
Lists and Iterators 10/15/2019

1

1

Fast Sorting and Selection

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

USGS NEIC. Public domain government image.

A Lower Bound for Worst Case

Proof:
 Suffices to determine the height of a decision tree.
 The number of leaves is at least n! (# outputs)
 The number of internal nodes ≥ n!–1
 The height is at least log (n!–1) = (n lg n)

Theorem: Any comparison sort algorithm requires
(n lg n) comparisons in the worst case.

1

2

Lists and Iterators 10/15/2019

2

3

Can we do better?
 Linear sorting algorithms

Bucket Sort

Counting Sort (special case of Bucket Sort)

Radix Sort

 Make certain assumptions about the data

 Linear sorts are NOT “comparison sorts”

Application: Constructing Histograms
 One common computation in data visualization and

analysis is computing a histogram.
 For example, n students might be assigned integer

scores in some range, such as 0 to 100, and are then
placed into ranges or “buckets” based on these
scores.

4
A histogram of scores from a recent Algorithms course.

3

4

Lists and Iterators 10/15/2019

3

Application: An Algorithm for
Constructing Histograms
 When we think about the algorithmic issues in constructing a

histogram of n scores, it is easy to see that this is a type of sorting
problem.

 But it is not the most general kind of sorting problem, since the keys
being used to sort are simply integers in a given range.

 So a natural question to ask is whether we can sort these values
faster than with a general comparison-based sorting algorithm.

 The answer is “yes.” In fact, we can sort them in O(n) time.

5

6

Bucket-Sort
 Let be S be a sequence of n

(key, element) items with keys
in the range [0, r  1]

 Bucket-sort uses the keys as
indices into an auxiliary array B
of sequences (buckets)
Phase 1: Empty sequence S by

moving each entry (k, o) into
its bucket B[k]

Phase 2: For i  0, …, r  1, move
the entries of bucket B[i] to the
end of sequence S

 Analysis:
 Phase 1 takes O(n) time
 Phase 2 takes O(n r) time

Bucket-sort takes O(n r) time

Algorithm bucketSort(S):
Input: Sequence S of entries with
integer keys in the range [0, r − 1]
Output: Sequence S sorted in
nondecreasing order of the keys
let B be an array of N sequences,
each of which is initially empty

for each entry e in S do
k = the key of e
remove e from S
insert e at the end of bucket B[k]

for i = 0 to r−1 do
for each entry e in B[i] do

remove e from B[i]
insert e at the end of S

5

6

Lists and Iterators 10/15/2019

4

7

Example
 Key range [0, 9] (r = 10)

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2
0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g3, b3, a 7, e

      

8

Array-based Implementation:
Counting Sort
 Assumptions:

 n integers which are in the range [0 ... r-1]
 r has the same growth rate as n, that is, r

= O(n)
 Idea:

 For each element x, find the number of
occurrences of x and store it in the counter

 Place several copies of x into its correct
position in the output array using the
counter as the number of copies.

7

8

Lists and Iterators 10/15/2019

5

9

Step 1
(i.e., frequencies)

(r=7) for (i = 0; i<n; i++)
C[A[i]]++;

10

Step 2
1. int index = 0
2. For i = 0 to r-1
3. For j = 1 to C[i]
4. A[index++] = i

// Copy value i into the array C[i] times

i: 0 1 2 3 4 5 6
C = [0 2 0 2 3 0 1]
A = [1 1 3 3 4 4 4 6]

Example:

9

10

Lists and Iterators 10/15/2019

6

11

Properties and Extensions
 Key-type Property

 The keys are used as
indices into an array
and cannot be arbitrary
objects

 No external comparator
 Stable Sort Property

 The relative order of
any two items with the
same key is preserved
after the execution of
the algorithm

Extensions
 Integer keys in the range [a, b]

 Put entry (k, o) into bucket
B[k  a]

 Float numbers round to
integers

 String keys from a set D of
possible strings, where D has
constant size (e.g., names of
the 50 U.S. states)
 Sort D and compute the rank

r(k) of each string k of D in
the sorted sequence

 Put entry (k, o) into bucket
B[r(k)]

12

Example - Bucket Sort R = [0..0.99]
.78

.17

.39

.26

.72

.94

.21

.12

.23

.68

0

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

10

.21

.12 /

.72 /

.23 /

.78

.94 /

.68 /

.39 /

.26

.17

/

/

/

/

A B

Distribute
Into buckets

11

12

Lists and Iterators 10/15/2019

7

13

Example - Bucket Sort
0

1

2

3

4

5

6

7

8

9

.23

.17 /

.78 /

.26 /

.72

.94 /

.68 /

.39 /

.21

.12

/

/

/

/

Sort within each
bucket: because
the mapping from
keys to bucket is
many-to-one.

