Phase 2 takes O(n +r) time

Bucket-sort takes O(n +r) time

Algorithm bucketSort(S):

Input: Sequence S of entries with
integer keys in the range [0, r — 1]
Output: Sequence S sorted in
nondecreasing order of the keys
let B be an array of N sequences,
each of which is initially empty

for each entry e in S do
k = the key of e
remove e from S
insert e at the end of bucket B[k]
fori=0tor-1do
for each entry e in B[i] do
remove e from BJ[i]

insert e at the end of S
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Example f

o Key range [0, 9] (r=10)

7.d —1,c | {3a] 7,9 —3.b | [7e

Phase 1
4 (l-/wHan]
%
0 1 2 3 4 5 6 7 8 9

ﬂ Phase 2

Lej—Gal—ab}—d—o)—0e)

Array-based Implementation:
Counting Sort

o Assumptions:
= h integers which are in the range [O ... r-1]
= r has the same growth rate as n, that is, r
= O(n)
o Idea:

= For each element x, find the number of
occurrences of x and store it in the counter

= Place several copies of x into its correct
position in the output array using the
counter as the number of copies.
8
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Step 1 Find the number of times A[i] appears in 4

(i.e., frequencies)

input array A;‘3‘6‘4‘1‘3‘4‘1‘4‘

allocate C ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ (r=7) for (I = 0; i<n; i++)
CIA[i]]++;

i=1, Al1]=3 ‘ 0 ‘ 0 ‘ t]o ‘ oo ‘ CIAN=C3l= 1

=2, A[2]=6 ‘ 0 ‘ 0 ‘ 1 ‘ 0 ‘ 0|1 ‘ CIAR]=C8]=1

i=3, A[3]=4 ‘ 0 ‘ 0 ‘ 1 ‘ 1 ‘ 0| 1 ‘ CIA3[=Cl4]=1

2 3 4 5 &
i=8, Alg]=4 ‘ ‘ ‘ ‘ ‘ ‘1‘ CIAB]I=CI4I=3

C[i] = number of times element i appears in A

9
Step 2
;| intindex = 0
2 Fori=0tor-1
3, For j = 1 to C[i]
4, Alindex++] =i
// Copy value i into the array C[i] times
Example:
i: 0123456
C=[0202301]
A=[11334446]
10
10
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o Key-type Property

= The keys are used as
indices into an array
and cannot be arbitrary
objects

= No external comparator

o Stable Sort Property

= The relative order of
any two items with the
same key is preserved
after the execution of
the algorithm

Properties and Extensions

Extensions ‘

= Integer keys in the range [a, b]
+ Put entry (k, 0) into bucket
B[k —a]
= Float numbers round to
integers
» String keys from a set D of
possible strings, where D has
constant size (e.g., names of
the 50 U.S. states)
+ Sort D and compute the rank
r(k) of each string k of D in
the sorted sequence
+ Put entry (k, o) into bucket
Blr(k)]

11

11

Example - Bucket Sort R = [0..0.99]

39 2| 26| —— 21| ——23]/ |

Distribute
Into buckets

A-11.78 B of /
2| .17 1| 7] —{12] /7 |
3
4| 26 3| —
5| 72 ny
6| .94 5| /
7] 21 6| —[.68] /
8| .12 7| 78] 72|/ |
o .23 8| /
101 .68 9 —f .04

12
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Example - Bucket Sort

1| 2] 7]/ |

| HEHE =

=

4l Sort within each

bucket: because
the mapping from

6| —68]/ | keys to bucket is

o I oy e Wy many-to-one.
8 /
of —.94]/

13

13

Example - Bucket Sort
L D

/
—t{ 2] 7] 1 |

— 21| 23] —f{26] 1 |
=

/ Concatenate the lists from
_ m 0 to k — 1 together, in order
—t{.72] 78] 1 |

/

—{ .94 / 14

14
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Analysis of Extended Bucket Sort

A4(z.: BUCKET-SORT(A, n)

fori—1ton
. L . . O(n)
do insert A[i] into list B[LnA[i1]] }

fori—Otor-1 ] r O(n/r log(n/r))

do sort list B[i] with merge sort =0(n log(n/r))
(average case)

concatenate lists B[O], B[1], .. ., B[r-1]
together in order 1 O(n+r)
return the concatenated lists

Note: If the mapping from keys to buckets is 1-to-1, O(n) (if r=6(n))

there is no need to sort each bucket, and the time is
the worst case, not the average case.

