Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Hash Tables

xkcd. http:///xkcd.com/2217. "Random Number." Used with permission under Creative Commons 2.5 License.

1

1

The Search Problem

\square Find items with keys matching a given search key

- Given an array A, containing n keys, and a search key x, find the index i such as $x=A[i]$
- As in the case of sorting, a key could be part of a large record.
example of a record

Key	other data

Special Case: Dictionaries

- Dictionary = data structure that supports mainly two basic operations: insert a new item and return an item with a given key.
- Queries: return information about the set S with key k :
- get (S, k)
- Modifying operations: change the set
- put (S, k) : insert new or update the item of key k.
- remove (S, k) - not very often

Direct Addressing

- Assumptions:
- Key values are distinct
- Each key is drawn from a universe $U=\{0,1, \ldots, N-1\}$
- Idea:
- Store the items in an array, indexed by keys
- Direct-address table representation:
- An array T[0 . . . N - 1]
- Each slot, or position, in T corresponds to a key in U
- For an element x with key k , a pointer to x (or x itself) will be placed in location $T[k]$
- If there are no elements with key k in the set, $T[k]$ is empty, represented by NIL

Direct Addressing (cont'd)

(insert/delete in $\mathrm{O}(1)$ time)

Comparing Different Implementations

a Implementing dictionaries using:

- Direct addressing
- Ordered/unordered arrays
- Ordered linked lists
- Balanced search trees

	put	get
direct addressing	$\mathrm{O}(1)$	$\mathrm{O}(1)$
ordered array	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\operatorname{lgN})$
unordered array	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{N})$
ordered list	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\mathrm{N})$
balance search tree	$\mathrm{O}(\operatorname{lgN})$	$\mathrm{O}(\operatorname{lgN})$

Hash Tables

- When n is much smaller than max(U), where U is the set of all keys, a hash table requires much less space than a direct-address

table

- Can reduce storage requirements to $O(n)$
- Can still get $O(1)$ search time, but on the average case, not the worst case

7

Hash Tables

- Use a function h to compute the slot for each key
- Store the element in slot $h(k)$
- A hash function h transforms a key into an index in a hash table T[0... $\mathrm{N}-1]$:

$$
h: U \rightarrow\{0,1, \ldots, N-1\}
$$

- We say that k hashes to $h(k)$, hash value of k.
- Advantages:
- Reduce the range of array indices handled: N instead of $\max (\mathrm{U})$
- Storage is also reduced

Example: HASH TABLES

Example

Suppose that the keys are nine-digit social security numbers

> Possible hash function
> $h(s s n)=s s s \bmod 100($ last 2 digits of $s s n)$
> e.g., if $s s n=10123411$ then $h(10123411)=11)$

Do you see any problems with this approach?

Collisions

- Two or more keys hash to the same slot!!
- For a given set of n keys
- If $n \leq N$, collisions may or may not happen, depending on the hash function
- If $n>N$, collisions will definitely happen (i.e., there must be at least two keys that have the same hash value)
Avoiding collisions completely is hard, even with a good hash function

Hash Functions

- A hash function transforms a key into a table address
- What makes a good hash function?
(1) Easy to compute
(2) Approximates a random function: for every input, every output is equally likely (simple uniform hashing)
- In practice, it is very hard to satisfy the simple uniform hashing property
- i.e., we don't know in advance the probability distribution that keys are drawn from

Good Approaches for Hash Functions

- Minimize the chance that closely related keys hash to the same slot
- Strings such as stop, tops, and pots should hash to different slots
- Derive a hash value that is independent from any patterns that may exist in the distribution of the keys.

The Division Method

- Idea:
- Map a key k into one of the N slots by taking the remainder of k divided by N

$$
h(k)=k \bmod N
$$

- Advantage:

- fast, requires only one operation
- Disadvantage:
- Certain values of N are bad, e.g.,
- power of 2
- non-prime numbers

Example - The Division Method

- If $N=2 p$, then $h(k)$ is just the least significant p bits of k
- $p=1 \Rightarrow N=2$
$\Rightarrow h(k)=\{0,1\}$, least significant 1 bit of k
- $p=2 \Rightarrow N=4$
$\Rightarrow h(k)=\{0,1,2,3\}$, least significant 2 bits of k
- Choose N to be a prime, not close to a
power of 2
- Column 2: k mod 97
- Column 3: k mod 100

	16838	57	38
	5758	35	58
	10113	25	13
	17515	55	15
	31051	11	51
	5627	1	27
	23010	21	10
	7419	47	19
	16212	13	12
	4086	12	86
	2749	33	49
	12767	60	67
k	9084	63	84
	12060	32	60
	32225	21	25
	17543	83	43
	25089	63	89
	21183	37	83
	25137	14	37
	25566	55	66
	26966	0	66
	4978	31	78
	20495	28	95
	10311	29	11
	11367	18	67

