
Priority Queues 9/24/2019

1

1

Ch05 Priority Queues & Heapsort

Presentation for use with the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Priority Queue ADT
 A priority queue stores a

collection of elements which
have a total order.

 Each element has a key
value key(x).

 Main methods of the Priority
Queue ADT
 insert(x)

inserts an entry with key k
and value x

 removeMin()
removes and returns the
element with smallest key.

 This is the min-queue.
Replace “min” by “max” we
obtain the max-queue.

 Additional methods
 min()

returns, but does not
remove, an entry with
smallest key

 size()
 isEmpty()

 Applications:
 Standby flyers
 Auctions
 Stock market

1

2

Priority Queues 9/24/2019

2

3

Total Order Relations
 Keys in a priority

queue can be
arbitrary objects
on which an order
is defined

 Every pair of such
keys must be
comparable
according to a
total order.

 Definition of total order
relation 
 Comparability property:

either x  y or y  x

 Reflexive property: x  x

 Antisymmetric property:
x  y and y  x  x = y

 Transitive property:
x  y and y  z  x  z

Example
 A sequence of priority queue methods:

4

3

4

Priority Queues 9/24/2019

3

Priority Queue Sorting
 We can use a priority max-

queue to sort a set of
comparable elements
1. Insert the elements

one by one with a
series of insert
operations

2. Remove the elements
in sorted order with a
series of removeMax
operations

 The running time of this
sorting method depends on
the priority queue
implementation.

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted in
increasing order according to C
P  priority queue with

comparator C
while S.isEmpty ()

e  S.removeFirst ()
P.insert (e)

while P.isEmpty()
e  P.removeMax()
S.insertFirst(e)

Some Definitions
 Internal Sort

 The data to be sorted is all stored in the
computer’s main memory.

 External Sort
 Some of the data to be sorted might be stored in

some external, slower, device.
 In Place Sort

 The amount of extra space required to sort the
data is o(n), where n is the input size.

5

6

Priority Queues 9/24/2019

4

Sequence-based Priority Queue
 Implementation with an

unsorted list

 Performance:
 insert takes O(1) time

since we can insert the
item at the beginning or
end of the sequence

 removeMax takes O(n)
time since we have to
traverse the entire
sequence to find the
maximal key

 Implementation with a
sorted list

 Performance:
 insert takes O(n) time

since we have to find the
place where to insert the
item

 removeMax takes O(1)
time, since the smallest
key is at the beginning

4 5 2 3 1 1 2 3 4 5

How does the Priority Queue Sorting behave?

Selection-Sort, Insertion-Sort
 Selection-sort is a variation of PQ-sort where the

priority queue is implemented with an unsorted
sequence.
 If an array is used, it can be implemented as in-place

selection sort.
 Insertion-sort is a variation of PQ-sort where the

priority queue is implemented with a sorted
sequence.
 If an array is used, it can be implemented as in-place

insertion sort.

7

8

Priority Queues 9/24/2019

5

Selection-Sort Example
Priority Queue P Sorted Sequence

Input: (7,4,8,2,5,3,9) ()

removeMax():
(7,4,8,2,5,3) (9)

removeMax():
(7,4,2,5,3) (8,9)

removeMax():
(4,2,5,3) (7,8,9)

removeMax():
(4,2,3) (5,7,8,9)

removeMax():
(2,3) (4,5,7,8,9)

removeMax():
(2) (3,4,5,7,8,9)

removeMax():
() (2,3,4,5,7,8,9)

Insertion-Sort Example
Sequence S Priority queue P

Input: (7,4,8,2,5,3,9) ()

insert(7):
(4,8,2,5,3,9) (7)

insert(4):
(8,2,5,3,9) (4,7)

insert(8):
(2,5,3,9) (4,7,8)

insert(2):
(5,3,9) (2,4,7,8)

insert(5):
(3,9) (2,4,5,7,8)

insert(3):
(9) (2,3,4,5,7,8)

insert(9):
() (2,3,4,5,7,8,9)

9

10

Priority Queues 9/24/2019

6

Balanced Search Tree Based
Priority Queue
 Both insert and removeMax can be implemented

using O(log n) time.
 Thus, PQ-sort can run in O(n log n).
 Can we have an in-place PQ-sort whose complexity

is in O(n log n)?
 Yes, use heaps for PQ.

What is a heap?

 A (max) heap is a binary tree
storing keys at its internal nodes
and satisfying the following
properties:
 (Max) Heap-Order: for every

node v other than the root,
key(v) ≤ key(parent(v))

 Complete Binary Tree: let h
be the height of the heap
 for i 0, … , h  2, there

are 2i nodes of depth i
 at depth h-1, the nodes

are listed from left to
right without gaps.

 The last node of a heap is
the rightmost node of depth
h  1

8

65

42

last node

11

12

Priority Queues 9/24/2019

7

Height of a Heap

 Theorem: A heap storing n keys has height O(log n)

Proof: (we apply the complete binary tree property)
 Let h be the height of a heap storing n keys
 Since there are 2i keys at depth i  0, … , h  1 and at least one key at depth

h, we have n  1 2  4  …  2h1 1
 Thus, n  2h , i.e., h  log n.

