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Hash Tables

Presentation for use with the textbook Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

xkcd. http://xkcd.com/221/. “Random Number.” Used with permission under Creative Commons 2.5 License.
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The Search Problem
 Find items with keys matching a given search 

key
 Given an array A, containing n keys, and a search key 

x, find the index i such as x=A[i]
 As in the case of sorting, a key could be part of a 

large record.
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Special Case: Dictionaries
 Dictionary = data structure that supports mainly two 

basic operations: insert a new item and return an 
item with a given key.
 Queries: return information about the set S with key k:

 get (S, k)
 Modifying operations: change the set

 put (S, k):  insert new or update the item of key k.
 remove (S, k) – not very often
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Direct Addressing
 Assumptions:

 Key values are distinct
 Each key is drawn from a universe U = {0, 1, . . . , N - 1}

 Idea:
 Store the items in an array, indexed by keys

• Direct-address table representation:
– An array T[0 . . . N - 1]
– Each slot, or position, in T corresponds to a key in U
– For an element x with key k, a pointer to x (or x itself) will   
be placed in location T[k] 
– If there are no elements with key k in the set, T[k] is empty, 

represented by NIL
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Direct Addressing (cont’d)
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Comparing Different Implementations
 Implementing dictionaries using:

 Direct addressing
 Ordered/unordered arrays
 Ordered linked lists
 Balanced search trees

put get

ordered array

balance search tree

unordered array
ordered list

O(N)
O(1)

O(N)
O(lgN)

O(N)
O(lgN)

O(lgN)
O(N)

direct addressing O(1) O(1)
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Hash Tables
 When n is much smaller than max(U), where 

U is the set of all keys, a hash table requires 
much less space than a direct-address 
table
 Can reduce storage requirements to O(n)
 Can still get O(1) search time, but on the average

case, not the worst case

8

Hash Tables
 Use a function h to compute the slot for each key
 Store the element in slot h(k)

 A hash function h transforms a key into an index in a 
hash table T[0…N-1]:

h : U → {0, 1, . . . , N - 1}

 We say that k hashes to h(k), hash value of k.

 Advantages:
 Reduce the range of array indices handled: N instead of max(U)

 Storage is also reduced
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Example: HASH TABLES

U
(universe of keys)

K
(actual
keys)

0

m - 1

h(k3)

h(k2) = h(k5) 

h(k1)
h(k4)

k1k4 k2

k5 k3
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Example 
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Do you see any problems 
with this approach?

U
(universe of keys)

K
(actual
keys)

0

m - 1

h(k3)

h(k2) = h(k5) 

h(k1)
h(k4)

k1k4 k2

k5 k3

Collisions!
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Collisions
 Two or more keys hash to the same slot!!
 For a given set of n keys 

 If n ≤ N, collisions may or may not happen, 
depending on the hash function 

 If n > N, collisions will definitely happen (i.e., there 
must be at least two keys that have the same 
hash value)

 Avoiding collisions completely is hard, even 
with a good hash function
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Hash Functions
 A hash function transforms a key into a table address
 What makes a good hash function?

(1) Easy to compute
(2) Approximates a random function: for every 

input, every output is equally likely (simple 
uniform hashing)

 In practice, it is very hard to satisfy the simple 
uniform hashing property
 i.e., we don’t know in advance the probability 

distribution that keys are drawn from
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Good Approaches for Hash Functions

 Minimize the chance that closely related keys hash to 
the same slot
 Strings such as stop, tops, and pots should hash to different 

slots

 Derive a hash value that is independent from 
any patterns that may exist in the distribution 
of the keys.

13

14



Hash Tables 9/26/2019

8

15

The Division Method
 Idea:

 Map a key k into one of the N slots by taking the 
remainder of k divided by N

h(k) = k mod N
 Advantage: 

 fast, requires only one operation
 Disadvantage: 

 Certain values of N are bad, e.g.,
 power of 2
 non-prime numbers
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Example - The Division Method

 If N = 2p, then h(k) is just the least 
significant p bits of k
 p = 1  N = 2 
 h(k) = {0, 1}, least significant 1 bit of k

 p = 2  N = 4
 h(k) = {0, 1, 2, 3}, least significant 2 bits of k

 Choose N to be a prime, not close to a
power of 2
 Column 2: 
 Column 3:

k mod 97
k mod 100

N
97

N
100
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The Multiplication Method
Idea:
 Multiply key k by a constant A, where 0 < A < 1
 Extract the fractional part of kA
 Multiply the fractional part by N
 Take the floor of the result

h(k) = N (kA - kA)

 Disadvantage: A little slower than division method
 Advantage: Value of N is not critical, e.g., typically 2p
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Hash Functions

 A hash function is 
usually specified as the 
composition of two 
functions:
Hash code:

h1: keys  integers

Compression function:
h2: integers  [0, N  1]

Typically, h2 is mod N.