The Multiplication Method

Idea:

- Multiply key k by a constant A , where $0<\mathrm{A}<1$
- Extract the fractional part of kA
- Multiply the fractional part by N
- Take the floor of the result

$$
h(k)=\lfloor N(k A-\lfloor k A\rfloor)\rfloor
$$

- Disadvantage: A little slower than division method
- Advantage: Value of N is not critical, e.g., typically 2^{p}

Hash Functions

- A hash function is usually specified as the composition of two functions:

Hash code:

$$
\boldsymbol{h}_{1}: \text { keys } \rightarrow \text { integers }
$$

Compression function:
\boldsymbol{h}_{2} : integers $\rightarrow[0, \boldsymbol{N}-1]$
Typically, \boldsymbol{h}_{2} is $\bmod \mathrm{N}$.

- The hash code is applied first, and the compression function is applied next on the result, i.e.,

$$
h(x)=h_{2}\left(h_{1}(x)\right)
$$

- The goal of the hash function is to "disperse" the keys in an apparently random way

Typical Function for H_{1}

a Polynomial accumulation:

- We partition the bits of the key into a sequence of components of fixed length (e.g., 8,16 or 32 bits)
$a_{0} a_{1} \ldots a_{n-1}$
- We evaluate the polynomial $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots$ $\ldots+a_{n-1} \mathbf{1}^{n-1}$ at a fixed value z, ignoring overflows
- Especially suitable for strings (e.g., the choice $z=33$ gives at most 6 collisions on a set of 50,000 English words)
- Polynomial $\boldsymbol{p}(\boldsymbol{z})$ can be evaluated in $\boldsymbol{O}(\boldsymbol{n})$ time using Horner's rule:
- The following polynomials are successively computed, each from the previous one in $\boldsymbol{O}(1)$ time

$$
\begin{aligned}
& \boldsymbol{p}_{0}(\mathrm{z})=\boldsymbol{a}_{n-1} \\
& \boldsymbol{p}_{i}(\mathrm{z})=\boldsymbol{a}_{n-i-1}+\boldsymbol{z p _ { i - 1 }}(\mathrm{z}) \\
& (\boldsymbol{i}=1,2, \ldots, \boldsymbol{n}-1)
\end{aligned}
$$

- We have $\boldsymbol{p}(\mathbf{z})=\boldsymbol{p}_{n-1}(\mathbf{z})$
- Good values for z: 33, 37, 39, and 41.

Compression Functions

Division:

- $\boldsymbol{h}_{2}(\boldsymbol{y})=\boldsymbol{y} \bmod N$
- The size N of the hash table is usually chosen to be a prime
- The reason has to do with number theory and is beyond the scope of this course
- Random linear hash function:
- $\boldsymbol{h}_{2}(\boldsymbol{y})=(\boldsymbol{a} \boldsymbol{y}+\boldsymbol{b}) \bmod N$
- a and b are random nonnegative integers such that $a \bmod N \neq 0$
- Otherwise, every integer would map to the same value \boldsymbol{b}

Handling Collisions

- We will review the following methods:
- Separate Chaining
- Open addressing
- Linear probing
- Quadratic probing
- Double hashing

Handling Collisions Using Chaining

Idea:

- Put all elements that hash to the same slot into a

- Slot j contains a pointer to the head of the list of all elements that hash to j

Collision with Chaining

- Choosing the size of the table
- Small enough not to waste space
- Large enough such that lists remain short
- Typically $1 / 5$ or $1 / 10$ of the total number of elements
- How should we keep the lists: ordered or not?
- Not ordered!
- Insert is fast
- Can easily remove the most recently inserted elements

Insert in Hash Tables

Algorithm put(k, v): $/ / k$ is a new key
$\mathrm{t}=\mathrm{A}[\mathrm{h}(\mathrm{k})] \cdot \mathrm{put}(\mathrm{k}, \mathrm{v})$
$\mathrm{n}=\mathrm{n}+1$
return t

- Worst-case running time is $O(1)$
- Assumes that the element being inserted isn't already in the list
- It would take an additional search to check if it was already inserted

Deletion in Hash Tables

Algorithm remove(k):
$t=A[h(k)]$.remove (k)
if $\mathrm{t} \neq$ null then
\{k was found\}
$n=n-1$
return t

- Need to find the element to be deleted.
- Worst-case running time:
- Deletion depends on searching the corresponding list

