Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Fast Sorting and Selection

1
1

A Lower Bound for Worst Case

Theorem: Any comparison sort algorithm requires $\Omega(n \lg n)$ comparisons in the worst case.

Proof:

- Suffices to determine the height of a decision tree.
- The number of leaves is at least $n!$ (\# outputs)
- The number of internal nodes $\geq n!-1$
- The height is at least $\log (n!-1)=\Omega(n \lg n)$

Can we do better?

- Linear sorting algorithms

Bucket Sort
Counting Sort (special case of Bucket Sort)
Radix Sort

- Make certain assumptions about the data
- Linear sorts are NOT "comparison sorts"

Application: Constructing Histograms

- One common computation in data visualization and analysis is computing a histogram.
- For example, n students might be assigned integer scores in some range, such as 0 to 100, and are then placed into ranges or "buckets" based on these scores.

A histogram of scores from a recent Algorithms course.

Application: An Algorithm for Constructing Histograms

- When we think about the algorithmic issues in constructing a histogram of n scores, it is easy to see that this is a type of sorting problem.
- But it is not the most general kind of sorting problem, since the keys being used to sort are simply integers in a given range.
- So a natural question to ask is whether we can sort these values faster than with a general comparison-based sorting algorithm.
- The answer is "yes." In fact, we can sort them in $\mathrm{O}(\mathrm{n})$ time.

5
5

Bucket-Sort

- Let be \boldsymbol{S} be a sequence of \boldsymbol{n} (key, element) items with keys in the range $[0, \boldsymbol{r}-1$]
- Bucket-sort uses the keys as indices into an auxiliary array B of sequences (buckets)
Phase 1: Empty sequence \boldsymbol{S} by moving each entry (k, o) into its bucket $B[k]$
Phase 2: For $\boldsymbol{i}=0, \ldots, \boldsymbol{r}-1$, move the entries of bucket $\boldsymbol{B}[i]$ to the end of sequence S
- Analysis:
- Phase 1 takes $\boldsymbol{O}(\boldsymbol{n})$ time
- Phase 2 takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{r})$ time

Bucket-sort takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{r})$ time

Algorithm bucketSort(S):
Input: Sequence S of entries with integer keys in the range $[0, r-1]$
Output: Sequence S sorted in nondecreasing order of the keys let B be an array of N sequences, each of which is initially empty
for each entry e in S do
$k=$ the key of e
remove e from S
insert e at the end of bucket $B[k]$
for $i=0$ to $r-1$ do
for each entry e in $B[i]$ do remove e from $B[i]$
insert e at the end of S

Example

- Key range $[0,9](\mathrm{r}=10)$

7

Array-based Implementation:

Counting Sort

- Assumptions:
- n integers which are in the range [0 ... r-1]
- r has the same growth rate as n, that is, r $=O(n)$
- Idea:
- For each element x, find the number of occurrences of x and store it in the counter
- Place several copies of x into its correct position in the output array using the counter as the number of copies.

Step 1 Find the number of times $A[i]$ appears in A
inputaray A
 (i.e., frequencies)
allocate C

$$
\text { for }(i=0 ; i<n ; i++)
$$ C[A[i]]++;

$i=1, A[1]=3$
$i=2, A[2]=6$
$i=3, A[3]=4$

$i=8, A[8]=4$

$C[A[8]]=C[4]=3$

Step 2

int index $=0$
For $i=0$ to $r-1$

$$
\begin{aligned}
& \text { For } j=1 \text { to } C[i] \\
& \quad A[\text { index }++]=i \\
& \quad / / \text { Copy value } i \text { into the array } C[i] \text { times }
\end{aligned}
$$

Example:

$$
\text { i: } 0123456
$$

$$
C=\left[\begin{array}{lllll}
0 & 2 & 0 & 2 & 3
\end{array} 01\right]
$$

$$
A=\left[\begin{array}{llllllll}
1 & 1 & 3 & 3 & 4 & 4 & 4 & 4
\end{array}\right]
$$