 The hash code is 
applied first, and the 
compression function 
is applied next on the 
result, i.e., 

h(x) = h2(h1(x))

 The goal of the hash 
function is to  
“disperse” the keys in 
an apparently random 
way
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Typical Function for H1
 Polynomial accumulation:

 We partition the bits of the 
key into a sequence of 
components of fixed length 
(e.g., 8, 16 or 32 bits)

a0 a1 … an1

 We evaluate the polynomial
p(z)  a0  a1 z  a2 z2  … 

…  an1zn1

at a fixed value z, ignoring 
overflows

 Especially suitable for strings 
(e.g., the choice z  33 gives 
at most 6 collisions on a set 
of 50,000 English words)

 Polynomial p(z) can be 
evaluated in O(n) time 
using Horner’s rule:
 The following 

polynomials are 
successively computed, 
each from the previous 
one in O(1) time

p0(z)  an1

pi (z)  ani1  zpi1(z)
(i  1, 2, …, n 1)

 We have p(z)  pn1(z) 

 Good values for z: 33, 37, 39, 
and 41.
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Compression Functions
 Division:

 h2 (y)  y mod N

 The size N of the 
hash table is usually 
chosen to be a prime 

 The reason has to do 
with number theory 
and is beyond the 
scope of this course

 Random linear hash 
function:
 h2 (y)  (ay  b) mod N

 a and b are random 
nonnegative integers 
such that

a mod N  0

 Otherwise, every 
integer would map to 
the same value b
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Handling Collisions
 We will review the following methods:

 Separate Chaining
 Open addressing
 Linear probing
Quadratic probing
Double hashing
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Handling Collisions Using Chaining
 Idea:

 Put all elements that hash to the same slot into a 
linked list

 Slot j contains a pointer to the head of the list of all 
elements that hash to j

21

22



Hash Tables 9/26/2019

12

23

Collision with Chaining 
 Choosing the size of the table

 Small enough not to waste space
 Large enough such that lists remain short
 Typically 1/5 or 1/10 of the total number of elements

 How should we keep the lists: ordered or not?
 Not ordered!

 Insert is fast
 Can easily remove the most recently inserted elements 

24

Insert in Hash Tables
Algorithm put(k, v): // k is a new key

t = A[h(k)].put(k,v) 
n = n + 1
return t

 Worst-case running time is O(1)

 Assumes that the element being inserted isn’t already 
in the list

 It would take an additional search to check if it was 
already inserted
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Deletion in Hash Tables
Algorithm remove(k):

t = A[h(k)].remove(k)
if t ≠ null then {k was found}

n = n - 1
return t

 Need to find the element to be deleted.
 Worst-case running time:

 Deletion depends on searching the corresponding list

26

Searching in Hash Tables
Algorithm get(k):

return A[h(k)].get(k) 

 Running time is proportional to the length of the list 

of elements in slot h(k)
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Analysis of Hashing with Chaining:
Worst Case

 How long does it take to 
search for an element with a 
given key?

 Worst case:
 All n keys hash to the same slot

 Worst-case time to search is 
(n), plus time to compute the 
hash function

0

N - 1

T

chain
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Analysis of Hashing with Chaining:
Average Case
 Average case

 depends on how well the hash function 
distributes the n keys among the N slots

 Simple uniform hashing assumption:
 Any given element is equally likely to hash 

into any of the N slots (i.e., probability of 
collision Pr(h(x)=h(y)), is 1/N)

 Length of a list:
T[j].size = nj,  j = 0, 1, . . . , N – 1

 Number of keys in the table:
n = n0 + n1 +∙ ∙ ∙ + nN-1

 Load factor: Average value of nj:
E[nj] =  = n/N

n0 = 0

nN – 1 = 0

T

n2
n3

nj

nk
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Load Factor of a Hash Table
 Load factor of a hash table T:

 = n/N
 n = # of elements stored in the table

 N = # of slots in the table = # of linked 
lists

  is the average number of 
elements stored in a chain

  can be <, =, > 1

0

N - 1

T

chain
chain

chain

chain
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Case 1: Unsuccessful Search
(i.e., item not stored in the table)

Theorem An unsuccessful search in a hash table takes expected time 
under the assumption of simple uniform hashing 

(i.e., probability of collision Pr(h(x)=h(y)), is 1/N)
Proof 
 Searching unsuccessfully for any key k

 need to search to the end of the list T[h(k)]

 Expected length of the list:  E[nh(k)] =  = n/N

 Expected number of elements examined in this case is 
 Total time required is:

 O(1) (for computing the hash function) +   (1 ) 

(1 ) 
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Case 2: Successful Search

32

Analysis of Search in Hash Tables
 If N (# of slots) is proportional to n (# of 

elements in the table):

 n = Θ(N)

  = n/N = Θ(N)/N = O(1)