1

2

2h

1

keys
0

1

h

h

depth

Heaps and Priority Queues
 We can use a heap to implement a priority queue
 We store an item (key, element) at each node
 We keep track of the position of the last node
 For simplicity, we will show only the keys in the pictures

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)

A min-heap:

13

14

Priority Queues 9/24/2019

8

Insert into a Heap
 Method insert of the priority

queue ADT corresponds to
the insertion of a key k to
the heap

 The insertion algorithm
consists of three steps
 Find the position for a new

node and create a new
node z

 Store k at z
 Restore the heap-order

property by up-heap bubble
(discussed next)

8

65

42

insertion node
8

65

42 9

z

z

Up-Heap Bubbling
 After the insertion of a new key k, the heap-order property may be

violated
 Algorithm up-heap-bubble restores the heap-order property by swapping k

along an upward path from the insertion node
 Up-heap-bubble terminates when the key k reaches the root or a node

whose key is greater than or equal to k
 Since a heap has height O(log n), up-heap-bubble runs in O(log n) time

8

95

42 6z

9

85

42 6z

15

16

Priority Queues 9/24/2019

9

removeMax from a Heap

 Method removeMax of the
priority queue ADT
corresponds to the removal
of the root key from the heap

 The removal algorithm
consists of three steps
 Replace the root key with

the key of the last node w
 Release node w
 Restore the heap-order

property by down-heap-
bubble (discussed next)

8

67

42

last node

w

4

67

2
w

Down-heap bubbling (Heapify)
 After replacing the root key with the key k of the last node, the heap-

order property may be violated
 Algorithm down-heap-bubble (or heapify) restores the heap-order

property by swapping key k along a downward path from the root
 Down-heap-bubble terminates when key k reaches a leaf or a node

whose key is less than or equal to k
 Since a heap has height O(log n), down-heap-bubble runs in O(log n) time

4

67

2
w

7

64

2
w

17

18

Priority Queues 9/24/2019

10

Heap-Sort

 Consider a priority queue
with n items implemented by
means of a max-heap
 The input and the heap

can share the array, so
the additional space used
is O(1)

 Methods insert and
removeMax take O(log n)
time.

 Using a heap-based priority
queue, we can sort a
sequence of n elements in
O(n log n) time

 It can be implemented in-
place (O(1) additional space).

 The resulting algorithm is
called heap-sort

 Heap-sort is much faster
than quadratic sorting
algorithms, such as
insertion-sort and selection-
sort, when n is very large.

Array-based Heap Implementation
 We can represent a heap with n keys

by means of an array of length n.
 For the node at index i

 the left child is at index 2i + 1
 the right child is at index 2i  2

 Links between nodes are not
explicitly stored

 The (first portion of) input array A is
used as heap.

 In-place (no additional array is
needed) heap-sort:

For k = 1 to n-1
A.insert(A[k]);

For k = n-1 downto 1
A[k] = A.removeMax();

• Time Complexity: O(n log n)

9

57

62

9 7 5 2 6

0 1 2 3 4

Heap:

2 6 7 9 5

0 1 2 3 4

Input:

19

20

Priority Queues 9/24/2019

11

Possible Quiz Questions
 Show the contents of the following

arrays during the heap sort whenever
there is a change.
 A = [1, 2, 4, 3]
 B = [3, 4, 2, 1]
 C = [4, 1, 2, 3]

21

 We can construct a heap
storing n given keys using a
bottom-up construction with
log n phases, so that the time
of building a heap of n
elements is O(n), instead of
O(n log n).

 The process is divided into
log n phases.

 In phase i, pairs of heaps
with 2i 1 keys plus one item
are merged into heaps with
2i11 keys

Bottom-up Heap Construction

2i 1 2i 1

2i11

21

22

Priority Queues 9/24/2019

12

Merging Two (Min) Heaps
 We are given two

heaps and a key k
 We create a new heap

with the root node
storing k and with the
two heaps as subtrees

 We perform down-
heap-bubble to restore
the heap-order
property

7

3

58

2

64

3

58

2

64

2

3

58

4

67

7

Example of Max Heap

1516 124 76 2023

25

1516

5

124

11

76

27

2023

A = [10, 7, 8, 25, 5, 11, 27, 16, 15, 4, 12, 6, 7, 23, 20]

23

24

Priority Queues 9/24/2019

13

Example (contd.)