14

Example - Bucket Sort

0

1

2

3

4

5

6

7

8

9

.23

.17 /

.78 /

.26 /

.72

.94 /

.68 /

.39 /

.21

.12

/

/

/

/

.17.12 .23 .26.21 .39 .68 .78.72 .94 /

Concatenate the lists from
0 to k – 1 together, in order

13

14

Lists and Iterators 10/15/2019

8

Analysis of Extended Bucket Sort
Alg.: BUCKET-SORT(A, n)

for i ← 1 to n

do insert A[i] into list B[nA[i]]

for i ← 0 to r - 1

do sort list B[i] with merge sort

concatenate lists B[0], B[1], . . . , B[r -1]

together in order

return the concatenated lists

O(n)

r O(n/r log(n/r))
=O(n log(n/r))
(average case)

O(n+r)

O(n) (if r=Θ(n))Note: If the mapping from keys to buckets is 1-to-1,
there is no need to sort each bucket, and the time is
the worst case, not the average case.

16

Lexicographic Order
 A d-tuple is a sequence of d keys (k1, k2, …, kd), where

key ki is said to be the i-th dimension of the tuple
 Example:

 The Cartesian coordinates of a point in 3D space are a 3-tuple
 The lexicographic order of two d-tuples is recursively

defined as follows
(x1, x2, …, xd)  lex (y1, y2, …, yd)


x1  y1  x1 y1  (x2, …, xd)  lex (y2, …, yd)

I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

Example: (1, 2, 5)  lex (1, 2, 9)

15

16

Lists and Iterators 10/15/2019

9

Lexicographic-Sort
 Let Ci be the comparator

that compares two tuples by
their i-th dimension

 Let stableSort(S, C) be a
stable sorting algorithm that
uses comparator C

 Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by
executing d times algorithm
stableSort, one per
dimension

 Lexicographic-sort runs in
O(dT(n)) time, where T(n) is
the running time of
stableSort

Algorithm lexicographicSort(S)
Input sequence S of d-tuples
Output sequence S sorted in

lexicographic order

for i  d downto 1
stableSort(S, Ci)
// Ci compares i-th dimension

Example:
(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)

(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)

(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)

(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)

Correctness of Alg. lexicographicSort(S)

Theorem: Alg. lexicographicSort(S) sorts S by
lexicographic order.

Proof: Induction on d, for d-tuples.
 Base case: d=1, stableSort(S, C1) will do the job.

 Inductive case:
 Induction hypothesis: Theorem is true for d’ < d.

 Suppose (x1, x2, …, xd) lex (y1, y2, …, yd).

 If x1 < y1, then the last round places (x1, x2, …, xd) before (y1, y2,
…, yd).

 If x1 = y1, then (x2, …, xd) lex (y2, …, yd).

 By induction hypothesis, the previous rounds will place (x2, …,
xd) before (y2, …, yd). And we use a stable sort the last round, so
(x1, x2, …, xd) goes before (y1, y2, …, yd).

18

17

18

Lists and Iterators 10/15/2019

10

19

Radix-Sort
 Radix-sort is a special

case of lexicographic-
sort that uses bucket-
sort as the stable
sorting algorithm in
each dimension.

 Radix-sort is applicable
to tuples where the
keys in each dimension i
are integers in the
range [0, r  1]

 Radix-sort runs in time
O(d(n r))

 If d is constant and r is
O(n), then this is O(n).

