
Hash Tables 9/26/2019

1

1

Hash Tables

Presentation for use with the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

xkcd. http://xkcd.com/221/. “Random Number.” Used with permission under Creative Commons 2.5 License.

2

The Search Problem
 Find items with keys matching a given search

key
 Given an array A, containing n keys, and a search key

x, find the index i such as x=A[i]
 As in the case of sorting, a key could be part of a

large record.

1

2

Hash Tables 9/26/2019

2

3

Special Case: Dictionaries
 Dictionary = data structure that supports mainly two

basic operations: insert a new item and return an
item with a given key.
 Queries: return information about the set S with key k:

 get (S, k)
 Modifying operations: change the set

 put (S, k): insert new or update the item of key k.
 remove (S, k) – not very often

4

Direct Addressing
 Assumptions:

 Key values are distinct
 Each key is drawn from a universe U = {0, 1, . . . , N - 1}

 Idea:
 Store the items in an array, indexed by keys

• Direct-address table representation:
– An array T[0 . . . N - 1]
– Each slot, or position, in T corresponds to a key in U
– For an element x with key k, a pointer to x (or x itself) will
be placed in location T[k]
– If there are no elements with key k in the set, T[k] is empty,

represented by NIL

3

4

Hash Tables 9/26/2019

3

5

Direct Addressing (cont’d)

6

Comparing Different Implementations
 Implementing dictionaries using:

 Direct addressing
 Ordered/unordered arrays
 Ordered linked lists
 Balanced search trees

put get

ordered array

balance search tree

unordered array
ordered list

O(N)
O(1)

O(N)
O(lgN)

O(N)
O(lgN)

O(lgN)
O(N)

direct addressing O(1) O(1)

5

6

Hash Tables 9/26/2019

4

7

Hash Tables
 When n is much smaller than max(U), where

U is the set of all keys, a hash table requires
much less space than a direct-address
table
 Can reduce storage requirements to O(n)
 Can still get O(1) search time, but on the average

case, not the worst case

8

Hash Tables
 Use a function h to compute the slot for each key
 Store the element in slot h(k)

 A hash function h transforms a key into an index in a
hash table T[0…N-1]:

h : U → {0, 1, . . . , N - 1}

 We say that k hashes to h(k), hash value of k.

 Advantages:
 Reduce the range of array indices handled: N instead of max(U)

 Storage is also reduced

7

8

Hash Tables 9/26/2019

5

9

Example: HASH TABLES

U
(universe of keys)

K
(actual
keys)

0

m - 1

h(k3)

h(k2) = h(k5)

h(k1)
h(k4)

k1k4 k2

k5 k3

10

Example

9

10

Hash Tables 9/26/2019

6

11

Do you see any problems
with this approach?

U
(universe of keys)

K
(actual
keys)

0

m - 1

h(k3)

h(k2) = h(k5)

h(k1)
h(k4)

k1k4 k2

k5 k3

Collisions!

12

Collisions
 Two or more keys hash to the same slot!!
 For a given set of n keys

 If n ≤ N, collisions may or may not happen,
depending on the hash function

 If n > N, collisions will definitely happen (i.e., there
must be at least two keys that have the same
hash value)

 Avoiding collisions completely is hard, even
with a good hash function

11

12

Hash Tables 9/26/2019

7

13

Hash Functions
 A hash function transforms a key into a table address
 What makes a good hash function?

(1) Easy to compute
(2) Approximates a random function: for every

input, every output is equally likely (simple
uniform hashing)

 In practice, it is very hard to satisfy the simple
uniform hashing property
 i.e., we don’t know in advance the probability

distribution that keys are drawn from

14

Good Approaches for Hash Functions

 Minimize the chance that closely related keys hash to
the same slot
 Strings such as stop, tops, and pots should hash to different

slots

 Derive a hash value that is independent from
any patterns that may exist in the distribution
of the keys.

13

14

Hash Tables 9/26/2019

8

15

The Division Method
 Idea:

 Map a key k into one of the N slots by taking the
remainder of k divided by N

h(k) = k mod N
 Advantage:

 fast, requires only one operation
 Disadvantage:

 Certain values of N are bad, e.g.,
 power of 2
 non-prime numbers

16

Example - The Division Method

 If N = 2p, then h(k) is just the least
significant p bits of k
 p = 1 N = 2
 h(k) = {0, 1}, least significant 1 bit of k

 p = 2 N = 4
 h(k) = {0, 1, 2, 3}, least significant 2 bits of k

 Choose N to be a prime, not close to a
power of 2
 Column 2:
 Column 3:

k mod 97
k mod 100

N
97

N
100

15

16

Hash Tables 9/26/2019

9

17

The Multiplication Method
Idea:
 Multiply key k by a constant A, where 0 < A < 1
 Extract the fractional part of kA
 Multiply the fractional part by N
 Take the floor of the result

h(k) = N (kA - kA)

 Disadvantage: A little slower than division method
 Advantage: Value of N is not critical, e.g., typically 2p

18

Hash Functions

 A hash function is
usually specified as the
composition of two
functions:
Hash code:

h1: keys integers

Compression function:
h2: integers [0, N 1]

Typically, h2 is mod N.