Properties and Extensions

- Key-type Property
- The keys are used as indices into an array and cannot be arbitrary objects
- No external comparator
- Stable Sort Property
- The relative order of any two items with the same key is preserved after the execution of the algorithm

Extensions

- Integer keys in the range $[\boldsymbol{a}, \boldsymbol{b}]$
- Put entry ($\boldsymbol{k}, \boldsymbol{o}$) into bucket $B[k-a]$
- Float numbers round to integers
- String keys from a set \boldsymbol{D} of possible strings, where \boldsymbol{D} has constant size (e.g., names of the 50 U.S. states)
- Sort D and compute the rank $r(\boldsymbol{k})$ of each string \boldsymbol{k} of \boldsymbol{D} in the sorted sequence
- Put entry (k,o) into bucket $B[r(k)]$

Example - Bucket Sort R $=$ [0..0.99]

Example - Bucket Sort

Sort within each bucket: because the mapping from keys to bucket is many-to-one.

13

Example - Bucket Sort

Analysis of Extended Bucket Sort

Alg.: BUCKET-SORT(A, n)
for $i \leftarrow 1$ to n
do insert $A[i]$ into list $B[\operatorname{nn} A[i]]]$
for $i \leftarrow 0$ to $r-1$
\quad do sort list $B[i]$ with merge sort concatenate lists $\mathrm{B}[0], \mathrm{B}[1], \ldots, \mathrm{B}[\mathrm{r}-1]$ together in order
return the concatenated lists

Note: If the mapping from keys to buckets is 1 -to-1,
$\mathrm{O}(\mathrm{n})(\mathrm{ff} \mathrm{r}=\mathrm{O}(\mathrm{n})$) there is no need to sort each bucket, and the time is the worst case, not the average case.

Lexicographic Order

- A d-tuple is a sequence of \boldsymbol{d} keys $\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \ldots, \boldsymbol{k}_{\boldsymbol{d}}\right)$, where key $\boldsymbol{k}_{\boldsymbol{i}}$ is said to be the \boldsymbol{i}-th dimension of the tuple
- Example:
- The Cartesian coordinates of a point in 3D space are a 3-tuple
- The lexicographic order of two d-tuples is recursively defined as follows

$$
\begin{aligned}
& \left.\quad\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{d}\right)<\operatorname{lex}^{\operatorname{ly}} \boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{d}\right) \\
& \boldsymbol{x}_{1}<\boldsymbol{y}_{1} \vee \boldsymbol{x}_{1}=\boldsymbol{y}_{1} \wedge\left(\boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{d}\right)<\operatorname{lex}\left(\boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{d}\right)
\end{aligned}
$$

I.e., the tuples are compared by the first dimension, then by the second dimension, etc.
Example: $(1,2,5)<_{\text {lex }}(1,2,9)$

Lexicographic-Sort

- Let C_{i} be the comparator that compares two tuples by their i-th dimension
- Let stableSort(S, C) be a stable sorting algorithm that uses comparator C
- Lexicographic-sort sorts a sequence of d-tuples in lexicographic order by executing d times algorithm stableSort, one per dimension
- Lexicographic-sort runs in $\boldsymbol{O}(\boldsymbol{d} \boldsymbol{T}(\boldsymbol{n})$) time, where $\boldsymbol{T}(\boldsymbol{n})$ is the running time of stableSort

Algorithm lexicographicSort((\mathbf{S})
Input sequence S of d-tuples
Output sequence S sorted in
lexicographic order
for $i \leftarrow d$ downto 1
stableSort $\left(S, C_{i}\right)$
$\\| C_{i} \operatorname{compares} i$-th dimension

Example:
$(7,4,6)(5,1,5)(2,4,6)(2,1,4)(3,2,4)$
$(2,1,4)(3,2,4)(5,1,5)(7,4,6)(2,4,6)$
$(2,1,4)(5,1,5)(3,2,4)(7,4,6)(2,4,6)$
$(2,1,4)(2,4,6)(3,2,4)(5,1,5)(7,4,6)$

Correctness of Alg. lexicographicSort(S)

Theorem: Alg. lexicographicSort(\mathbf{S}) sorts S by lexicographic order.
Proof: Induction on d, for d-tuples.