25

1516

12

54

11

76

27

2023

25

1516

5

124

11

76

27

2023

Example (contd.)
7 8

25 27

25

1516

12

54

11

76

27

2023

16

157

12

54

11

76

23

208

25

26

Priority Queues 9/24/2019

14

Example (end)
10

25 27

16

157

12

54

11

76

23

208

27

25 23

16

157

12

54

11

76

20

108

Building a Heap

Alg: BuildMaxHep(A)
1. n = length[A]
2. for i ← n/2-1 downto 0
3. do MaxHeapify(A, i, n)

 Convert an array A[0 … n-1] into a max-heap (n =
length[A])

 The elements in the subarray A[(n/2 .. n-1] are leaves
 Apply MaxHeapify on elements between 0 and n/2-1

2
14 8

1
16

7

4

3
9 10

0

1 2

3 4 5 6

7 8 9

4 1 3 2 16 9 10 14 8 7A:

27

28

Priority Queues 9/24/2019

15

Maintaining the Heap Property
 Assumptions:

 Left and Right
subtrees of i are
max-heaps

 A[i] may be
smaller than its
children

Alg: MaxHeapify(A, i, n) {

1. l ← Left(i); // Left(i) = 2i+1

2. r ← Right(i); // Right(i) = 2i+2

3. max ←i ;
4. if (l < n && A[l] > A[max]) max ←l;
5. if (r < n && A[r] > A[max]) max ←r;
6. if (max  i) {
7. exchange A[i] ↔ A[max];
8. MaxHeapify(A, max, n);

9. }}

30

Running Time of BUILD MAX HEAP

 Running time: O(n lgn)

 This is not an asymptotically tight upper bound

Alg: BuildMaxHeap(A)
1. n = length[A]

2. for i ← n/2-1 downto 0
3. do MaxHeapify(A, i, n) O(lgn)

O(n)

29

30

Priority Queues 9/24/2019

16

Analysis
 We visualize the worst-case time of a heapify (or bubble-down) with a

given path that goes first right and then repeatedly goes left until the
bottom of the heap (this path may differ from the actual heapify path)

 Since each edge is traversed by at most once by these paths, the total
length of these paths is O(n).

 Thus, bottom-up heap construction runs in O(n) time.
 Bottom-up heap construction is faster than n successive insertions and

speeds up the first phase of heap-sort.

32

Running Time of BUILD MAX HEAP
 MaxHeapify takes O(h)  the cost of MaxHeapify on a node i is

proportional to the height of the node i in the tree

Height Level
h0 = 3 (lgn)

h1 = 2

h2 = 1

h3 = 0

i = 0

i = 1

i = 2

i = 3 (lgn)

No. of nodes
20

21

22

23

hi = h – i height of the heap rooted at level i
ni = 2i number of nodes at level i

i

h

i
ihnnT 




0

)( ih
h

i

i 
0

2)(nO

31

32

Priority Queues 9/24/2019

17

33

Running Time of BUILD MAX HEAP
i

h

i
ihnnT 




0

)(Cost of MaxHeapify at level i  number of nodes at that level

 ih
h

i

i 
0

2 Replace the values of ni and hi computed before

h
h

i
ih

ih
2

20






 Multiply by 2h both at the nominator and

denominator and write 2i as i2

1





h

k
k

h k

0 2
2 Change variables: k = h - i







0 2k

k

k
n The sum above is smaller than the sum of all

elements to 

)(nO The sum above is smaller than 2

Running time of BuildMaxHeap: T(n) = O(n)

HeapSort(A)

Alg: HeapSort(A) {

1. n = A.length;
2. for i ← n/2-1 downto 0
3. MaxHeapify(A, i, n);
4. for i ← n – 1 downto 1 { // A[0..i] is a max heap
5. exchange A[i] ↔ A[0];
6. MaxHeapify(A, 0, i); // A[i..n-1] is sorted with max (n – i)
7. }} // elements of the original array.

 Convert an array A[0 … n-1] into a max-heap
 The elements in the subarray A[n/2 .. n-1] are leaves.
 Apply MaxHeapify on elements between 0 and n/2-1

 Repeatedly swap the max heap element with the last unsorted
element and call MaxHeapify to maintain the heap property.

33

34

Priority Queues 9/24/2019

18

35

Example: A=[7, 4, 3, 1, 2]

MaxHeapify(A, 1, 4) MaxHeapify(A, 1, 3) MaxHeapify(A, 1, 2)

MaxHeapify(A, 1, 1)

Possible Quiz Questions
 Show the contents of the following

arrays during the heap sort whenever
there is a change, when the bottom-up
heap construction is used.
 A = [1, 2, 4, 3]
 B = [3, 4, 2, 1]
 C = [4, 1, 2, 3]

36

35

36

Priority Queues 9/24/2019

19

37

Stability
 A STABLE sort preserves relative order of records with

equal keys

Sorted on first key:

Sort file on second key:

Records with key value
3 are not in order on

first key!!

Summary
 A priority queue stores a collection of items
 Each item has a key value.
 Main methods of the Priority Queue ADT

 insert(x)
inserts an item x

 removeMax() (or removeMin())
removes and returns the item with max (or smallest) key

 Using an array-based priority queue, each insert and
removeMax can be implemented in O(log n).

 For Heap Sort, we create an array-based max heap in O(n) and
each removeMax takes O(log n), so the total time is O(n log n).

 Heap Sort is a non-stable, in-place, optimal sorting method.

37

38