Algorithm radixSort(S, N)
Input sequence S of d-tuples such

that (0, …, 0)  (xd, …, x1) and
(xd, …, x1)  (r  1, …, r  1)
for each tuple (xd, …, x1) in S

Output sequence S sorted in
lexicographic order

boolean procedure Ci (x, y)
Input x = (xd, …, x1),

y = (yd, …, y1), 1  i  d.
return (xi < yi)

for i  1 to d
bucketSort(S, r, Ci)

Radix Sort Example
 Represents keys as d-digit numbers in some base-r

key = xd ... x2x1 where 0≤xi≤r-1

 Example: key=479654321
key = xd ... x2x1, d=9, r=10 where 0≤xi≤9

So we can sort US population by SSN in linear time.
How to implement boolean procedure Ci (x, y) ?

19

20

Lists and Iterators 10/15/2019

11

21

Radix Sort Example
 Sorting looks at one column at a time

 For a d digit number, sort the least
significant digit first

 Continue sorting on the next least
significant digit, until all digits have been
sorted

 Requires only d passes through the list

22

RADIX-SORT
Alg.: RADIX-SORT(A, d)

for i ← 1 to d
do use a stable bucket sort of array A on digit i

(stable sort: preserves order of identical elements)

21

22

Lists and Iterators 10/15/2019

12

23

Analysis of Radix Sort
 Given n numbers of d digits each, where each digit may

take up to k possible values, RADIX-SORT correctly sorts

the numbers in O(d(n+r))

 One pass of sorting per digit takes O(n+r) assuming

that we use bucket sort

 There are d passes (one for each digit)

Summary: Beating the lower bound
 We can beat the lower bound if we don’t base

our sort on comparisons:
 Counting sort for keys in [0..r], r=O(n)
 Bucket sort for keys which can map to small range

of integers (uniformly distributed)
 Radix sort for keys with a fixed number of “digits”

23

24

Lists and Iterators 10/15/2019

13

Possible Quiz Question
 Suppose the binary representation of a number x <

109 is Bx = b30, b29, …, b2, b1 where 0≤bi≤1. We
divide Bx into 6 equal parts, p6, p5, p4, p3, p2, p1,
each part pi contains 5 bits, representing a number
0≤pi≤31. Please write an efficient algorithm (in
pseudo code) using the radix sort with d=6 and
r=32 to sort n numbers which are in the range of 0
to 109 – 1. You may assume that bucketSort(S, r, C) is
available, where S is a list of n numbers, r is the
number of buckets, and C is the comparator for
numbers in S. Please analyze the complexity of your
algorithm, assuming bucketSort(S, r, C) takes O(n+r).

Finding Medians
 A common data analysis tool is to compute a median, that is, a

value taken from among n values such that there are at most n/2
values larger than this one and at most n/2 elements smaller.

 Of course, such a number can be found easily if we were to sort
the scores, but it would be ideal if we could find medians in O(n)
time without having to perform a sorting operation.

26
< 50% below < 50% above

Median

25

26

Lists and Iterators 10/15/2019

14

Selection: Finding the Median and
the kth Smallest Element

 The median of a sequence of n sorted numbers A[1…n]
is the “middle” element.

 If n is odd, then the middle element is the (n+1)/2th

element in the sequence.

 If n is even, then there are two middle elements
occurring at positions n/2 and n/2+1. In this case, we
will choose the n/2th smallest element.

 Thus, in both cases, the median is the n/2th smallest
element.

 The kth smallest element is a general case.

28

The Selection Problem
 Given an integer k and n elements x1, x2, …, xn,

taken from a total order, find the k-th smallest
element in this set.

 Of course, we can sort the set in O(n log n) time
and then index the k-th element.

 We want to solve the selection problem faster.

7 4 9 6 2  2 4 6 7 9k=3

27

28

Lists and Iterators 10/15/2019

15

29

Quick-Select
 Quick-select is a randomized

selection algorithm based on
the prune-and-search
paradigm:
 Prune: pick a random element x

(called pivot) and partition S into
 L: elements less than x
 E: elements equal x
 G: elements greater than x

 Search: depending on k, either
answer is in E, or we need to
recur in either L or G

x

x

L GE

k < |L|

|L| < k < |L|+|E|
(done)

k > |L|+|E|
k’ = k - |L| - |E|

30

Pseudo-code

 Note that partitioning takes O(n) time.

