

Comparing Differen	t Implen	nentations
Implementing dictionar	ies using:	
 Direct addressing 		
 Ordered/unordered arra 	ys	
 Ordered linked lists 		
 Balanced search trees 		
	put	get
direct addressing	O(1)	O(1)
ordered array	O(N)	O(lgN)
unordered array	O(1)	O(N)
ordered list	O(N)	O(N)

Example - The Division Method		N 97	N 100
	16838 5758 10113	57 35 25	38 58 13
 If N = 2^p, then h(k) is just the least significant p bits of k 	17515 31051 5627	55 11 1	15 51 27
• $p = 1 \Rightarrow N = 2$ $\Rightarrow h(k) = \{0, 1\}$, least significant 1 bit of k	23010 7419 16212 4086	21 47 13 12	10 19 12 86
■ p = 2 \Rightarrow N = 4 \Rightarrow h(k) = {0, 1, 2, 3}, least significant 2 bits of k	2749 12767 9084	33 60 63	49 67 84
Choose N to be a prime, not close to a	32225 17543 25089	21 83 63	25 43 89
Column 2: k mod 97	21183 25137 25566 26066	37 14 55	83 37 66
Column 3: k mod 100	20966 4978 20495 10311	31 28 29	78 95 11
16	11367	18	67

lgorithm $get(k)$ $i \leftarrow h(k)$ $p \leftarrow 0$ repeat $c \leftarrow A[i]$
if $c = \emptyset$ return null else if $c.getKey() = k$ return $c.getValue()$ else $i \leftarrow (i + 1) \mod N$ $p \leftarrow p + 1$

