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Ch05 Priority Queues & Heapsort

Presentation for use with the textbook Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Priority Queue ADT 
 A priority queue stores a 

collection of elements which 
have a total order.

 Each element has a key 
value key(x).

 Main methods of the Priority 
Queue ADT
 insert(x)

inserts an entry with key k 
and value x

 removeMin()
removes and returns the 
element with smallest key.

 This is the min-queue. 
Replace “min” by “max” we 
obtain the max-queue.

 Additional methods
 min()

returns, but does not 
remove, an entry with 
smallest key

 size()
 isEmpty()

 Applications:
 Standby flyers
 Auctions
 Stock market
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Total Order Relations
 Keys in a priority 

queue can be 
arbitrary objects 
on which an order 
is defined

 Every pair of such 
keys must be 
comparable 
according to a 
total order.

 Definition of total order 
relation 
 Comparability property: 

either x  y or y  x

 Reflexive property: x  x

 Antisymmetric property:
x  y and y  x  x = y

 Transitive property:
x  y and y  z  x  z

Example
 A sequence of priority queue methods:
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Priority Queue Sorting
 We can use a priority max-

queue to sort a set of 
comparable elements
1. Insert the elements 

one by one with a 
series of insert
operations

2. Remove the elements 
in sorted order with a 
series of removeMax
operations

 The running time of this 
sorting method depends on 
the priority queue 
implementation.

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted  in 
increasing order according to C
P  priority queue with 

comparator C
while S.isEmpty ()

e  S.removeFirst ()
P.insert (e)

while P.isEmpty()
e  P.removeMax()
S.insertFirst(e)

Some Definitions
 Internal Sort

 The data to be sorted is all stored in the 
computer’s main memory.

 External Sort
 Some of the data to be sorted might be stored in 

some external, slower, device.
 In Place Sort

 The amount of extra space required to sort the 
data is o(n), where n is the input size.
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Sequence-based Priority Queue
 Implementation with an 

unsorted list

 Performance:
 insert takes O(1) time 

since we can insert the 
item at the beginning or 
end of the sequence

 removeMax takes O(n)
time since we have to 
traverse the entire 
sequence to find the 
maximal key 

 Implementation with a 
sorted list

 Performance:
 insert takes O(n) time 

since we have to find the 
place where to insert the 
item

 removeMax takes O(1)
time, since the smallest 
key is at the beginning

4 5 2 3 1 1 2 3 4 5

How does the Priority Queue Sorting behave? 

Selection-Sort, Insertion-Sort
 Selection-sort is a variation of PQ-sort where the 

priority queue is implemented with an unsorted 
sequence. 
 If an array is used, it can be implemented as in-place 

selection sort.
 Insertion-sort is a variation of PQ-sort where the 

priority queue is implemented with a sorted 
sequence.
 If an array is used, it can be implemented as in-place 

insertion sort.
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Selection-Sort Example
Priority Queue P Sorted Sequence

Input: (7,4,8,2,5,3,9) ()

removeMax():
(7,4,8,2,5,3) (9)

removeMax():
(7,4,2,5,3) (8,9)

removeMax():
(4,2,5,3) (7,8,9)

removeMax():
(4,2,3) (5,7,8,9)

removeMax():
(2,3) (4,5,7,8,9)

removeMax():
(2) (3,4,5,7,8,9)

removeMax():
() (2,3,4,5,7,8,9)

Insertion-Sort Example
Sequence S Priority queue P

Input: (7,4,8,2,5,3,9) ()

insert(7):
(4,8,2,5,3,9) (7)

insert(4):
(8,2,5,3,9) (4,7)

insert(8):
(2,5,3,9) (4,7,8)

insert(2):
(5,3,9) (2,4,7,8)

insert(5):
(3,9) (2,4,5,7,8)

insert(3):
(9) (2,3,4,5,7,8)

insert(9):
() (2,3,4,5,7,8,9)
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Balanced Search Tree Based 
Priority Queue
 Both insert and removeMax can be implemented 

using O(log n) time.
 Thus, PQ-sort can run in O(n log n).
 Can we have an in-place PQ-sort whose complexity 

is in O(n log n)?
 Yes, use heaps for PQ.

What is a heap? 

 A (max) heap is a binary tree 
storing keys at its internal nodes 
and satisfying the following 
properties:
 (Max) Heap-Order: for every 

node v other than the root,
key(v) ≤ key(parent(v))

 Complete Binary Tree: let h
be the height of the heap
 for i 0, … , h  2, there 

are 2i nodes of depth i
 at depth h-1, the nodes 

are listed from left to 
right without gaps.

 The last node of a heap is 
the rightmost node of depth 
h  1

8
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last node
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Height of a Heap

 Theorem: A heap storing n keys has height O(log n)

Proof: (we apply the complete binary tree property)
 Let h be the height of a heap storing n keys
 Since there are 2i keys at depth i  0, … , h  1 and at least one key at depth 

h, we have n  1 2  4  …  2h1 1
 Thus, n  2h , i.e., h  log n.