- Base case: $\mathrm{d}=1$, stableSort($\mathrm{S}, \mathrm{C}_{1}$) will do the job.
- Inductive case:
- Induction hypothesis: Theorem is true for d' $<\mathrm{d}$.
- Suppose $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{d}}\right)<_{\operatorname{lex}}\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{d}\right)$.
- If $\boldsymbol{x}_{1}<\boldsymbol{y}_{1}$, then the last round places $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{d}}\right)$ before $\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right.$, \ldots, y_{d}).
- If $\boldsymbol{x}_{1}=\boldsymbol{y}_{1}$, then $\left(\boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{d}}\right) \ll_{\operatorname{lex}}\left(\boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{d}\right)$.
- By induction hypothesis, the previous rounds will place (x_{2}, \ldots, $\boldsymbol{x}_{\boldsymbol{d}}$) before $\left(\boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{\boldsymbol{d}}\right)$. And we use a stable sort the last round, so $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{d}\right)$ goes before $\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{d}\right)$.

Radix-Sort

- Radix-sort is a special case of lexicographicsort that uses bucketsort as the stable sorting algorithm in each dimension.
- Radix-sort is applicable to tuples where the keys in each dimension i are integers in the range $[0, r-1]$
- Radix-sort runs in time $O(d(n+r))$
- If \boldsymbol{d} is constant and r is

Algorithm radixSort(S, N)
Input sequence S of \boldsymbol{d}-tuples such that $(0, \ldots, 0) \leq\left(x_{d}, \ldots, x_{1}\right)$ and $\left(x_{d}, \ldots, x_{1}\right) \leq(r-1, \ldots, r-1)$ for each tuple $\left(x_{d}, \ldots, x_{1}\right)$ in S
Output sequence S sorted in lexicographic order
boolean procedure $C_{i}(x, y)$
Input $x=\left(x_{d}, \ldots, x_{1}\right)$,
$\boldsymbol{y}=\left(y_{d}, \ldots, y_{1}\right), 1 \leq \boldsymbol{i} \leq \boldsymbol{d}$.
return $\left(x_{i}<y_{i}\right)$
for $i \leftarrow 1$ to d
bucketSort(S, r, Ci) $\boldsymbol{O}(\boldsymbol{n})$, then this is $\boldsymbol{O}(\mathbf{n})$.

Radix Sort Example

- Represents keys as d-digit numbers in some base-r

$$
\text { key }=x_{d} \ldots x_{2} x_{1} \text { where } 0 \leq x_{i} \leq r-1
$$

- Example: key=479654321

$$
\text { key }=x_{d} \ldots x_{2} x_{1}, d=9, r=10 \quad \text { where } 0 \leq x_{i} \leq 9
$$

So we can sort US population by SSN in linear time.
How to implement boolean procedure $\mathrm{C}_{i}(x, y)$?

Radix Sort Example

- Sorting looks at one column at a time 326
- For a d digit number, sort the least significant digit first

453

- Continue sorting on the next least 835 significant digit, until all digits have been 751 sorted
- Requires only d passes through the list 704

RADIX-SORT

Alg.: RADIX-SORT(A, d)
for $\mathrm{i} \leftarrow 1$ to d
do use a stable bucket sort of array A on digit i
(stable sort: preserves order of identical elements)

Analysis of Radix Sort

- Given n numbers of d digits each, where each digit may take up to k possible values, RADIX-SORT correctly sorts the numbers in $O(d(n+r))$
- One pass of sorting per digit takes $O(n+r)$ assuming that we use bucket sort
- There are d passes (one for each digit)

Summary: Beating the lower bound

- We can beat the lower bound if we don't base our sort on comparisons:
- Counting sort for keys in [0..r], $r=O(n)$
- Bucket sort for keys which can map to small range of integers (uniformly distributed)
- Radix sort for keys with a fixed number of "digits"