15

Lexicographic Order

a A d-tuple is a sequence of d keys (k;, k,, ..., k;), where
key k; is said to be the i-th dimension of the tuple

o Example:
= The Cartesian coordinates of a point in 3D space are a 3-tuple

o The lexicographic order of two d-tuples is recursively
defined as follows

(X17X29 T Xd)<lex (yl: yZ: Pr yd)
=

Xi <Y1 VX =Y A (Xgs oo Xg) gy Yy -5 V)
I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.
Example: (1, 2, 5) <, (1,2, 9)

16

16
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Lexicographic-Sort

a Let C, be the comparator Algorithm lexicographicSort(S)
that compares two tuples by Input sequence S of d-tuples
their i-th dimension Output sequence S sorted in

o Let stableSort(S, C) be a lexicographic order
stable sorting algorithm that
uses comparator C for i <« d downto 1

o Lexicographic-sort sorts a stableSort(S, C))
sequence of d-tuples in // C; compares i-th dimension

lexicographic order by

executing d times algorithm E le:

stableSort, one per Xample:

dimension (7:4,6) (5,1,5) (2,4,6) (2, 1,4) 3,2, 4)
Q Lexicographic-sort runs in _

O(dT(n)) time, where T(n)is (2. 1,4) (3, 2,4) (5.1,5) (7.:4,6) (2,4.6)

the running time of @2, 1,4)(5,1,5) (3, 2, 4) (7,4,6) (2,4,6)

stableSort
(2,1,4)(2,4,6)(3,2,4) (5,1,5) (7.,4,6)

17

Correctness of Alg. lexicographicSort(S)

. Theorem: Alg. lexicographicSort(S) sorts S by

lexicographic order.

Proof: Induction on d, for d-tuples.
o Base case: d=1, stableSort(S, C,) will do the job.
o Inductive case:
= Induction hypothesis: Theorem is true for d” <d.
Suppose (X, Xa, -5 Xg) <jex (Y15 Y25 -5 Ya)-
If X, <y, then the last round places (X,, X,, ..., Xy) before (y,, Y,
ceos Yg)-
If X, =y, then (X,, ...y Xg) <jex Va5 05 Vo)

By induction hypothesis, the previous rounds will place (X,, ...,
Xy) before (Y,, ..., ¥4). And we use a stable sort the last round, so

(X5 X35 ..., Xg) goes before (Y, Yo, -5 Yg)-

18

18
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Radix-Sort

o Radix-sort is a special
case of lexicographic-
sort that uses bucket-
sort as the stable
sorting algorithm in
each dimension.

o Radix-sort is applicable
to tuples where the
keys in each dimension i
are integers in the
range [0, r — 1]

o Radix-sort runs in time
Ood(n+r))

o Ifdis constant and ris
O(n), then this is O(n).

Algorithm radixSort(S, N)
Input sequence S of d-tuples such
that (0, ..., 0) < (Xg, ..., X,) and
Kgp een X =S(r=1,...,r=1)
for each tuple (X, ..., X;)in S
Output sequence S sorted in
lexicographic order

boolean procedure C; (X, Y)
Input x = (X, ..., X,),

Y=g - Yp), 1 £1<d
return (X; <Y;)

fori< 1tod
bucketSort(S, r, C;)

19

19
Radix Sort Example
o Represents keys as d-digit numbers in some base-r
key = X4 ... XoX; Where 0<x;<r-1
o Example: key=479654321
key = X4 ... XpX4,d=9, r=10 where 0<x,<9
So we can sort US population by SSN in linear time.
How to implement boolean procedure C; (X, Y) ?
20