 The hash code is
applied first, and the
compression function
is applied next on the
result, i.e.,

h(x) = h2(h1(x))

 The goal of the hash
function is to
“disperse” the keys in
an apparently random
way

17

18

Hash Tables 9/26/2019

10

19

Typical Function for H1
 Polynomial accumulation:

 We partition the bits of the
key into a sequence of
components of fixed length
(e.g., 8, 16 or 32 bits)

a0 a1 … an1

 We evaluate the polynomial
p(z) a0 a1 z a2 z2 …

… an1zn1

at a fixed value z, ignoring
overflows

 Especially suitable for strings
(e.g., the choice z 33 gives
at most 6 collisions on a set
of 50,000 English words)

 Polynomial p(z) can be
evaluated in O(n) time
using Horner’s rule:
 The following

polynomials are
successively computed,
each from the previous
one in O(1) time

p0(z) an1

pi (z) ani1 zpi1(z)
(i 1, 2, …, n 1)

 We have p(z) pn1(z)

 Good values for z: 33, 37, 39,
and 41.

20

Compression Functions
 Division:

 h2 (y) y mod N

 The size N of the
hash table is usually
chosen to be a prime

 The reason has to do
with number theory
and is beyond the
scope of this course

 Random linear hash
function:
 h2 (y) (ay b) mod N

 a and b are random
nonnegative integers
such that

a mod N 0

 Otherwise, every
integer would map to
the same value b

19

20

Hash Tables 9/26/2019

11

21

Handling Collisions
 We will review the following methods:

 Separate Chaining
 Open addressing
 Linear probing
Quadratic probing
Double hashing

22

Handling Collisions Using Chaining
 Idea:

 Put all elements that hash to the same slot into a
linked list

 Slot j contains a pointer to the head of the list of all
elements that hash to j

21

22

Hash Tables 9/26/2019

12

23

Collision with Chaining
 Choosing the size of the table

 Small enough not to waste space
 Large enough such that lists remain short
 Typically 1/5 or 1/10 of the total number of elements

 How should we keep the lists: ordered or not?
 Not ordered!

 Insert is fast
 Can easily remove the most recently inserted elements

24

Insert in Hash Tables
Algorithm put(k, v): // k is a new key

t = A[h(k)].put(k,v)
n = n + 1
return t

 Worst-case running time is O(1)

 Assumes that the element being inserted isn’t already
in the list

 It would take an additional search to check if it was
already inserted

23

24

Hash Tables 9/26/2019

13

25

Deletion in Hash Tables
Algorithm remove(k):

t = A[h(k)].remove(k)
if t ≠ null then {k was found}

n = n - 1
return t

 Need to find the element to be deleted.
 Worst-case running time:

 Deletion depends on searching the corresponding list

26

Searching in Hash Tables
Algorithm get(k):

return A[h(k)].get(k)

 Running time is proportional to the length of the list

of elements in slot h(k)

25

26

Hash Tables 9/26/2019

14

27

Analysis of Hashing with Chaining:
Worst Case

 How long does it take to
search for an element with a
given key?

 Worst case:
 All n keys hash to the same slot

 Worst-case time to search is
(n), plus time to compute the
hash function

0

N - 1

T

chain

28

Analysis of Hashing with Chaining:
Average Case
 Average case

 depends on how well the hash function
distributes the n keys among the N slots

 Simple uniform hashing assumption:
 Any given element is equally likely to hash

into any of the N slots (i.e., probability of
collision Pr(h(x)=h(y)), is 1/N)

 Length of a list:
T[j].size = nj, j = 0, 1, . . . , N – 1

 Number of keys in the table:
n = n0 + n1 +∙ ∙ ∙ + nN-1

 Load factor: Average value of nj:
E[nj] = = n/N

n0 = 0

nN – 1 = 0

T

n2
n3

nj

nk

27

28

Hash Tables 9/26/2019

15

29

Load Factor of a Hash Table
 Load factor of a hash table T:

 = n/N
 n = # of elements stored in the table

 N = # of slots in the table = # of linked
lists

 is the average number of
elements stored in a chain

 can be <, =, > 1

0

N - 1

T

chain
chain

chain

chain

30

Case 1: Unsuccessful Search
(i.e., item not stored in the table)

Theorem An unsuccessful search in a hash table takes expected time
under the assumption of simple uniform hashing

(i.e., probability of collision Pr(h(x)=h(y)), is 1/N)
Proof
 Searching unsuccessfully for any key k

 need to search to the end of the list T[h(k)]

 Expected length of the list: E[nh(k)] = = n/N

 Expected number of elements examined in this case is
 Total time required is:

 O(1) (for computing the hash function) + (1)

(1)

29

30

Hash Tables 9/26/2019

16

31

Case 2: Successful Search

32

Analysis of Search in Hash Tables
 If N (# of slots) is proportional to n (# of

elements in the table):

 n = Θ(N)

 = n/N = Θ(N)/N = O(1)

