
Lists and Iterators 10/15/2019

1

1

Fast Sorting and Selection

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

USGS NEIC. Public domain government image.

A Lower Bound for Worst Case

Proof:
 Suffices to determine the height of a decision tree.
 The number of leaves is at least n! (# outputs)
 The number of internal nodes ≥ n!–1
 The height is at least log (n!–1) = (n lg n)

Theorem: Any comparison sort algorithm requires
(n lg n) comparisons in the worst case.

1

2

Lists and Iterators 10/15/2019

2

3

Can we do better?
 Linear sorting algorithms

Bucket Sort

Counting Sort (special case of Bucket Sort)

Radix Sort

 Make certain assumptions about the data

 Linear sorts are NOT “comparison sorts”

Application: Constructing Histograms
 One common computation in data visualization and

analysis is computing a histogram.
 For example, n students might be assigned integer

scores in some range, such as 0 to 100, and are then
placed into ranges or “buckets” based on these
scores.

4
A histogram of scores from a recent Algorithms course.

3

4

Lists and Iterators 10/15/2019

3

Application: An Algorithm for
Constructing Histograms
 When we think about the algorithmic issues in constructing a

histogram of n scores, it is easy to see that this is a type of sorting
problem.

 But it is not the most general kind of sorting problem, since the keys
being used to sort are simply integers in a given range.

 So a natural question to ask is whether we can sort these values
faster than with a general comparison-based sorting algorithm.

 The answer is “yes.” In fact, we can sort them in O(n) time.

5

6

Bucket-Sort
 Let be S be a sequence of n

(key, element) items with keys
in the range [0, r 1]

 Bucket-sort uses the keys as
indices into an auxiliary array B
of sequences (buckets)
Phase 1: Empty sequence S by

moving each entry (k, o) into
its bucket B[k]

Phase 2: For i 0, …, r 1, move
the entries of bucket B[i] to the
end of sequence S

 Analysis:
 Phase 1 takes O(n) time
 Phase 2 takes O(n r) time

Bucket-sort takes O(n r) time

Algorithm bucketSort(S):
Input: Sequence S of entries with
integer keys in the range [0, r − 1]
Output: Sequence S sorted in
nondecreasing order of the keys
let B be an array of N sequences,
each of which is initially empty

for each entry e in S do
k = the key of e
remove e from S
insert e at the end of bucket B[k]

for i = 0 to r−1 do
for each entry e in B[i] do

remove e from B[i]
insert e at the end of S

5

6

Lists and Iterators 10/15/2019

4

7

Example
 Key range [0, 9] (r = 10)

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2
0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g3, b3, a 7, e

8

Array-based Implementation:
Counting Sort
 Assumptions:

 n integers which are in the range [0 ... r-1]
 r has the same growth rate as n, that is, r

= O(n)
 Idea:

 For each element x, find the number of
occurrences of x and store it in the counter

 Place several copies of x into its correct
position in the output array using the
counter as the number of copies.

7

8

Lists and Iterators 10/15/2019

5

9

Step 1
(i.e., frequencies)

(r=7) for (i = 0; i<n; i++)
C[A[i]]++;

10

Step 2
1. int index = 0
2. For i = 0 to r-1
3. For j = 1 to C[i]
4. A[index++] = i

// Copy value i into the array C[i] times

i: 0 1 2 3 4 5 6
C = [0 2 0 2 3 0 1]
A = [1 1 3 3 4 4 4 6]

Example:

9

10

Lists and Iterators 10/15/2019

6

11

Properties and Extensions
 Key-type Property

 The keys are used as
indices into an array
and cannot be arbitrary
objects

 No external comparator
 Stable Sort Property

 The relative order of
any two items with the
same key is preserved
after the execution of
the algorithm

Extensions
 Integer keys in the range [a, b]

 Put entry (k, o) into bucket
B[k a]

 Float numbers round to
integers

 String keys from a set D of
possible strings, where D has
constant size (e.g., names of
the 50 U.S. states)
 Sort D and compute the rank

r(k) of each string k of D in
the sorted sequence

 Put entry (k, o) into bucket
B[r(k)]

12

Example - Bucket Sort R = [0..0.99]
.78

.17

.39

.26

.72

.94

.21

.12

.23

.68

0

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

10

.21

.12 /

.72 /

.23 /

.78

.94 /

.68 /

.39 /

.26

.17

/

/

/

/

A B

Distribute
Into buckets

11

12

Lists and Iterators 10/15/2019

7

13

Example - Bucket Sort
0

1

2

3

4

5

6

7

8

9

.23

.17 /

.78 /

.26 /

.72

.94 /

.68 /

.39 /

.21

.12

/

/

/

/

Sort within each
bucket: because
the mapping from
keys to bucket is
many-to-one.