Searching in Hash Tables

Algorithm get(k):
return $A[h(k)] . g e t(k)$

- Running time is proportional to the length of the list of elements in slot $h(k)$

Analysis of Hashing with Chaining: Worst Case

- How long does it take to search for an element with a given key?
- Worst case:
- All n keys hash to the same slot
- Worst-case time to search is $\Theta(n)$, plus time to compute the hash function

Analysis of Hashing with Chaining: Average Case

- Average case
- depends on how well the hash function distributes the n keys among the N slots
- Simple uniform hashing assumption:
- Any given element is equally likely to hash into any of the N slots (i.e., probability of collision $\operatorname{Pr}(\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y}))$, is $1 / \mathrm{N})$
- Length of a list:
$T[j]$.size $=n_{j}, \quad j=0,1, \ldots, N-1$
- Number of keys in the table:

$$
n=n_{0}+n_{1}+\cdots+n_{N-1}
$$

- Load factor: Average value of n_{j} :

$$
E\left[n_{j}\right]=\alpha=n / N
$$

Load Factor of a Hash Table

- Load factor of a hash table T:

$$
\alpha=n / N
$$

- $n=$ \# of elements stored in the table
- $\mathrm{N}=$ \# of slots in the table = \# of linked lists
- α is the average number of elements stored in a chain

- α can be $<,=,>1$

Case 1: Unsuccessful Search (i.e., item not stored in the table)

Theorem An unsuccessful search in a hash table takes expected time $\Theta(1+\alpha)$ under the assumption of simple uniform hashing (i.e., probability of collision $\operatorname{Pr}(\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})$), is $1 / \mathrm{N})$

Proof

- Searching unsuccessfully for any key k
- need to search to the end of the list $T[h(k)]$
- Expected length of the list: $E\left[n_{h(k)}\right]=\alpha=n / N$
- Expected number of elements examined in this case is α
- Total time required is:
- O (1) (for computing the hash function) $+\alpha \rightarrow \Theta(1+\alpha)$

Case 2: Successful Search

Successful search: $\Theta\left(1+\frac{a}{2}\right)=\Theta(1+a)$ time on the average (search half of a list of length a plus $O(1)$ time to compute $h(k)$)

Analysis of Search in Hash Tables

- If N (\# of slots) is proportional to n (\# of elements in the table):
- $\quad n=\Theta(N)$
a $\quad \alpha=n / N=\Theta(N) / N=O(1)$
\Rightarrow Searching takes constant time on average

Open Addressing

- If we have enough contiguous memory to store all the keys \Rightarrow store the keys in the table itself
- No need to use linked lists anymore
- Basic idea:
- put: if a slot is full, try another one, until you find an empty one
- get: follow the same sequence of probes
- remove: more difficult ... (we'll see why)
- Search time depends on the length of the probe sequence!
e.g., insert 14 $h(k)=k \bmod 13$

Generalize hash function notation:

- A hash function contains two arguments now: (i) Key value, and (ii) Probe number

$$
h(k, p), \quad p=0,1, \ldots, N-1
$$

- Probe sequences

$$
[h(k, 0), h(k, 1), \ldots, h(k, N-1)]
$$

- Must be a permutation of $\langle 0,1, \ldots, \mathrm{~N}-1\rangle$
- There are N ! possible permutations
- Good hash functions should be able to produce all N! probe sequences
insert 14

Common Open Addressing Methods

- Linear probing
- Quadratic probing
- Double hashing
- Note: None of these methods can generate more than N^{2} different probing sequences!

Linear probing

- Idea: when there is a collision, check the next available position in the table (i.e., probing)

$$
h(k, i)=\left(h_{1}(k)+a * i\right) \bmod N
$$

$$
\mathrm{i}=0,1,2, \ldots
$$

- First slot probed: $h_{1}(k)$
- Second slot probed: $h_{1}(k)+1(a=1)$
- Third slot probed: $h_{1}(k)+2$, and so on
- Can generate N probe sequences maximum, why? probe sequence: < h1 (k), h1(k)+1,h1(k)+2, ...> $>$

wrap around

Linear probing: Searching for a key

- Three cases:
(1) Position in table is occupied with an element of equal key
(2) Position in table is empty
(3) Position in table occupied with a different element
- Case 3: probe the next index until the element is found or an empty position is found
- The process wraps around to the beginning of the table

\square	0
\square	$h\left(k_{1}\right)$
$h\left(k_{4}\right)$	
\square	$h\left(k_{2}\right)=h\left(k_{5}\right)$
\square	$h\left(k_{3}\right)$
	$N-1$