1

2

2h

1

keys
0

1

h

h

depth

Heaps and Priority Queues
 We can use a heap to implement a priority queue
 We store an item (key, element) at each node
 We keep track of the position of the last node
 For simplicity, we will show only the keys in the pictures

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)

A min-heap:
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Insert into a Heap 
 Method insert of the priority 

queue ADT corresponds to 
the insertion of a key k to 
the heap

 The insertion algorithm 
consists of three steps
 Find the position for a new  

node and create a new 
node z

 Store k at z
 Restore the heap-order 

property by up-heap bubble 
(discussed next)

8

65

42

insertion node
8

65

42 9

z

z

Up-Heap Bubbling 
 After the insertion of a new key k, the heap-order property may be 

violated
 Algorithm up-heap-bubble restores the heap-order property by swapping k

along an upward path from the insertion node
 Up-heap-bubble terminates when the key k reaches the root or a node 

whose key is greater than or equal to k
 Since a heap has height O(log n), up-heap-bubble runs in O(log n) time

8
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42 6z
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42 6z
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removeMax from a Heap 

 Method removeMax of the 
priority queue ADT 
corresponds to the removal 
of the root key from the heap

 The removal algorithm 
consists of three steps
 Replace the root key with 

the key of the last node w
 Release node w
 Restore the heap-order 

property by down-heap-
bubble (discussed next)

8

67

42

last node

w

4

67

2
w

Down-heap bubbling (Heapify)
 After replacing the root key with the key k of the last node, the heap-

order property may be violated
 Algorithm down-heap-bubble (or heapify) restores the heap-order 

property by swapping key k along a downward path from the root
 Down-heap-bubble terminates when key k reaches a leaf or a node 

whose key is less than or equal to k
 Since a heap has height O(log n), down-heap-bubble runs in O(log n) time

4

67

2
w

7

64

2
w
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Heap-Sort 

 Consider a priority queue 
with n items implemented by 
means of a max-heap
 The input and the heap 

can share the array, so 
the additional space used 
is O(1)

 Methods insert and 
removeMax take O(log n) 
time.

 Using a heap-based priority 
queue, we can sort a 
sequence of n elements in 
O(n log n) time

 It can be implemented in-
place (O(1) additional space).

 The resulting algorithm is 
called heap-sort

 Heap-sort is much faster 
than quadratic sorting 
algorithms, such as 
insertion-sort and selection-
sort, when n is very large.

Array-based Heap Implementation
 We can represent a heap with n keys 

by means of an array of length n.
 For the node at index i

 the left child is at index 2i + 1
 the right child is at index 2i  2

 Links between nodes are not 
explicitly stored

 The (first portion of) input array A is 
used as heap. 

 In-place (no additional array is 
needed) heap-sort:

For k = 1 to n-1 
A.insert(A[k]);

For k = n-1 downto 1
A[k] = A.removeMax();

• Time Complexity: O(n log n)

9
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62

9 7 5 2 6

0 1 2 3 4

Heap:

2 6 7 9 5

0 1 2 3 4

Input: 
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Possible Quiz Questions
 Show the contents of the following 

arrays during the heap sort whenever 
there is a change.
 A = [1, 2, 4, 3]
 B = [3, 4, 2, 1]
 C = [4, 1, 2, 3]

21

 We can construct a heap 
storing n given keys using a 
bottom-up construction with 
log n phases, so that the time 
of building a heap of n 
elements is O(n), instead of 
O(n log n).

 The process is divided into 
log n phases.

 In phase i, pairs of heaps 
with 2i 1 keys plus one item 
are merged into heaps with 
2i11 keys

Bottom-up Heap Construction

2i 1 2i 1

2i11

21
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Merging Two (Min) Heaps
 We are given two  

heaps and a key k
 We create a new heap 

with the root node 
storing k and with the 
two heaps as subtrees

 We perform down-
heap-bubble to restore 
the heap-order 
property 

7
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Example of Max Heap

1516 124 76 2023

25

1516

5

124

11

76

27

2023

A = [10, 7, 8, 25, 5, 11, 27, 16, 15, 4, 12, 6, 7, 23, 20]
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Example (contd.)