 Searching takes constant time on average

31

32

Hash Tables 9/26/2019

17

33

Open Addressing
 If we have enough contiguous memory to store all

the keys store the keys in the table itself
 No need to use linked lists anymore
 Basic idea:

 put: if a slot is full, try another one,
until you find an empty one

 get: follow the same sequence of probes
 remove: more difficult ... (we’ll see why)

 Search time depends on the length of the
probe sequence!

e.g., insert 14
h(k) = k mod 13

34

Generalize hash function notation:
 A hash function contains two arguments

now： (i) Key value, and (ii) Probe number

h(k,p), p=0,1,...,N-1

 Probe sequences
[h(k,0), h(k,1), ..., h(k,N-1)]

 Must be a permutation of <0,1,...,N-1>
 There are N! possible permutations
 Good hash functions should be able to

produce all N! probe sequences

insert 14

<1, 5, 9>
Example

33

34

Hash Tables 9/26/2019

18

35

Common Open Addressing Methods

 Linear probing
 Quadratic probing
 Double hashing

 Note: None of these methods can generate
more than N2 different probing sequences!

36

Linear probing
 Idea: when there is a collision, check the next available

position in the table (i.e., probing)
h(k,i) = (h1(k) + a*i) mod N

i=0,1,2,...
 First slot probed: h1(k)
 Second slot probed: h1(k) + 1 (a = 1)
 Third slot probed: h1(k)+2, and so on

 Can generate N probe sequences maximum, why?

probe sequence: < h1(k), h1(k)+1 , h1(k)+2 ,>
wrap around

35

36

Hash Tables 9/26/2019

19

37

Linear probing: Searching for a key
 Three cases:

(1) Position in table is occupied with an
element of equal key

(2) Position in table is empty
(3) Position in table occupied with a different

element
 Case 3: probe the next index until the

element is found or an empty position
is found

 The process wraps around to the
beginning of the table

0

N - 1

h(k3)

h(k2) = h(k5)

h(k1)
h(k4)

38

Search with Linear Probing
 Consider a hash table A

that uses linear probing
 get(k)

 We start at cell h(k)

 We probe consecutive
locations until one of the
following occurs
 An item with key k is

found, or
 An empty cell is found,

or
 N cells have been

unsuccessfully probed

Algorithm get(k)
i h(k)
p 0
repeat

c A[i]
if c

return null
else if c.getKey () k

return c.getValue()
else

i (i 1) mod N
p p 1

until p N
return null

37

38

Hash Tables 9/26/2019

20

39

Quadratic Probing

h(k,i) = (h1(k) + i2) mod N

 Probe sequence:
0th probe = h(k) mod N
1th probe = (h(k) + 1) mod N
2th probe = (h(k) + 4) mod N
3th probe = (h(k) + 9) mod N
. . .
ith probe = (h(k) + i2) mod N

40

Quadratic Probing Example

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

insert(40)
40%7 = 5

insert(48)
48%7 = 6

insert(5)
5%7 = 5

insert(55)
55%7 = 6

insert(47)
47%7 = 5But…

39

40

Hash Tables 9/26/2019

21

Quadratic Probing:
Success guarantee for < ½

 If N is prime and < ½, then quadratic probing will find an empty slot
in N/2 probes or fewer, because each probe checks a different slot.
 Show for all 0 i,j N/2 and i j

(h(x) + i2) mod N (h(x) + j2) mod N
 By contradiction: suppose that for some i j:

(h(x) + i2) mod N = (h(x) + j2) mod N
 i2 mod N = j2 mod N
 (i2 - j2) mod N = 0
 [(i + j)(i - j)] mod N = 0

Because N is prime(i-j)or (i+j) must be zero, and neither can be，
a contradiction.

Conclusion: For any < ½, quadratic probing will find an
empty slot; for bigger , quadratic probing may find a slot

42

Double Hashing
(1) Use one hash function to determine the first slot
(2) Use a second hash function to determine the

increment for the probe sequence
h(k,i) = (h1(k) + i h2(k)) mod N, i=0,1,...

 Initial probe: h1(k)
 Second probe is offset by h2(k) mod N, so on ...
 Advantage: avoids clustering
 Disadvantage: harder to delete an element
 Can generate N2 probe sequences maximum

41

42

Hash Tables 9/26/2019

22

43

Double Hashing: Example

h1(k) = k mod 13
h2(k) = 1+ (k mod 11)

h(k, i) = (h1(k) + i h2(k)) mod 13
 Insert key 14:

h1(14, 0) = 14 mod 13 = 1
h(14, 1) = (h1(14) + h2(14)) mod 13

= (1 + 4) mod 13 = 5
h(14, 2) = (h1(14) + 2 h2(14)) mod 13

= (1 + 8) mod 13 = 9

79

69

98

72

50

0

9

4

2
3

1

5
6
7
8

10
11
12

14

44

Analysis of Open Addressing

a
1 a

(load factor)

k=0

43

44

Hash Tables 9/26/2019

23

45

Idea: When the table gets too full, create a bigger
table (usually 2x as large) and hash all the items
from the original table into the new table.

 When to rehash?
 half full (= 0.5)
 when an insertion fails
 some other threshold

 Cost of rehashing?

Rehashing

45

