Priority Queues

Presentation for use with the textbook Algorithm Design and

Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

ChO5 Priority Queues & Heapsort

Priority Queue ADT

m]

A priority queue stores a
collection of elements which
have a total order.

Each element has a key
value key(x).

Main methods of the Priority
Queue ADT
= insert(x)
inserts an entry with key k
and value x
= removeMin()
removes and returns the
element with smallest key.

This is the min-queue.
Replace "min” by “max” we
obtain the max-queue.

o Additional methods
= min()
returns, but does not
remove, an entry with
smallest key

n size()
= isEmpty()

o Applications:
= Standby flyers
= Auctions
= Stock market

9/24/2019

Priority Queues

Total Order Relations

o Keys in a priority o Definition of total order
queue can be relation <

arbltrﬁ_ry;] Ob]ectj = Comparability property:
on which an order either x <y or y <x

is defined : _
] = Reflexive property: x < x
o Every pair of such

keys must be
comparable
according to a
total order.

x<yandy<x=x=y

= Transitive property:
x<yandy<z= x<z

= Antisymmetric property:

Example
o A sequence of priority queue methods:
Method Return Value | Priority Queue Contents
insert(5,A) {(5A)}
insert(9,C) { (5,A), (9,C) }
insert(3,B) { (3,B), (5,A), (9.CQ) }
min() (38) | {(3B). GA). (9.0) }
removeMin() (3.B) {(5A), (9,Q)}
insert(7,D) { (5.A), (7.D), (9.Q) }
removeMin() (5,A) {(7.D), (9.C) }
removeMin() (7.D) {090}
removeMin() (9.0) {}
removeMin() null {1}
isEmpty() true { }

9/24/2019

Priority Queues

o We can use a priority max-
queue to sort a set of
comparable elements

1. Insert the elements
one by one with a
series of insert
operations

2. Remove the elements
in sorted order with a
series of removeMax
operations
o The running time of this
sorting method depends on
the priority queue
implementation.

Priority Queue Sorting

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted in
increasing order according to C

P « priority queue with
comparator C

while —S.isEmpty ()
e « S.removeFirst ()
P.insert (e)

while —P.iIsEmpty()
e < P.removeMax()
S.insertFirst(e)

5
Some Definitions
o Internal Sort
» The data to be sorted is all stored in the
computer’s main memory.
o External Sort
= Some of the data to be sorted might be stored in
some external, slower, device.
o In Place Sort
= The amount of extra space required to sort the
data is o(n), where n is the input size.
6

9/24/2019

Priority Queues

Sequence-based Priority Queue

o Implementation with an o Implementation with a
unsorted list sorted list

@®—0E—0—0C—0 O—20—0C—@—0OG

o Performance:

= insert takes O(1) time o Performance:

since we can insert the = insert takes O(n) time

item at the beginning or since we have to find the

end of the sequence place where to insert the
= removeMax takes O(n) item

Eir?\/eeﬁisgcfh‘é"grt‘t?r\ée to = removeMax takes O(1)

sequence to find the Eme_, since the smallest

maximal key ey is at the beginning

How does the Priority Queue Sorting behave?

Selection-Sort, Insertion-Sort

a Selection-sort is a variation of PQ-sort where the
priority queue is implemented with an unsorted
sequence.

= If an array is used, it can be implemented as in-place
selection sort.

a Insertion-sort is a variation of PQ-sort where the
priority queue is implemented with a sorted
sequence.

= If an array is used, it can be implemented as in-place
insertion sort.