Possible Quiz Question

- Suppose the binary representation of a number $\mathrm{x}<$ 10^{9} is $B_{x}=\left\langle b_{30}, b_{29}, \ldots, b_{2}, b_{1}\right\rangle$ where $0 \leq b_{i} \leq 1$. We divide B_{x} into 6 equal parts, $\left\langle p_{6}, p_{5}, p_{4}, p_{3}, p_{2}, p_{1}\right\rangle$, each part p_{i} contains 5 bits, representing a number $0 \leq p_{i} \leq 31$. Please write an efficient algorithm (in pseudo code) using the radix sort with $\mathrm{d}=6$ and $r=32$ to sort n numbers which are in the range of 0 to $10^{9}-1$. You may assume that bucketSort($(S, r, C$) is available, where S is a list of n numbers, r is the number of buckets, and C is the comparator for numbers in S. Please analyze the complexity of your algorithm, assuming bucketSort((S, r, C) takes $\mathrm{O}(\mathrm{n}+r)$.

Finding Medians

- A common data analysis tool is to compute a median, that is, a value taken from among n values such that there are at most $n / 2$ values larger than this one and at most $n / 2$ elements smaller.
- Of course, such a number can be found easily if we were to sort the scores, but it would be ideal if we could find medians in $\mathrm{O}(\mathrm{n})$ time without having to perform a sorting operation.

Selection: Finding the Median and the kth Smallest Element

- The median of a sequence of n sorted numbers $A[1 \ldots n]$ is the "middle" element.
- If n is odd, then the middle element is the $(n+1) / 2^{\text {th }}$ element in the sequence.
- If n is even, then there are two middle elements occurring at positions $n / 2$ and $n / 2+1$. In this case, we will choose the $n / 2^{\text {th }}$ smallest element.
- Thus, in both cases, the median is the $\lceil n / 2\rceil^{\text {th }}$ smallest element.
- The k th smallest element is a general case.

The Selection Problem

- Given an integer k and n elements $x_{1}, x_{2}, \ldots, x_{n}$, taken from a total order, find the k-th smallest element in this set.
- Of course, we can sort the set in $O(n \log n)$ time and then index the k-th element.

$$
\mathrm{k}=3 \quad 749 \underline{6} 2 \rightarrow 24 \underline{6} 79
$$

- We want to solve the selection problem faster.

Quick-Select

- Quick-select is a randomized selection algorithm based on the prune-and-search
 paradigm:
- Prune: pick a random element x (called pivot) and partition S into
- L : elements less than x
- \boldsymbol{E} : elements equal \boldsymbol{x}
- G : elements greater than x

- Search: depending on k, either answer is in \boldsymbol{E}, or we need to recur in either \boldsymbol{L} or \boldsymbol{G}
 (done)

Pseudo-code

```
Algorithm quickSelect(S,k):
    Input: Sequence S of n comparable elements, and an integer }k\in[1,n
    Output: The kth smallest element of S
    if }n=1\mathrm{ then
            return the (first) element of S
    pick a random element }x\mathrm{ of }
    remove all the elements from S and put them into three sequences:
- \(L\), storing the elements in \(S\) less than \(x\)
- \(E\), storing the elements in \(S\) equal to \(x\)
- \(G\), storing the elements in \(S\) greater than \(x\).
```


if $k \leq|L|$ then

```
quickSelect \((L, k)\)
else if \(k \leq|L|+|E|\) then
return \(x \quad / /\) each element in \(E\) is equal to \(x\)
else
quickSelect( \(G, k-|L|-|E|)\)
```

- Note that partitioning takes $\boldsymbol{O}(\boldsymbol{n})$ time.

Quick-Select Visualization

- An execution of quick-select can be visualized by a recursion path
- Each node represents a recursive call of quick-select, and stores k and the remaining sequence

Expected Running Time

- Consider a recursive call of quick-select on a sequence of size s
- Good call: the sizes of L and G are each less than $3 s / 4$
- Bad call: one of L and G has size greater than $3 s / 4$

Good call

Bad call

- A call is good with probability $1 / 2$
- $1 / 2$ of the possible pivots cause good calls:

Expected Running Time, Part 2

- Probabilistic Fact: The expected number of coin tosses required in order to get \boldsymbol{k} heads is $2 \boldsymbol{k}$
- For a node of depth \boldsymbol{i}, we expect
- i/2 ancestors are good calls
- The size of the input sequence for the current call is at most $(3 / 4)^{i / 2} n$
- Therefore, we have
- For a node of depth $2 \log _{4 / 3} \boldsymbol{n}$, the expected input size is one
- The expected height of the quick-sort tree is $\mathbf{O}(\log \boldsymbol{n})$
- The amount or work done at the nodes of the same depth is $\boldsymbol{O}\left((3 / 4)^{i / 2} \boldsymbol{n}\right)$
- Thus, the expected running time of quick-sort is $\mathbf{O}(n)$

Expected Running Time

- Let $T(n)$ denote the expected running time of quickselect.
- By Fact \#2,
- $T(n) \leq T(3 n / 4)+b n^{*}($ expected \# of calls before a good call)
- By Fact \#1,
- $T(n) \leq T(3 n / 4)+2 b n$
- That is, $T(n)$ is a geometric series:
- $T(n) \leq 2 b n+2 b(3 / 4) n+2 b(3 / 4)^{2} n+2 b(3 / 4)^{3} n+\ldots$
- So $T(n)$ is $\mathrm{O}(n)$.
- We can solve the selection problem in $\mathrm{O}(n)$ expected time.

Linear Time Selection Algorithm

- Also called Median Finding Algorithm.
- Find $\mathrm{k}^{\text {th }}$ smallest element in $\mathrm{O}(\mathrm{n})$ time in worst case.
- Uses Divide and Conquer strategy.
- Uses elimination in order to cut down the running time substantially.

Deterministic Selection

- If we select an element m among A, then A can be divided in to 3 parts:

$$
\begin{aligned}
& L=\{a \mid a \text { is in } A, a<m\} \\
& E=\{a \mid a \text { is in } A, a=m\} \\
& G=\{a \mid a \text { is in } A, a>m\}
\end{aligned}
$$

- According to the number elements in L, E, G, there are following three cases. In each case, where is the k-th smallest element?

Case 1: $\|L\|>=k$	The k-th element is in L
Case 2: $\|L\|+\|E\|>=k>\|L\|$	The k-th element is in E
Case 3: $\|L\|+\|E\|<k$	The k-th element is in G

Deterministic Selection

- We can do selection in $O(n)$ worst-case time.
- Main idea: recursively use the selection algorithm itself to find a good pivot for quick-select:
- Divide S into $n / 5$ groups of 5 each
- Find a median in each group
- Recursively find the median of the "baby" medians.

Min size for L

Steps to solve the problem

- Step 1: If n is small, for example $n<45$, just sort and return the $\mathrm{k}^{\text {th }}$ smallest number in constant time i.e; O(1) time.
- Step 2: Group the given numbers in subsets of 5 in $\mathrm{O}(\mathrm{n})$ time.
- Step 3: Sort each of the group in O(n) time. Find median of each group.

Example:

- Given a set
(........2,6,8,19,24,54,5,87,9,10,44,32,21,13,3,4, $18,26,36,30,25,39,47,56,71,91,61,44,28 \ldots$. having n elements.

40

41

Step 4: Find median of $n / 5$ group medians recursively
(2) 5 (4) 25
(6) 9
(13) 16
(39)

| 8 | 10 | 21 | 28 | 47 |
| :--- | :--- | :--- | :--- | :--- | :--- |

\qquad (19) 5432
(24)

8
(44) 3
(56)
\ldots.

There are $s=n / 5$ groups, there are $s / 2$ groups on the left of m and $s / 2$ groups on the right of m.
So there are $3 / 2 \mathrm{~s}-1=3 \mathrm{n} / 10-1$ numbers less than m and $3 n / 10-1$ numbers greater than m.