10/15/2019
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Radix Sort Example

o Sorting looks at one column at a time
= For a d digit number, sort the least
significant digit first
= Continue sorting on the next least

significant digit, until all digits have been
sorted

= Requires only d passes through the list

21

326
453
608
835
751
435
704
690

21

RADIX-SORT

. Alg.: RADIX-SORT(A, d)
fori—1tod

(stable sort: preserves order of identical elements)

sorted

P

326 640] 4 [3bo
453 741 R aBs
608 493 Db 453
835 74 3k 6hs
751 = 345 3 T lebo
435 415 sh 7h4
204 316 5B 751
690 6(s] ob 8p5

do use a stable bucket sort of array A on digit i

22

22
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Analysis of Radix Sort

o Given n numbers of d digits each, where each digit may

take up to k possible values, RADIX-SORT correctly sorts

the numbers in O(d(nh+r))

= One pass of sorting per digit takes O(n+r) assuming

that we use bucket sort
= There are d passes (one for each digit)

23

23

Summary: Beating the lower bound

o We can beat the lower bound if we don’t base
our sort on comparisons:
s Counting sort for keys in [0..r], r=0(n)

» Bucket sort for keys which can map to small range
of integers (uniformly distributed)

» Radix sort for keys with a fixed number of “digits”

24
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Possible Quiz Question

o Suppose the binary representation of a number x <

10° is B, = (bs, by, ..., by, b;) where 0<b,<1. We
divide B, into 6 equal parts, (ps, Ps, P4s Pz, P2s P1)s
each part p; contains 5 bits, representing a number
0<p,<31. Please write an efficient algorithm (in
pseudo code) using the radix sort with d=6 and
r=32 to sort n numbers which are in the range of 0
to 10° — 1. You may assume that bucketSort(S, r, C) is
available, where S is a list of n numbers, r is the
number of buckets, and C is the comparator for
numbers in S. Please analyze the complexity of your
algorithm, assuming bucketSort(S, r, C) takes O(n+r).

25

Finding Medians

o A common data analysis tool is to compute a median, that is, a

value taken from among n values such that there are at most n/2
values larger than this one and at most n/2 elements smaller.

Of course, such a number can be found easily if we were to sort
the scores, but it would be ideal if we could find medians in O(n)
time without having to perform a sorting operation.

Median ~ —

Gl WA

( J
Y Y
< 50% below < 50% above

26

26
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Selection: Finding the Median and
the Ath Smallest Element

a The median of a sequence of n sorted numbers A[1...1]
is the “middle” element.

a If nis odd, then the middle element is the (r+1)/2th
element in the sequence.

a If nis even, then there are two middle elements
occurring at positions 77/2 and n/2+1. In this case, we
will choose the /2t smallest element.

o Thus, in both cases, the median is the [ 7/2 I smallest
element.

o The Ath smallest element is a general case.

27

The Selection Problem ‘i@ ]

o Given an integer k and n elements xy, X,, ..., X,,
taken from a total order, find the k-th smallest
element in this set.

o Of course, we can sort the set in O(n log n) time
and then index the k-th element.

k=3 (74962524679 |

o We want to solve the selection problem faster.

28

28
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Quick-Select

o Quick-select is a randomized
selection algorithm based on D
the prune-and-search [J oL O
paradigm:

= Prune: pick a random element x
(called pivot) and partition S into

+ L: elements less than x |:| |:| |:| |:|

+ E: elements equal x — Y ——

+ G: elements greater than x L E G
= Search: depending on k, either Kk < |L| k> [L[+E]|
answer is in E, or we need to — k’=k-|L|-|E|
recur in either L or G
IL| <k <|L[+E|
(done)
29

29

Pseudo-code

Algorithm quickSelect(S, k):
Input: Sequence S of n comparable elements, and an integer k € [1,n]
QOutput: The kth smallest element of S
if n = 1 then
return the (first) element of S
pick a random element z of S
remove all the elements from S and put them into three sequences:

e [, storing the elements in .S less than

e E. storing the elements in S equal to

e (, storing the elements in S greater than z.
if k < |L| then

quickSelect(L, k)
else if & < |L| + |E| then

return = /l each element in E is equal to =
else

quickSelect(G, k — |L| — |E|)

o Note that partitioning takes O(n) time.