9/24/2019

Priority Queues

Input:

removeMax():
removeMax():
removeMax():
removeMax():
removeMax():
removeMax():

removeMax():

Priority Queue P
(7,4,8,2,5,3,9)
(74,8,2,5,3)
(7,4,2,5,3)
(4,2,5,3)

(4,2,3)

(2,3)

(2)

0

Selection-Sort Example

Sorted Sequence
0

©)

(8,9)

(7,8,9)

(5,7,8,9)
(4,5,7,8,9)
(3,4,5,7,8,9)

(2,34,5,7,8,9)

Input:

insert(7):
insert(4):
insert(8):
insert(2):
insert(5):
insert(3):

insert(9):

Sequence S
(7,4,8,2,5,3,9)
(4,8,2,5,3,9)
(8,2,5,3,9)
(2,5,3,9)
(5,3,9)

(3,9)

9)

0

Insertion-Sort Example

Priority queue P
0

(7)

(4,7)

(4,7,8)
(2,4,7,8)
(2,4,5,7,8)
(2,34,5,7,8)

(2,34,5,7,8,9)

10

9/24/2019

Priority Queues

Balanced Search Tree Based
Priority Queue

o Both insert and removeMax can be implemented

using O(log n) time.

o Thus, PQ-sort can run in O(n log n).

o Can we have an in-place PQ-sort whose complexity
is in O(n log n)?
= Yes, use heaps for PQ.

11

What is a heap?

o A (max) heap is a binary tree
storing keys at its internal nodes
and satisfying the following
properties:

= (Max) Heap-Order: for every
node v other than the root,
key(v) < key(parent(v))
= Complete Binary Tree: let h
be the height of the heap
«fori=0,...,h—2, there
are 2i nodes of depth i
+ at depth h-1, the nodes
are listed from left to
right without gaps.

o The last node of a heap is
the rightmost node of depth
h-1

last node

12

9/24/2019

Priority Queues

Height of a Heap

o Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)
= Let h be the height of a heap storing n keys

= Since there are 2i keys at depth i =0, ..., h— 1 and at least one key at depth
h,wehaven>1+2+4+.. +2M 4+

= Thus,n>2", e, h<logn.

depth keys
0 R e e o
1 2
h-1 2h-!
e —O--O-0-O-0-0-0-
13
Heaps and Priority Queues
o We can use a heap to implement a priority queue
o We store an item (key, element) at each node
o We keep track of the position of the last node
o For simplicity, we will show only the keys in the pictures
14

9/24/2019

Priority Queues 9/24/2019

Insert into a Heap

o Method insert of the priority
queue ADT corresponds to
the insertion of a key k to
the heap

o The insertion algorithm
consists of three steps

= Find the position for a new
node and create a new
node z

= Store k atz

= Restore the heap-order
property by up-heap bubble
(discussed next)

15

Up-Heap Bubbling

o After the insertion of a new key k, the heap-order property may be
violated

o Algorithm up-heap-bubble restores the heap-order property by swapping k
along an upward path from the insertion node

o Up-heap-bubble terminates when the key k reaches the root or a node
whose key is greater than or equal to k

o Since a heap has height O(log n), up-heap-bubble runs in O(log n) time

16

Priority Queues

removeMax from a Heap

o Method removeMax of the
priority queue ADT
corresponds to the removal
of the root key from the heap

o The removal algorithm
consists of three steps

= Replace the root key with
the key of the last node w

= Release node w

= Restore the heap-order
property by down-heap-
bubble (discussed next)

17

Down-heap bubbling (Heapify)

o After replacing the root key with the key k of the last node, the heap-
order property may be violated

a Algorithm down-heap-bubble (or heapify) restores the heap-order
property by swapping key k along a downward path from the root

o Down-heap-bubble terminates when key k reaches a leaf or a node
whose key is less than or equal to k

o Since a heap has height O(log n), down-heap-bubble runs in O(log n) time

18

9/24/2019

Priority Queues

Heap-Sort

with n items implemented by
means of a max-heap

= The input and the heap
can share the array, so
the additional space used
is O(1)

= Methods insert and
removeMax take O(log n)
time.

o Consider a priority queue ul

Using a heap-based priority
queue, we can sort a
sequence of n elements in
O(n log n) time

o It can be implemented in-

place (O(1) additional space).

o The resulting algorithm is

called heap-sort

Heap-sort is much faster
than quadratic sorting
algorithms, such as
insertion-sort and selection-
sort, when n is very large.