14

Example - Bucket Sort

0

1

2

3

4

5

6

7

8

9

.23

.17 /

.78 /

.26 /

.72

.94 /

.68 /

.39 /

.21

.12

/

/

/

/

.17.12 .23 .26.21 .39 .68 .78.72 .94 /

Concatenate the lists from
0 to k – 1 together, in order

13

14

Lists and Iterators 10/15/2019

8

Analysis of Extended Bucket Sort
Alg.: BUCKET-SORT(A, n)

for i ← 1 to n

do insert A[i] into list B[nA[i]]

for i ← 0 to r - 1

do sort list B[i] with merge sort

concatenate lists B[0], B[1], . . . , B[r -1]

together in order

return the concatenated lists

O(n)

r O(n/r log(n/r))
=O(n log(n/r))
(average case)

O(n+r)

O(n) (if r=Θ(n))Note: If the mapping from keys to buckets is 1-to-1,
there is no need to sort each bucket, and the time is
the worst case, not the average case.

16

Lexicographic Order
 A d-tuple is a sequence of d keys (k1, k2, …, kd), where

key ki is said to be the i-th dimension of the tuple
 Example:

 The Cartesian coordinates of a point in 3D space are a 3-tuple
 The lexicographic order of two d-tuples is recursively

defined as follows
(x1, x2, …, xd) lex (y1, y2, …, yd)

x1 y1 x1 y1 (x2, …, xd) lex (y2, …, yd)

I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

Example: (1, 2, 5) lex (1, 2, 9)

15

16

Lists and Iterators 10/15/2019

9

Lexicographic-Sort
 Let Ci be the comparator

that compares two tuples by
their i-th dimension

 Let stableSort(S, C) be a
stable sorting algorithm that
uses comparator C

 Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by
executing d times algorithm
stableSort, one per
dimension

 Lexicographic-sort runs in
O(dT(n)) time, where T(n) is
the running time of
stableSort

Algorithm lexicographicSort(S)
Input sequence S of d-tuples
Output sequence S sorted in

lexicographic order

for i d downto 1
stableSort(S, Ci)
// Ci compares i-th dimension

Example:
(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)

(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)

(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)

(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)

Correctness of Alg. lexicographicSort(S)

Theorem: Alg. lexicographicSort(S) sorts S by
lexicographic order.

Proof: Induction on d, for d-tuples.
 Base case: d=1, stableSort(S, C1) will do the job.

 Inductive case:
 Induction hypothesis: Theorem is true for d’ < d.

 Suppose (x1, x2, …, xd) lex (y1, y2, …, yd).

 If x1 < y1, then the last round places (x1, x2, …, xd) before (y1, y2,
…, yd).

 If x1 = y1, then (x2, …, xd) lex (y2, …, yd).

 By induction hypothesis, the previous rounds will place (x2, …,
xd) before (y2, …, yd). And we use a stable sort the last round, so
(x1, x2, …, xd) goes before (y1, y2, …, yd).

18

17

18

Lists and Iterators 10/15/2019

10

19

Radix-Sort
 Radix-sort is a special

case of lexicographic-
sort that uses bucket-
sort as the stable
sorting algorithm in
each dimension.

 Radix-sort is applicable
to tuples where the
keys in each dimension i
are integers in the
range [0, r 1]

 Radix-sort runs in time
O(d(n r))

 If d is constant and r is
O(n), then this is O(n).