 Searching takes constant time on average

31
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Open Addressing
 If we have enough contiguous memory to store all 

the keys  store the keys in the table itself
 No need to use linked lists anymore
 Basic idea:

 put: if a slot is full, try another one, 
until you find an empty one

 get: follow the same sequence of probes
 remove: more difficult ... (we’ll see why)

 Search time depends on the length of the 
probe sequence!

e.g., insert 14
h(k) = k mod 13

34

Generalize hash function notation:
 A hash function contains two arguments 

now： (i) Key value, and (ii) Probe number

h(k,p),    p=0,1,...,N-1

 Probe sequences
[h(k,0), h(k,1), ..., h(k,N-1)]

 Must be a permutation of <0,1,...,N-1>
 There are N! possible permutations 
 Good hash functions should be able to 

produce all N! probe sequences

insert 14

<1, 5, 9>
Example

33
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Common Open Addressing Methods

 Linear probing
 Quadratic probing
 Double hashing

 Note: None of these methods can generate 
more than N2 different probing sequences!

36

Linear probing
 Idea: when there is a collision, check the next available 

position in the table (i.e., probing)
h(k,i) = (h1(k) + a*i) mod N

i=0,1,2,...
 First slot probed: h1(k)
 Second slot probed: h1(k) + 1 (a = 1)
 Third slot probed: h1(k)+2, and so on

 Can generate N probe sequences maximum, why?

probe sequence: < h1(k), h1(k)+1 , h1(k)+2 , ....>
wrap around

35
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Linear probing: Searching for a key
 Three cases:

(1) Position in table is occupied with an 
element of equal key

(2) Position in table is empty
(3) Position in table occupied with a different 

element
 Case 3: probe the next index until the 

element is found or an empty position 
is found

 The process wraps around to the 
beginning of the table

0

N - 1

h(k3)

h(k2) = h(k5) 

h(k1)
h(k4)
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Search with Linear Probing
 Consider a hash table A

that uses linear probing
 get(k)

 We start at cell h(k) 

 We probe consecutive 
locations until one of the 
following occurs
 An item with key k is 

found, or
 An empty cell is found, 

or
 N cells have been 

unsuccessfully probed 

Algorithm get(k)
i  h(k)
p  0
repeat

c  A[i]
if c  

return null
else if c.getKey ()  k

return c.getValue()
else

i  (i  1) mod N
p  p  1

until p  N
return null

37

38



Hash Tables 9/26/2019

20

39

Quadratic Probing

h(k,i) = (h1(k) + i2) mod N

 Probe sequence:
0th probe =  h(k) mod N
1th probe = (h(k) + 1) mod N
2th probe = (h(k) + 4) mod N 
3th probe = (h(k) + 9) mod N
. . .
ith probe = (h(k) + i2) mod N 

40

Quadratic Probing Example

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

insert(40)
40%7 = 5

insert(48)
48%7 = 6

insert(5)
5%7 = 5

insert(55)
55%7 = 6

insert(47)
47%7 = 5But…
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Quadratic Probing:
Success guarantee for  < ½

 If N is prime and  < ½, then quadratic probing will find an empty slot 
in N/2 probes or fewer, because each probe checks a different slot.
 Show for all 0  i,j  N/2 and i  j

(h(x) + i2) mod N  (h(x) + j2) mod N
 By contradiction: suppose that for some i  j:

(h(x) + i2) mod N = (h(x) + j2) mod N
 i2 mod N = j2 mod N
 (i2 - j2) mod N = 0
 [(i + j)(i - j)] mod N = 0

Because N is prime(i-j)or (i+j) must be zero, and neither can be，
a contradiction.

Conclusion: For any  < ½, quadratic probing will find an 
empty slot; for bigger , quadratic probing may find a slot

42

Double Hashing
(1) Use one hash function to determine the first slot
(2) Use a second hash function to determine the 

increment for the probe sequence
h(k,i) = (h1(k) + i h2(k) ) mod N,   i=0,1,...

 Initial probe: h1(k) 
 Second probe is offset by h2(k) mod N, so on ...
 Advantage: avoids clustering
 Disadvantage: harder to delete an element
 Can generate N2 probe sequences maximum

41
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Double Hashing: Example

h1(k) = k mod 13
h2(k) = 1+ (k mod 11)

h(k, i) = (h1(k) + i h2(k) ) mod 13
 Insert key 14:

h1(14, 0) = 14 mod 13 = 1
h(14, 1) = (h1(14) + h2(14)) mod 13

= (1 + 4) mod 13 = 5
h(14, 2) = (h1(14) + 2 h2(14)) mod 13

= (1 + 8) mod 13 = 9
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69

98

72

50

0

9

4

2
3

1

5
6
7
8

10
11
12

14
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Analysis of Open Addressing

a
1 a

(load factor)

k=0
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Idea: When the table gets too full, create a bigger 
table (usually 2x as large) and hash all the items 
from the original table into the new table.

 When to rehash?
 half full ( = 0.5)
 when an insertion fails
 some other threshold

 Cost of rehashing?

Rehashing
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