19

o We can represent a heap with n keys
by means of an array of length n.
o For the node at index i
= the left child is at index 2i + 1
= the right child is at index 2i + 2

a Links between nodes are not
explicitly stored

o The (first portion of) input array A is
used as heap.

o In-place (no additional array is
needed) heap-sort:

Fork =1ton-1
A.insert(A[K]D);

For k = n-1 downto 1
A[k] = A.removeMax();

Time Complexity: O(n log n)

Array-based Heap Implementation

9/24/2019

Input:
216 915
0o 1 2

Heap:
917 216

20

Priority Queues

Possible Quiz Questions

o Show the contents of the following
arrays during the heap sort whenever
there is a change.

n A =1, 2,4, 3]
B =[34, 2 1]
.C=[4I 1/213]

21

21

Bottom-up Heap Construction

o We can construct a heap

storing n given keys using a
bottom-up construction with ; ;
log n phases, so that the time 2'-1 2'-1

of building a heap of n
elements is O(n), instead of
O(n log n).

o The process is divided into
log n phases.

o In phase i, pairs of heaps
with 21 -1 keys plus one item
are merged into heaps with
2111 keys

22

9/24/2019

11

Priority Queues 9/24/2019

Merging Two (Min) Heaps

@
o We are given two (3) 2)
heaps and a key k 0, 6 (3 0
o We create a new heap
with the root node
storing k and with the

two heaps as subtrees

o We perform down-
heap-bubble to restore
the heap-order
property

23
Example of Max Heap
A =[10, 7,8, 25, 5, 11, 27, 16, 15, 4, 12, 6, 7, 23, 20]
e NN
& TS
® @ ® @ © @
R
e T
DY BO My @
19 ®), O @ © 0, @3 29
24

12

Priority Queues

Example (contd.)

T~ ——
, ~—— —-———

T TN T -
, N ——— T T

25

———— e

____ ~Am——

26

9/24/2019

13

Priority Queues 9/24/2019

Example (end)

27

Building a Heap

a Convert an array A[O ... n-1] into a max-heap (n =
length[A])

o The elements in the subarray A[(Ln/2] .. n-1] are leaves
a Apply MaxHeapify on elements between 0 and |n/2J-1

Alg: BuildMaxHep(A)

1. n = length[A]

2. fori—/[n/2]-1downto O
3, do MaxHeapify(A, i, n)

A: [al1]3]2]16]9]10]14]8]7]

28

14

Priority Queues 9/24/2019

Maintaining the Heap Property

a ﬂgssumptm' ' Alg: MaxHeapify(A, i, n) {
= Left and Right | Left(i); I/ Left(i) = 2i+1

subtrees of i are 1.
max-heaps 2. r < Right(i); // Right(i) = 2i+2
= Ali]may be 3. max «i:

zmﬂlr:;than Its 4. if (I < n && A[l]> A[max]) max «I;
5. if (r<n&& A[r] > A[max]) max «r;
6. if (max =) {

i(4) 7. exchange A[i] [¢] A[max];

@ o 8. MaxHeapify(A, max, n);

9. }}

29

Running Time of BUILD MAX HEAP

Alg: BuildMaxHeap(A)

1. n=length[A]

2. fori«—|[n/2]-1downto O

3. do MaxHeapify(A, i, n) O(Ign)}

O(n)

= Running time: O(n Ign)

o This is not an asymptotically tight upper bound

30

30

15

Priority Queues

Analysis

o We visualize the worst-case time of a heapify (or bubble-down) with a
given path that goes first right and then repeatedly goes left until the

bottom of the heap (this path may differ from the actual heapify path)

o Since each edge is traversed by at most once by these paths, the total
length of these paths is O(n).

o Thus, bottom-up heap construction runs in O(n) time.

o Bottom-up heap construction is faster than n successive insertions and
speeds up the first phase of heap-sort.