Algorithm radixSort(S, N)
Input sequence S of d-tuples such

that (0, …, 0) (xd, …, x1) and
(xd, …, x1) (r 1, …, r 1)
for each tuple (xd, …, x1) in S

Output sequence S sorted in
lexicographic order

boolean procedure Ci (x, y)
Input x = (xd, …, x1),

y = (yd, …, y1), 1 i d.
return (xi < yi)

for i 1 to d
bucketSort(S, r, Ci)

Radix Sort Example
 Represents keys as d-digit numbers in some base-r

key = xd ... x2x1 where 0≤xi≤r-1

 Example: key=479654321
key = xd ... x2x1, d=9, r=10 where 0≤xi≤9

So we can sort US population by SSN in linear time.
How to implement boolean procedure Ci (x, y) ?

19

20

Lists and Iterators 10/15/2019

11

21

Radix Sort Example
 Sorting looks at one column at a time

 For a d digit number, sort the least
significant digit first

 Continue sorting on the next least
significant digit, until all digits have been
sorted

 Requires only d passes through the list

22

RADIX-SORT
Alg.: RADIX-SORT(A, d)

for i ← 1 to d
do use a stable bucket sort of array A on digit i

(stable sort: preserves order of identical elements)

21

22

Lists and Iterators 10/15/2019

12

23

Analysis of Radix Sort
 Given n numbers of d digits each, where each digit may

take up to k possible values, RADIX-SORT correctly sorts

the numbers in O(d(n+r))

 One pass of sorting per digit takes O(n+r) assuming

that we use bucket sort

 There are d passes (one for each digit)

Summary: Beating the lower bound
 We can beat the lower bound if we don’t base

our sort on comparisons:
 Counting sort for keys in [0..r], r=O(n)
 Bucket sort for keys which can map to small range

of integers (uniformly distributed)
 Radix sort for keys with a fixed number of “digits”

23

24

Lists and Iterators 10/15/2019

13

Possible Quiz Question
 Suppose the binary representation of a number x <

109 is Bx = b30, b29, …, b2, b1 where 0≤bi≤1. We
divide Bx into 6 equal parts, p6, p5, p4, p3, p2, p1,
each part pi contains 5 bits, representing a number
0≤pi≤31. Please write an efficient algorithm (in
pseudo code) using the radix sort with d=6 and
r=32 to sort n numbers which are in the range of 0
to 109 – 1. You may assume that bucketSort(S, r, C) is
available, where S is a list of n numbers, r is the
number of buckets, and C is the comparator for
numbers in S. Please analyze the complexity of your
algorithm, assuming bucketSort(S, r, C) takes O(n+r).

Finding Medians
 A common data analysis tool is to compute a median, that is, a

value taken from among n values such that there are at most n/2
values larger than this one and at most n/2 elements smaller.

 Of course, such a number can be found easily if we were to sort
the scores, but it would be ideal if we could find medians in O(n)
time without having to perform a sorting operation.

26
< 50% below < 50% above

Median

25

26

Lists and Iterators 10/15/2019

14

Selection: Finding the Median and
the kth Smallest Element

 The median of a sequence of n sorted numbers A[1…n]
is the “middle” element.

 If n is odd, then the middle element is the (n+1)/2th

element in the sequence.

 If n is even, then there are two middle elements
occurring at positions n/2 and n/2+1. In this case, we
will choose the n/2th smallest element.

 Thus, in both cases, the median is the n/2th smallest
element.

 The kth smallest element is a general case.

28

The Selection Problem
 Given an integer k and n elements x1, x2, …, xn,

taken from a total order, find the k-th smallest
element in this set.

 Of course, we can sort the set in O(n log n) time
and then index the k-th element.

 We want to solve the selection problem faster.

7 4 9 6 2 2 4 6 7 9k=3

27

28

Lists and Iterators 10/15/2019

15

29

Quick-Select
 Quick-select is a randomized

selection algorithm based on
the prune-and-search
paradigm:
 Prune: pick a random element x

(called pivot) and partition S into
 L: elements less than x
 E: elements equal x
 G: elements greater than x

 Search: depending on k, either
answer is in E, or we need to
recur in either L or G

x

x

L GE

k < |L|

|L| < k < |L|+|E|
(done)

k > |L|+|E|
k’ = k - |L| - |E|

30

Pseudo-code

 Note that partitioning takes O(n) time.