25

1516

12

54

11

76

27

2023

25

1516

5

124

11

76

27

2023

Example (contd.)
7 8

25 27

25

1516

12

54

11

76

27

2023

16

157

12

54

11

76

23

208

25

26
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Example (end)
10

25 27

16

157

12

54

11

76

23

208

27

25 23

16

157

12

54

11

76

20
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Building a Heap

Alg: BuildMaxHep(A)
1. n = length[A]
2. for i ← n/2-1 downto 0
3. do MaxHeapify(A, i, n)

 Convert an array A[0 … n-1] into a max-heap (n = 
length[A])

 The elements in the subarray A[(n/2 .. n-1] are leaves
 Apply MaxHeapify on elements between 0 and n/2-1

2
14 8

1
16

7

4

3
9 10

0

1 2

3 4 5 6

7 8 9

4 1 3 2 16 9 10 14 8 7A:
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Maintaining the Heap Property
 Assumptions:

 Left and Right 
subtrees of i are 
max-heaps

 A[i] may be 
smaller than its 
children

Alg: MaxHeapify(A, i, n) {

1. l ← Left(i);          // Left(i) = 2i+1

2. r ← Right(i);      // Right(i) = 2i+2

3. max ←i ;
4. if (l < n && A[l] > A[max]) max ←l;
5. if (r < n && A[r] > A[max]) max ←r;
6. if (max  i) {
7. exchange A[i] ↔ A[max];
8. MaxHeapify(A, max, n);

9. }}

30

Running Time of BUILD MAX HEAP

 Running time: O(n lgn)

 This is not an asymptotically tight upper bound

Alg: BuildMaxHeap(A)
1. n = length[A]

2. for i ← n/2-1 downto 0
3. do MaxHeapify(A, i, n) O(lgn)

O(n)

29
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Analysis
 We visualize the worst-case time of a heapify (or bubble-down) with a 

given path that goes first right and then repeatedly goes left until the 
bottom of the heap (this path may differ from the actual heapify path)

 Since each edge is traversed by at most once by these paths, the total 
length of these paths is O(n).

 Thus, bottom-up heap construction runs in O(n) time.
 Bottom-up heap construction is faster than n successive insertions and 

speeds up the first phase of heap-sort.

32

Running Time of BUILD MAX HEAP
 MaxHeapify takes O(h)  the cost of MaxHeapify on a node i is 

proportional to the height of the node i in the tree

Height Level
h0 = 3 (lgn)

h1 = 2

h2 = 1

h3 = 0

i = 0

i = 1

i = 2

i = 3  (lgn)

No. of nodes
20

21

22

23

hi = h – i   height of the heap rooted at level i
ni = 2i number of nodes at level i

i

h

i
ihnnT 




0

)(  ih
h

i

i 
0

2 )(nO
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Running Time of BUILD MAX HEAP
i

h

i
ihnnT 




0

)( Cost of MaxHeapify at level i  number of nodes at that level

 ih
h

i

i 
0

2 Replace the values of ni and hi computed before

h
h

i
ih

ih
2

20






 Multiply by 2h both at the nominator and 

denominator and write 2i as i2

1





h

k
k

h k

0 2
2 Change variables: k = h - i







0 2k

k

k
n The sum above is smaller than the sum of all 

elements to 

)(nO The sum above is smaller than 2

Running time of BuildMaxHeap: T(n) = O(n)

HeapSort(A)

Alg: HeapSort(A)  {

1. n = A.length;
2. for i ← n/2-1 downto 0
3. MaxHeapify(A, i, n);
4. for i ← n – 1 downto 1 {       // A[0..i] is a max heap
5. exchange A[i] ↔ A[0]; 
6. MaxHeapify(A, 0, i);      // A[i..n-1] is sorted with max (n – i) 
7. }} // elements of the original array.

 Convert an array A[0 … n-1] into a max-heap
 The elements in the subarray A[n/2 .. n-1] are leaves.
 Apply MaxHeapify on elements between 0 and n/2-1

 Repeatedly swap the max heap element with the last unsorted 
element and call MaxHeapify to maintain the heap property.
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Example: A=[7, 4, 3, 1, 2]

MaxHeapify(A, 1, 4) MaxHeapify(A, 1, 3) MaxHeapify(A, 1, 2)

MaxHeapify(A, 1, 1)

Possible Quiz Questions
 Show the contents of the following 

arrays during the heap sort whenever 
there is a change, when the bottom-up 
heap construction is used.
 A = [1, 2, 4, 3]
 B = [3, 4, 2, 1]
 C = [4, 1, 2, 3]

36
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Stability
 A STABLE sort  preserves relative order of records with 

equal keys

Sorted on first key:

Sort file on second key:

Records with key value 
3 are not in order on 

first key!!

Summary
 A priority queue stores a collection of items
 Each item has a key value.
 Main methods of the Priority Queue ADT

 insert(x)
inserts an item x

 removeMax()  (or removeMin())
removes and returns the item with max (or smallest) key

 Using an array-based priority queue, each insert and 
removeMax can be implemented in O(log n).

 For Heap Sort, we create an array-based max heap in O(n) and 
each removeMax takes O(log n), so the total time is O(n log n).

 Heap Sort is a non-stable, in-place, optimal sorting method.
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