29

30

Lists and Iterators 10/15/2019

16

31

Quick-Select Visualization
 An execution of quick-select can be visualized by a

recursion path
 Each node represents a recursive call of quick-select, and

stores k and the remaining sequence

k=5, S=(7 4 9 3 2 6 5 1 8)

5

k=2, S=(7 4 9 6 5 8)

k=2, S=(7 4 6 5)

k=1, S=(7 6 5)

32

Expected Running Time
 Consider a recursive call of quick-select on a sequence of size s

 Good call: the sizes of L and G are each less than 3s4
 Bad call: one of L and G has size greater than 3s4

 A call is good with probability 12
 1/2 of the possible pivots cause good calls:

7 9 7 1  1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 61

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

31

32

Lists and Iterators 10/15/2019

17

33

Expected Running Time, Part 2
 Probabilistic Fact: The expected number of coin tosses required in

order to get k heads is 2k
 For a node of depth i, we expect

 i2 ancestors are good calls
 The size of the input sequence for the current call is at most (34)i2n

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per expected height

O(log n)

O(

O

O

total expected time: O(n l

Therefore, we have
 For a node of depth 2log43n,

the expected input size is one
 The expected height of the

quick-sort tree is O(log n)

The amount or work done at the
nodes of the same depth is
O((34)i2n)
Thus, the expected running time
of quick-sort is O(n)

34

Expected Running Time
 Let T(n) denote the expected running time of quick-

select.
 By Fact #2,

 T(n) < T(3n/4) + bn*(expected # of calls before a good call)
 By Fact #1,

 T(n) < T(3n/4) + 2bn
 That is, T(n) is a geometric series:

 T(n) < 2bn + 2b(3/4)n + 2b(3/4)2n + 2b(3/4)3n + …
 So T(n) is O(n).
 We can solve the selection problem in O(n) expected

time.

33

34

Lists and Iterators 10/15/2019

18

Linear Time Selection Algorithm

 Also called Median Finding Algorithm.
 Find kth smallest element in O(n) time in

worst case.
 Uses Divide and Conquer strategy.
 Uses elimination in order to cut down the

running time substantially.

 If we select an element m among A, then A can be
divided in to 3 parts:

 According to the number elements in L, E, G, there are
following three cases. In each case, where is the k-th
smallest element?

L = { a | a is in A, a < m }
E = { a | a is in A, a = m }
G = { a | a is in A, a > m }

Case 1: |L| >= k
Case 2: |L| + |E| >= k > |L|
Case 3: |L| + |E| < k

The k-th element is in L
The k-th element is in E
The k-th element is in G

35

36

Lists and Iterators 10/15/2019

19

37

Deterministic Selection
 We can do selection in O(n) worst-case time.
 Main idea: recursively use the selection algorithm itself to find a

good pivot for quick-select:
 Divide S into n/5 groups of 5 each
 Find a median in each group
 Recursively find the median of the “baby” medians.

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

Min size
for L

Min size
for G

Steps to solve the problem
 Step 1: If n is small, for example n<45, just

sort and return the kth smallest number in
constant time i.e; O(1) time.

 Step 2: Group the given numbers in subsets
of 5 in O(n) time.

 Step 3: Sort each of the group in O(n) time.
Find median of each group.

37

38

Lists and Iterators 10/15/2019

20

Example:
 Given a set

(……..2,6,8,19,24,54,5,87,9,10,44,32,21,13,3,4,
18,26,36,30,25,39,47,56,71,91,61,44,28………)
having n elements.

6

8

19

24

2

10

9

87

5

54

3

13

32

44

30

16

36

28

4

71

56

47

39

25………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

21

Arrange the numbers in groups of five

39

40

Lists and Iterators 10/15/2019

21

Sort each group of 5 from top to bottom

6

8

19

24

2

87

54

10

9

5

44

32

13

3

36

30

28

16

4

71

56

47

39

25………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

21

Each group of 5 is sorted

Step 4: Find median of n/5 group medians
recursively

6

8

19

24

2

87

54

10

9

5

44

32

13

3

36

30

28

16

4

71

56

47

39

25………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

21

Median of each group

41

42

Lists and Iterators 10/15/2019

22

6

8

19

24

2

87

54

10

9

5

44

32

13

3

36

30

28

16

4

71

56

47

39

25………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

There are s = n/5 groups, there are s/2 groups on the left of m
and s/2 groups on the right of m.
So there are 3/2s - 1 = 3n/10 - 1 numbers less than m and
3n/10 - 1 numbers greater than m.