Search with Linear Probing

- Consider a hash table A that uses linear probing
- $\operatorname{get}(\boldsymbol{k})$
- We start at cell $\boldsymbol{h}(\boldsymbol{k})$
- We probe consecutive locations until one of the following occurs
- An item with key \boldsymbol{k} is found, or
- An empty cell is found, or
- N cells have been unsuccessfully probed

```
Algorithm get(k)
    i}\leftarrowh(k
    p}\leftarrow
    repeat
        c\leftarrowA[i]
        if}c=
            return null
        else if c.getKey ()=k
            return c.getValue()
        else
            i\leftarrow(i+1)mod}
            p}\leftarrow\boldsymbol{p}+
    until p=N
    return null
```


Quadratic Probing

$$
h(k, i)=\left(h_{1}(k)+i^{2}\right) \bmod N
$$

- Probe sequence:
$0^{\text {th }}$ probe $=h(k) \bmod N$
$1^{\text {th }}$ probe $=(h(k)+1) \bmod N$
$2^{\text {th }}$ probe $=(h(k)+4) \bmod N$
$3^{\text {th }}$ probe $=(h(k)+9) \bmod N$
$i^{\text {th }}$ probe $=\left(h(k)+i^{2}\right) \bmod N$

Quadratic Probing Example

Quadratic Probing:
 Success guarantee for $\alpha<1 / 2$

- If N is prime and $\alpha<1 / 2$, then quadratic probing will find an empty slot in N/2 probes or fewer, because each probe checks a different slot.
- Show for all $0 \leq i, j \leq N / 2$ and $\mathbf{i} \neq \mathbf{j}$
$\left(h(x)+i^{2}\right) \bmod N \neq\left(h(x)+j^{2}\right) \bmod N$
- By contradiction: suppose that for some $i \neq j$:
$\left(h(x)+i^{2}\right) \bmod N=\left(h(x)+j^{2}\right) \bmod N$
$\Rightarrow \mathrm{i}^{2} \bmod \mathrm{~N}=\mathrm{j}^{2} \bmod \mathrm{~N}$
$\Rightarrow\left(\mathrm{i}^{2}-\mathrm{j}^{2}\right) \bmod \mathrm{N}=0$
$\Rightarrow[(i+j)(i-j)] \bmod N=0$
Because N is prime ($\mathbf{i}-\mathrm{j}$) or ($\mathbf{i}+\mathrm{j}$) must be zero, and neither can be, a contradiction.

Conclusion: For any $\alpha<1 / 2$, quadratic probing will find an empty slot; for bigger α, quadratic probing may find a slot

Double Hashing

(1) Use one hash function to determine the first slot
(2) Use a second hash function to determine the increment for the probe sequence

$$
h(k, i)=\left(h_{1}(k)+i h_{2}(k)\right) \bmod N, \quad i=0,1, \ldots
$$

- Initial probe: $h_{1}(k)$
- Second probe is offset by $h_{2}(k) \bmod N$, so on ...
- Advantage: avoids clustering
- Disadvantage: harder to delete an element
- Can generate N^{2} probe sequences maximum

Double Hashing: Example

$h_{1}(k)=k \bmod 13$
$h_{2}(k)=1+(k \bmod 11)$

$$
h(k, i)=\left(h_{1}(k)+i h_{2}(k)\right) \bmod 13
$$

- Insert key 14:
$h_{1}(14,0)=14 \bmod 13=1$
$h(14,1)=\left(h_{1}(14)+h_{2}(14)\right) \bmod 13$
$=(1+4) \bmod 13=5$
$h(14,2)=\left(h_{1}(14)+2 h_{2}(14)\right) \bmod 13$

$$
=(1+8) \bmod 13=9
$$

Analysis of Open Addressing

- Ignore the problem of clustering and assume that all probe sequences are equally likely

Unsuccessful retrieval:
$\operatorname{Prob}($ probe hits an occupied cell) $=\boldsymbol{a} \quad$ (load factor)
$\operatorname{Prob}($ probe hits an empty cell $)=1-a$
probability that a probe terminates in 2 steps: $a(1-a)$
probability that a probe terminates in k steps: $a^{k-1}(1-a)$
What is the average number of steps in a probe ?
$E(\#$ steps $)=\sum_{k=1}^{m} k a^{k-1}(1-a) \leq \sum_{k=0}^{\infty} k a^{k-1}(1-a)=(1-a) \frac{1}{(1-a)^{2}}=\frac{1}{1-a}$

Rehashing

Idea: When the table gets too full, create a bigger table (usually $2 x$ as large) and hash all the items from the original table into the new table.

- When to rehash?
- half full ($\alpha=0.5$)
- when an insertion fails
- some other threshold
- Cost of rehashing?