30

30

10/15/2019
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Quick-Select Visualization

o An execution of quick-select can be visualized by a
recursion path

= Each node represents a recursive call of quick-select, and
stores k and the remaining sequence

(k=5, S=(7 4 9|§ 2651 38)

(k=2, S=(7 ﬁ 965 8) |
U@LS#ﬂﬂ 6 5))

(k=1,S=(7 6 5)

31
31
o Consider a recursive call of quick-select on a sequence of size s
= Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4
(72943761 ) (72943761 )
e e o e
2431 797 7294376
Good call Bad call
o A call is good with probability 1/2
= 1/2 of the possible pivots cause good calls:
(12345678910111213141516 |
\ J \. ~ 7 \\ Y
Bad pivots Good pivots Bad pivots
32
32

10/15/2019
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Expected Running Time, Part 2

Probabilistic Fact: The expected number of coin tosses required in

Q

Q

order to get k heads is 2k
For a node of depth i, we expect
= /2 ancestors are good calls

= The size of the input sequence for the current call is at most (3/4)72n
# Therefore, we have

= For a node of depth 2log,;n,
the expected input size is one

= The expected height of the
quick-sort tree is O(log n)

@ The amount or work done at the

nodes of the same depth is
O((3/4)"n)

@ Thus, the expected running time

of quick-sort is O(n)

expected height

O(log n)

total expected time: O(n

33

33

select.
o By Fact #2,

m T(n) <T(3n/4) + bn*(expected # of calls before a good call)

o By Fact #1,
= T(n) <T(3n/4) + 2bn

Expected Running Time @@

o Let T(n) denote the expected running time of quick-

o Thatis, T(n) is a geometric series:

= T(n) < 2bn + 2b(3/4)n + 2b(3/4)2n + 2b(3/4)3n + ...

a So T(n) is O(n).

o We can solve the selection problem in O(n) expected

time.

34

34
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Linear Time Selection Algorithm

o Also called Median Finding Algorithm.

a Find kth smallest element in O(n) time in
worst case.

o Uses Divide and Conquer strategy.

o Uses elimination in order to cut down the
running time substantially.

35
Deterministic Selection
ras

o If we select an element 7 among A4, then A can be

divided in to 3 parts:
L={alaisinA,a<m}
E=z{a|aisinA,a=m}
G={alaisinA,a>m}

o According to the number elements in L, £, G, there are
following three cases. In each case, where is the k+th
smallest element?

Case 1: |L| >= k The k-th element is in L

Case 2: |L| + |E| >= k> |L| The k-th element is in E

Case 3: |L| + |E| < k The k-th element is in 6
36
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Deterministic Selection

o We can do selection in O(n) worst-case time.

o Main idea: recursively use the selection algorithm itself to find a
good pivot for quick-select:

= Divide S into n/5 groups of 5 each
= Find a median in each group
= Recursively find the median of the “baby” medians.

Min size
for L : ,

] : Min size
L -for G

Ul AW N =

37

37

Steps to solve the problem

o Step 1: If n is small, for example n<45, just
sort and return the kth smallest number in
constant time i.e; O(1) time.

o Step 2: Group the given numbers in subsets
of 5 in O(n) time.

o Step 3: Sort each of the group in O(n) time.
Find median of each group.

38
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Example:
o Given a set

18,26,36,30,25,39,47,56,71,91,61,44,28
having n elements.

(coreenn 2,6,8,19,24,54,5,87,9,10,44,32,21,13,3,4,

~ Armange the numbers in groups of five
................... (2) (4) (25) oo
.................. o) (5) (@
____________________ )
____________________ OROROHCI
.................... () (71) o

10/15/2019
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Lo (2) (s)
e (&) (o)

8 10

O,
(13)

21

(32)

O,

28

()

47

Sort each group of 5 from top to bottom

Each group of 5 is sorted

41

recursively

Lo (2) (s)
e (&) (o)

O,
(13)

O,

Step 4: Find median of n/5 group medians

8 10

21

28

(32)

Median of each group

42

10/15/2019
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There are s = n/5 groups, there are s/2 groups on the left of m
and s/2 groups on the right of m.