29

30

Lists and Iterators 10/15/2019

16

31

Quick-Select Visualization
 An execution of quick-select can be visualized by a

recursion path
 Each node represents a recursive call of quick-select, and

stores k and the remaining sequence

k=5, S=(7 4 9 3 2 6 5 1 8)

5

k=2, S=(7 4 9 6 5 8)

k=2, S=(7 4 6 5)

k=1, S=(7 6 5)

32

Expected Running Time
 Consider a recursive call of quick-select on a sequence of size s

 Good call: the sizes of L and G are each less than 3s4
 Bad call: one of L and G has size greater than 3s4

 A call is good with probability 12
 1/2 of the possible pivots cause good calls:

7 9 7 1 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 61

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

31

32

Lists and Iterators 10/15/2019

17

33

Expected Running Time, Part 2
 Probabilistic Fact: The expected number of coin tosses required in

order to get k heads is 2k
 For a node of depth i, we expect

 i2 ancestors are good calls
 The size of the input sequence for the current call is at most (34)i2n

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per expected height

O(log n)

O(

O

O

total expected time: O(n l

Therefore, we have
 For a node of depth 2log43n,

the expected input size is one
 The expected height of the

quick-sort tree is O(log n)

The amount or work done at the
nodes of the same depth is
O((34)i2n)
Thus, the expected running time
of quick-sort is O(n)

34

Expected Running Time
 Let T(n) denote the expected running time of quick-

select.
 By Fact #2,

 T(n) < T(3n/4) + bn*(expected # of calls before a good call)
 By Fact #1,

 T(n) < T(3n/4) + 2bn
 That is, T(n) is a geometric series:

 T(n) < 2bn + 2b(3/4)n + 2b(3/4)2n + 2b(3/4)3n + …
 So T(n) is O(n).
 We can solve the selection problem in O(n) expected

time.

33

34

Lists and Iterators 10/15/2019

18

Linear Time Selection Algorithm

 Also called Median Finding Algorithm.
 Find kth smallest element in O(n) time in

worst case.
 Uses Divide and Conquer strategy.
 Uses elimination in order to cut down the

running time substantially.

 If we select an element m among A, then A can be
divided in to 3 parts:

 According to the number elements in L, E, G, there are
following three cases. In each case, where is the k-th
smallest element?

L = { a | a is in A, a < m }
E = { a | a is in A, a = m }
G = { a | a is in A, a > m }

Case 1: |L| >= k
Case 2: |L| + |E| >= k > |L|
Case 3: |L| + |E| < k

The k-th element is in L
The k-th element is in E
The k-th element is in G

35

36

Lists and Iterators 10/15/2019

19

37

Deterministic Selection
 We can do selection in O(n) worst-case time.
 Main idea: recursively use the selection algorithm itself to find a

good pivot for quick-select:
 Divide S into n/5 groups of 5 each
 Find a median in each group
 Recursively find the median of the “baby” medians.

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

Min size
for L

Min size
for G

Steps to solve the problem
 Step 1: If n is small, for example n<45, just

sort and return the kth smallest number in
constant time i.e; O(1) time.

 Step 2: Group the given numbers in subsets
of 5 in O(n) time.

 Step 3: Sort each of the group in O(n) time.
Find median of each group.

37

38

Lists and Iterators 10/15/2019

20

Example:
 Given a set

(……..2,6,8,19,24,54,5,87,9,10,44,32,21,13,3,4,
18,26,36,30,25,39,47,56,71,91,61,44,28………)
having n elements.

6

8

19

24

2

10

9

87

5

54

3

13

32

44

30

16

36

28

4

71

56

47

39

25………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

21

Arrange the numbers in groups of five

39

40

Lists and Iterators 10/15/2019

21

Sort each group of 5 from top to bottom

6

8

19

24

2

87

54

10

9

5

44

32

13

3

36

30

28

16

4

71

56

47

39

25………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

21

Each group of 5 is sorted

Step 4: Find median of n/5 group medians
recursively

6

8

19

24

2

87

54

10

9

5

44

32

13

3

36

30

28

16

4

71

56

47

39

25………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

21

Median of each group

41

42

Lists and Iterators 10/15/2019

22

6

8

19

24

2

87

54

10

9

5

44

32

13

3

36

30

28

16

4

71

56

47

39

25………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

There are s = n/5 groups, there are s/2 groups on the left of m
and s/2 groups on the right of m.
So there are 3/2s - 1 = 3n/10 - 1 numbers less than m and
3n/10 - 1 numbers greater than m.