Find m, the median of medians

Step 5: Find the sets L, E, and G

- Compare each ($n-1$) elements in the top-right and bottom-left regions with the median m and find three sets L, E, and G such that every element in L is smaller than m, every element in E is equal to m, and every element in G is greater than m.
$3 n / 10-|E| \leq|L| \leq 7 n / 10-|E|$
($\mathrm{LL} \mid$ is the size or cardinality of L)

$$
3 \mathrm{n} / 10-|\mathrm{E}| \leq|\mathrm{G}| \leq 7 \mathrm{n} / 10-|\mathrm{E}|
$$

Min size for G

Pseudo code: Finding the k-th Smallest Element

- Input: An array $A[1 \ldots n]$ of n elements and an integer k, $1 \leq k \leq n ;$
- Output: The k th smallest element in $A_{\text {; }}$
- 1. select(A, n, k);

Pseudo code: Finding the k-th Smallest Element

```
a select( }A,n,k
a 2. if }n<45\mathrm{ then sort }A\mathrm{ and return (A[k]);
3. Let q=\lceiln/5\rceil. Divide A into q groups of 5 elements each.
            If 5 does not divide }n\mathrm{ , then add max element;
    4. Sort each of the q}\mathrm{ groups individually and extract its median.
        Let the set of medians be M.
    5. m\leftarrow\operatorname{select(M, q, 「q/27);}
    6. Partition }A\mathrm{ into three arrays:
        L={a|a<m},E={a|a=m},G={a|a>m};
    7. case
        |L|\geqk. return select (L, |L|, k);
        |L|+|E \k r. return m;
        |L|+|E|<k. return select( }G,|G,k-|\angle|-|E])
    8. end case;
```


Complexity: Finding the k-th Smallest Element (Bound time: T(n))

```
select(A, n, k)
2. if }n<45\mathrm{ then sort }A\mathrm{ and return (A[k]);
O(1)
3. Let q=\lceiln/5\rceil. Divide A into q groups of 5 elements each. O(n)
    If 5 does not divide }n\mathrm{ , then add max element;
4. Sort each of the q groups individually and extract its median. O(n)
    Let the set of medians be M.
5. m\leftarrow\operatorname{select}(M,q,\lceilq/27);}\quad\textrm{T}(\textrm{n}/5
6. Partition A into three arrays:
    L={a|a<m},E={a|a=m},G={a|a>m}; O(n)
7. case
    |L|\geqk. return select (L, |L|,k); T(7n/10)
    |L|+|A \geqk. return m; O(1)
    |L|+|E|<k. return select(G, |G,k-|L|-|E); }\quad\textrm{T}(7\textrm{n}/10
8. end case;
```

 Summary: \(T(n)=T(n / 5)+T(7 n / 10)+a * n\)

Analysis: Finding the \boldsymbol{k}-th Smallest Element

- What is the best case time complexity of this algorithm?
- $O(n)$ when $|L|<k \leq|L|+|E|$
- $T(n)$: the worst case time complexity of select(A, n, k)

$$
T(n)=T(n / 5)+T(7 n / 10)+a * n
$$

- The k-th smallest element in a set of n elements drawn from a linearly ordered set can be found in $\Theta(n)$ time.

Recursive formula

$$
T(n)=T(n / 5)+T(7 n / 10)+a * n
$$

We will solve this equation in order to get the complexity.
We guess that $T(n) \leq C n$ for a constant, and then by induction on n.
The base case when $n<45$ is trivial.

$$
\begin{aligned}
T(n) & =T(n / 5)+T(7 n / 10)+a * n \\
& \leq C * n / 5+C * 7 * n / 10+a * n \quad \text { (by induction hypothesis) } \\
& =((2 C+7 C) / 10+a) n \\
& =(9 C / 10+a) n \\
& \leq C n \text { if } C \geq 9 C / 10+a, \text { or } C / 10 \geq a, \text { or } C \geq 10 a
\end{aligned}
$$

So we let $\mathrm{C}=10 \mathrm{a}$.
Then $T(n) \leq C n$.
So $T(n)=O(n)$.

Why group of 5??

- If we divide elements into groups of 3 then we will have

$$
T(n)=a * n+T(n / 3)+T(2 n / 3)
$$

so $T(n)$ cannot be $O(n)$.....

- If we divide elements into groups of more than 5, finding the median of each group will be more, so grouping elements in to 5 is the optimal situation.