31

Running Time of BUILD MAX HEAP

o, MaxHeapify takes O(h) = the cost of MaxHeapify on a node i is

proportional to the height of the node i in the tree
h

=T(m=Ynh =Y 2(h-i) =0(n)

Height 7 _Level . No. of nodes
hp=3{gn) O i=0 2
h=2__ p K% =1
hz=,1\§>/é9 ?? =2 2
h3=@bdbdbdb i=3 (gn)),23

h, = h —i height of the heap rooted at level i
n =2 number of nodes at level i

32

32

9/24/2019

16

Priority Queues

j@—%m Cost of MaxHeapify at level i x number of nodes at that leyel

Running Time of BUILD MAX HEAP

h
22' —I Replace the values of n, and h; computed before

h .
i z h- oh Multiply by 2" both at the nominator and
im0 2 denomlnator and write 21 as

h
h
=2 Z Change variables: k=h-i

k=
< ZL The sum above is smaller than the sum of all
k elements to «

O(n) The sum above is smaller than 2

Running time of BuildMaxHeap: T(n) = O(n)

33

33

o Convert an array A[O ... n-1] into a max-heap
~(}—=—The elements in the subarray A[Ln/2] .. n-1] are leaves.

o | Repeatedly swap the max heap element with the last unsorted

HeapSort(A)

= Apply MaxHeapify on elements between 0 and | n/2 -1

element and call MaxHeapify to maintain the heap property.

Alg: HeapSort(A) {
L n = A.length;
2. fori<—|[n/2]-1 downto O

3, MaxHeapify(A, i, n);

4. fori<—n-1downtol{ // A[0..i]is a max heap

5. exchange A[i] [~] A[O:

6. MaxHeapify(A, 0,i); // Ali..n-1]is sorted with max (n - i)
7. 1 // elements of the original array.

34

9/24/2019

17

Priority Queues

Example: A=[7, 4, 3, 1, 2]

£ o 0% °

MaxHeapify(A, 1, 4) MaxHeapify(A, 1, 3) MaxHeapify(A, 1, 2)
@ﬁ/@ ®
® O ® al2]3]4]7]
® O ® O

MaxHeapify(A, 1, 1)

35

35

: Possible Quiz Questions

o Show the contents of the following
arrays during the heap sort whenever
there is a change, when the bottom-up
heap construction is used.

aA=[1,2 4 3]
=B =13 4,2, 1]
«C=[41,2,3]

36

36

9/24/2019

18

Priority Queues

9/24/2019

Stability
o A STABLE sort preserves relative order of records with
4 it S i
equal keys
Zaron 1 | & | ee4-480-0022 097 Littls
Sorted on first key: Andrewa 1 | 2 | s74-088-1212 121 Whitman
Battle 4 | o | 9s1-878-4344 308 Blair
Chen 2 | a | gsa-zaz-saqn 11 Dickinsen
Fox 1 F: 243 -456-3031 101 Brown
Puria 1 s TEE-0082-9873 22 Brown
Gazaei 4 E EER-302-0268 112 Walker
Kanaga k] B 898-122-9641 343 Forbes
Rohde 1 | 2 | 223-343-5888 115 Helder
guilici 1| o | 343-087-5642 32 MoCosh
Sort file on second key:
Fox 1 F 243-456-90091 101 Brown
Quilici 1 | o | 343-387-5642 32 MoCosh
Records with key value Chen 2 | » | eed-z3n-m340 11 Dickinecn
. Kanaga 3 | B | mos-122-3642 343 Forbes
3 are nOt n Order on Endrews 3 kS B74-088-1212 121 Whitman
first key!! Furis 5 | & | 766-093-3872 22 Brown
Rohde 3 | 2 | 232-343-8886R 115 Helder
Battls 4 | o | s91-878-4344 308 Blair
Gazel 4 B 665-303-0268 113 Walker
Raren 4 | 2 | ced-480-0022 097 Littls

37

Summary

A priority queue stores a collection of items
Each item has a key value.
Main methods of the Priority Queue ADT

= insert(x)
inserts an item x

= removeMax() (or removeMin())
removes and returns the item with max (or smallest) key

o Using an array-based priority queue, each insert and
removeMax can be implemented in O(log n).

o For Heap Sort, we create an array-based max heap in O(n) and
each removeMax takes O(log n), so the total time is O(n log n).

o Heap Sort is a non-stable, in-place, optimal sorting method.

A

38

19