Find m, the median of medians

21

3n/10 - 1

3n/10 - 1

Step 5: Find the sets L, E, and G

 Compare each (n-1) elements in the top-right and bottom-left
regions with the median m and find three sets L, E, and G such
that every element in L is smaller than m, every element in E is
equal to m, and every element in G is greater than m.

m
L G

3n/10 – |E| ≤ |L| ≤ 7n/10 – |E|
(|L| is the size or cardinality of L)

3n/10 – |E| ≤ |G| ≤ 7n/10 – |E|

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

Min size
for L

Min size
for G

E

43

44

Lists and Iterators 10/15/2019

23

Pseudo code: Finding the k-th
Smallest Element

 Input: An array A[1…n] of n elements and an integer k,
1kn;

 Output: The kth smallest element in A;
 1. select(A, n, k);

Pseudo code: Finding the k-th
Smallest Element
 select(A, n, k)
 2. if n < 45 then sort A and return (A[k]);
 3. Let q = n/5. Divide A into q groups of 5 elements each.
 If 5 does not divide n, then add max element;
 4. Sort each of the q groups individually and extract its median.
 Let the set of medians be M.
 5. m select(M, q, q/2);
 6. Partition A into three arrays:
 L = {a | a <m }, E = {a |a =m }, G = {a | a > m };
 7. case
 |L|k: return select (L, |L|, k);
 |L|+|E|k: return m;
 |L|+|E|<k: return select(G, |G|, k-|L|-|E|);
 8. end case;

45

46

Lists and Iterators 10/15/2019

24

Complexity: Finding the k-th
Smallest Element (Bound time: T(n))

 select(A, n, k)
 2. if n < 45 then sort A and return (A[k]);
 3. Let q = n/5. Divide A into q groups of 5 elements each.
 If 5 does not divide n, then add max element;
 4. Sort each of the q groups individually and extract its median.
 Let the set of medians be M.
 5. m select(M, q, q/2);
 6. Partition A into three arrays:
 L = {a | a <m }, E = {a |a =m }, G = {a | a > m };
 7. case
 |L|k: return select (L, |L|, k);
 |L|+|E|k: return m;
 |L|+|E|<k: return select(G, |G|, k-|L|-|E|);
 8. end case;

O(1)
O(n)

O(n)

T(n/5)

O(n)

T(7n/10)
O(1)
T(7n/10)

Summary: T(n) = T(n/5) + T(7n/10) + a*n

Analysis: Finding the k-th Smallest
Element

 What is the best case time complexity of this
algorithm?

 O(n) when |L| < k ≤ |L| + |E|

 T(n): the worst case time complexity of select(A, n, k)
T(n) = T(n/5) +T(7n/10) + a*n

 The k-th smallest element in a set of n elements
drawn from a linearly ordered set can be found in
(n) time.

47

48

Lists and Iterators 10/15/2019

25

Recursive formula
T(n)= T(n/5) +T(7n/10) + a*n

We will solve this equation in order to get the complexity.
We guess that T(n) ≤ Cn for a constant, and then by induction on n.
The base case when n < 45 is trivial.
T(n) = T(n/5) + T(7n/10) + a*n

≤ C*n/5+ C*7*n/10 + a*n (by induction hypothesis)
= ((2C + 7C)/10 + a)n
= (9C/10 + a)n
≤ Cn if C ≥ 9C/10 + a, or C/10 ≥ a, or C ≥ 10a

So we let C = 10a.
Then T(n) ≤ Cn.
So T(n) = O(n).

Why group of 5??

 If we divide elements into groups of 3 then we will have
T(n) = a*n + T(n/3) + T(2n/3)

so T(n) cannot be O(n)…..

 If we divide elements into groups of more than 5,
finding the median of each group will be more, so
grouping elements in to 5 is the optimal situation.

49

50