Find m, the median of medians

21

3n/10 - 1

3n/10 - 1

Step 5: Find the sets L, E, and G

 Compare each (n-1) elements in the top-right and bottom-left
regions with the median m and find three sets L, E, and G such
that every element in L is smaller than m, every element in E is
equal to m, and every element in G is greater than m.

m
L G

3n/10 – |E| ≤ |L| ≤ 7n/10 – |E|
(|L| is the size or cardinality of L)

3n/10 – |E| ≤ |G| ≤ 7n/10 – |E|

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

Min size
for L

Min size
for G

E

43

44

Lists and Iterators 10/15/2019

23

Pseudo code: Finding the k-th
Smallest Element

 Input: An array A[1…n] of n elements and an integer k,
1kn;

 Output: The kth smallest element in A;
 1. select(A, n, k);

Pseudo code: Finding the k-th
Smallest Element
 select(A, n, k)
 2. if n < 45 then sort A and return (A[k]);
 3. Let q = n/5. Divide A into q groups of 5 elements each.
 If 5 does not divide n, then add max element;
 4. Sort each of the q groups individually and extract its median.
 Let the set of medians be M.
 5. m select(M, q, q/2);
 6. Partition A into three arrays:
 L = {a | a <m }, E = {a |a =m }, G = {a | a > m };
 7. case
 |L|k: return select (L, |L|, k);
 |L|+|E|k: return m;
 |L|+|E|<k: return select(G, |G|, k-|L|-|E|);
 8. end case;

45

46

Lists and Iterators 10/15/2019

24

Complexity: Finding the k-th
Smallest Element (Bound time: T(n))

 select(A, n, k)
 2. if n < 45 then sort A and return (A[k]);
 3. Let q = n/5. Divide A into q groups of 5 elements each.
 If 5 does not divide n, then add max element;
 4. Sort each of the q groups individually and extract its median.
 Let the set of medians be M.
 5. m select(M, q, q/2);
 6. Partition A into three arrays:
 L = {a | a <m }, E = {a |a =m }, G = {a | a > m };
 7. case
 |L|k: return select (L, |L|, k);
 |L|+|E|k: return m;
 |L|+|E|<k: return select(G, |G|, k-|L|-|E|);
 8. end case;

O(1)
O(n)

O(n)

T(n/5)

O(n)

T(7n/10)
O(1)
T(7n/10)

Summary: T(n) = T(n/5) + T(7n/10) + a*n

Analysis: Finding the k-th Smallest
Element

 What is the best case time complexity of this
algorithm?

 O(n) when |L| < k ≤ |L| + |E|

 T(n): the worst case time complexity of select(A, n, k)
T(n) = T(n/5) +T(7n/10) + a*n

 The k-th smallest element in a set of n elements
drawn from a linearly ordered set can be found in
(n) time.

47

48

Lists and Iterators 10/15/2019

25

Recursive formula
T(n)= T(n/5) +T(7n/10) + a*n

We will solve this equation in order to get the complexity.
We guess that T(n) ≤ Cn for a constant, and then by induction on n.
The base case when n < 45 is trivial.
T(n) = T(n/5) + T(7n/10) + a*n

≤ C*n/5+ C*7*n/10 + a*n (by induction hypothesis)
= ((2C + 7C)/10 + a)n
= (9C/10 + a)n
≤ Cn if C ≥ 9C/10 + a, or C/10 ≥ a, or C ≥ 10a

So we let C = 10a.
Then T(n) ≤ Cn.
So T(n) = O(n).

Why group of 5??

 If we divide elements into groups of 3 then we will have
T(n) = a*n + T(n/3) + T(2n/3)

so T(n) cannot be O(n)…..

 If we divide elements into groups of more than 5,
finding the median of each group will be more, so
grouping elements in to 5 is the optimal situation.

49

50

