

	CIECCION
 If we select an element <i>m</i> a divided in to 3 parts: 	among A, then A can be
L = { a a is in A, a < m } E = { a a is in A, a = m } G = { a a is in A, a > m }	
 According to the number ele following three cases. In ea smallest element? 	ements in <i>L, E, G</i> , there are ch case, where is the <i>k-</i> th
Case 1: L >= k Case 2: L + E >= k > L Case 3: L + E < k	The k-th element is in L The k-th element is in E The k-th element is in G

۸rrən	ao ti		nhore	in arc		f fivo
	ige ti		IIDCIS	in gro	ups o	
	2	54	44	4	25	
	6	5	32	28	39	
	8	87	21	36	47	
	19	9	13	16		····· · · · · · · · · · · · · · · · ·
	24	10	3	30	(71)	

Analysis: Finding the *k*-th Smallest Element • What is the best case time complexity of this algorithm? • O(n) when $|L| < k \le |L| + |E|$ • T(n): the worst case time complexity of select(A, n, k) T(n) = T(n/5) +T(7n/10) + a*n • The *k*-th smallest element in a set of *n* elements drawn from a linearly ordered set can be found in $\Theta(n)$ time.

Recursive formula	
T(n) = T(n/5) + T(7n/10) + a*n	
We will solve this equation in order to get the complexity.	
We guess that $T(n) \leq Cn$ for a constant, and then by induction on n.	
The base case when $n < 45$ is trivial.	
T(n) = T(n/5) + T(7n/10) + a*n	
\leq C*n/5+ C*7*n/10 + a*n (by induction hypothesis)	
= ((2C + 7C)/10 + a)n	l
= (9C/10 + a)n	
\leq Cn if C \geq 9C/10 + a, or C/10 \geq a, or C \geq 10a	
So we let C = 10a.	
Then $T(n) \leq Cn$.	
So T(n) = O(n).	