So there are 3/2s - 1 = 3n/10 - 1 numbers less than m and
~——3nf/10="1 numbers greater than m.

Find m, the median of medians

43

Step 5: Find the sets L, E, and G

o Compare each (n-1) elements in the top-right and bottom-left
regions with the median m and find three sets L, E, and G such
that every element in L is smaller than m, every element in E is
equal to m, and every element in G is greater than m.

3n/10 — |E| < [L| £ 7n/10 - |E|
L E G (|L is the size or cardinality of L)

3n/10 - |E| < |G| < 7n/10 - |E|

Min size
for L
Min size
for G

u D WIN

44
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Pseudo code: Finding the k-th
Smallest Element

Input: An array A[1...77] of nelements and an integer 4,
1<k<n;

Output: The Ath smallest element in 4;
1. select(A, n, K);

45

00000000000 0d oo

4,

Pseudo code: Finding the k-th
Smallest Element
select(A, n, k)

2.
3.

if 7 < 45 then sort 4 and return (A[4]);

Let g = [ n/51. Divide Ainto g groups of 5 elements each.

If 5 does not divide n, then add max element;

Sort each of the g groups individually and extract its median.
Let the set of medians be M.

. m<«select(M, g, [ g/21);
. Partition A into three arrays:

L={ala<m} E={ala=m}, G={a|a>m},

. case

|L|=k: return select (L, |L|, K);
| L|+]| El=k: return m;
|L|+]| E]l< k. return selecl G, |G|, &|L|-|£]);

. end case;

46

10/15/2019
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Complexity: Finding the k-th
Smallest Element (Bound time: T(n))

}

select(A, n, K)
2. if n < 45 then sort 4 and return (A[4]);
3. Let ¢ =[n/5]. Divide Ainto g groups of 5 elements each.
If 5 does not divide n, then add max element;
4. Sort each of the g groups individually and extract its median.
Let the set of medians be M.
. m<«selec(M, g, [ g/21);
. Partition Ainto three arrays:
L={a|la<m} E={ala=m}, G={ala>m};
. case
|L|=k: return select (L, |L|, K);
| L|+]| El=k: return m;
|L|+]| E]l< k. return selecl G, |G|, &|L|-|£]);
8. end case;

Summary: T(n) = T(n/5) + T(7n/10) + a*n

N

I 1 1 1 1 1 I I 5 A 5 Y
a Ul

o(1)
O(n)

O(n)
T(n/5)
O(n)
T(70/10)

O(1)
T(7n/10)

47

Analysis: Finding the A-th Smallest
Element

o What is the best case time complexity of this
algorithm?
o O(n) when |L| < k < |L| + [E|

T(n) = T(n/5) +T(7n/10) + a*n

o The k-+th smallest element in a set of 7 elements
drawn from a linearly ordered set can be found in
O(n) time.

o T(n): the worst case time complexity of select(A, n, k)

48

10/15/2019
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Recursive formula
T(n)= T(n/5) +T(7n/10) + a*n

We will solve this equation in order to get the complexity.
We guess that T(n) < Cn for a constant, and then by induction on n.
The base case when n < 45 is trivial.
T(n) = T(n/5) + T(7n/10) + a*n
< C*n/5+ C*7*n/10 + a*n (by induction hypothesis)
= ((2C + 7C)/10 + a)n
= (9C/10 + a)n
<Cn if C29C/10+a,orC/10 2 4a,0or C > 10a
So we let C = 10a.
Then T(n) < Cn.
So T(n) = O(n).

49

Why group of 5??

o If we divide elements into groups of 3 then we will have
T(n) = a*n + T(n/3) + T(2n/3)
so T(n) cannot be O(n).....

If we divide elements into groups of more than 5,
finding the median of each group will be more, so
grouping elements in to 5 is the optimal situation.

50
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