
Priority Queues 9/24/2019

1

1

Ch05 Priority Queues & Heapsort

Presentation for use with the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Priority Queue ADT
 A priority queue stores a

collection of elements which
have a total order.

 Each element has a key
value key(x).

 Main methods of the Priority
Queue ADT
 insert(x)

inserts an entry with key k
and value x

 removeMin()
removes and returns the
element with smallest key.

 This is the min-queue.
Replace “min” by “max” we
obtain the max-queue.

 Additional methods
 min()

returns, but does not
remove, an entry with
smallest key

 size()
 isEmpty()

 Applications:
 Standby flyers
 Auctions
 Stock market

1

2

Priority Queues 9/24/2019

2

3

Total Order Relations
 Keys in a priority

queue can be
arbitrary objects
on which an order
is defined

 Every pair of such
keys must be
comparable
according to a
total order.

 Definition of total order
relation
 Comparability property:

either x y or y x

 Reflexive property: x x

 Antisymmetric property:
x y and y x x = y

 Transitive property:
x y and y z x z

Example
 A sequence of priority queue methods:

4

3

4

Priority Queues 9/24/2019

3

Priority Queue Sorting
 We can use a priority max-

queue to sort a set of
comparable elements
1. Insert the elements

one by one with a
series of insert
operations

2. Remove the elements
in sorted order with a
series of removeMax
operations

 The running time of this
sorting method depends on
the priority queue
implementation.

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted in
increasing order according to C
P priority queue with

comparator C
while S.isEmpty ()

e S.removeFirst ()
P.insert (e)

while P.isEmpty()
e P.removeMax()
S.insertFirst(e)

Some Definitions
 Internal Sort

 The data to be sorted is all stored in the
computer’s main memory.

 External Sort
 Some of the data to be sorted might be stored in

some external, slower, device.
 In Place Sort

 The amount of extra space required to sort the
data is o(n), where n is the input size.

5

6

Priority Queues 9/24/2019

4

Sequence-based Priority Queue
 Implementation with an

unsorted list

 Performance:
 insert takes O(1) time

since we can insert the
item at the beginning or
end of the sequence

 removeMax takes O(n)
time since we have to
traverse the entire
sequence to find the
maximal key

 Implementation with a
sorted list

 Performance:
 insert takes O(n) time

since we have to find the
place where to insert the
item

 removeMax takes O(1)
time, since the smallest
key is at the beginning

4 5 2 3 1 1 2 3 4 5

How does the Priority Queue Sorting behave?

Selection-Sort, Insertion-Sort
 Selection-sort is a variation of PQ-sort where the

priority queue is implemented with an unsorted
sequence.
 If an array is used, it can be implemented as in-place

selection sort.
 Insertion-sort is a variation of PQ-sort where the

priority queue is implemented with a sorted
sequence.
 If an array is used, it can be implemented as in-place

insertion sort.

7

8

Priority Queues 9/24/2019

5

Selection-Sort Example
Priority Queue P Sorted Sequence

Input: (7,4,8,2,5,3,9) ()

removeMax():
(7,4,8,2,5,3) (9)

removeMax():
(7,4,2,5,3) (8,9)

removeMax():
(4,2,5,3) (7,8,9)

removeMax():
(4,2,3) (5,7,8,9)

removeMax():
(2,3) (4,5,7,8,9)

removeMax():
(2) (3,4,5,7,8,9)

removeMax():
() (2,3,4,5,7,8,9)

Insertion-Sort Example
Sequence S Priority queue P

Input: (7,4,8,2,5,3,9) ()

insert(7):
(4,8,2,5,3,9) (7)

insert(4):
(8,2,5,3,9) (4,7)

insert(8):
(2,5,3,9) (4,7,8)

insert(2):
(5,3,9) (2,4,7,8)

insert(5):
(3,9) (2,4,5,7,8)

insert(3):
(9) (2,3,4,5,7,8)

insert(9):
() (2,3,4,5,7,8,9)

9

10

Priority Queues 9/24/2019

6

Balanced Search Tree Based
Priority Queue
 Both insert and removeMax can be implemented

using O(log n) time.
 Thus, PQ-sort can run in O(n log n).
 Can we have an in-place PQ-sort whose complexity

is in O(n log n)?
 Yes, use heaps for PQ.

What is a heap?

 A (max) heap is a binary tree
storing keys at its internal nodes
and satisfying the following
properties:
 (Max) Heap-Order: for every

node v other than the root,
key(v) ≤ key(parent(v))

 Complete Binary Tree: let h
be the height of the heap
 for i 0, … , h 2, there

are 2i nodes of depth i
 at depth h-1, the nodes

are listed from left to
right without gaps.

 The last node of a heap is
the rightmost node of depth
h 1

8

65

42

last node

11

12

Priority Queues 9/24/2019

7

Height of a Heap

 Theorem: A heap storing n keys has height O(log n)

Proof: (we apply the complete binary tree property)
 Let h be the height of a heap storing n keys
 Since there are 2i keys at depth i 0, … , h 1 and at least one key at depth

h, we have n 1 2 4 … 2h1 1
 Thus, n 2h , i.e., h log n.

1

2

2h

1

keys
0

1

h

h

depth

Heaps and Priority Queues
 We can use a heap to implement a priority queue
 We store an item (key, element) at each node
 We keep track of the position of the last node
 For simplicity, we will show only the keys in the pictures

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)

A min-heap:

13

14

Priority Queues 9/24/2019

8

Insert into a Heap
 Method insert of the priority

queue ADT corresponds to
the insertion of a key k to
the heap

 The insertion algorithm
consists of three steps
 Find the position for a new

node and create a new
node z

 Store k at z
 Restore the heap-order

property by up-heap bubble
(discussed next)

8

65

42

insertion node
8

65

42 9

z

z

Up-Heap Bubbling
 After the insertion of a new key k, the heap-order property may be

violated
 Algorithm up-heap-bubble restores the heap-order property by swapping k

along an upward path from the insertion node
 Up-heap-bubble terminates when the key k reaches the root or a node

whose key is greater than or equal to k
 Since a heap has height O(log n), up-heap-bubble runs in O(log n) time

8

95

42 6z

9

85

42 6z

15

16

Priority Queues 9/24/2019

9

removeMax from a Heap

 Method removeMax of the
priority queue ADT
corresponds to the removal
of the root key from the heap

 The removal algorithm
consists of three steps
 Replace the root key with

the key of the last node w
 Release node w
 Restore the heap-order

property by down-heap-
bubble (discussed next)

8

67

42

last node

w

4

67

2
w

Down-heap bubbling (Heapify)
 After replacing the root key with the key k of the last node, the heap-

order property may be violated
 Algorithm down-heap-bubble (or heapify) restores the heap-order

property by swapping key k along a downward path from the root
 Down-heap-bubble terminates when key k reaches a leaf or a node

whose key is less than or equal to k
 Since a heap has height O(log n), down-heap-bubble runs in O(log n) time

4

67

2
w

7

64

2
w

17

18

Priority Queues 9/24/2019

10

Heap-Sort

 Consider a priority queue
with n items implemented by
means of a max-heap
 The input and the heap

can share the array, so
the additional space used
is O(1)

 Methods insert and
removeMax take O(log n)
time.

 Using a heap-based priority
queue, we can sort a
sequence of n elements in
O(n log n) time

 It can be implemented in-
place (O(1) additional space).

 The resulting algorithm is
called heap-sort

 Heap-sort is much faster
than quadratic sorting
algorithms, such as
insertion-sort and selection-
sort, when n is very large.

Array-based Heap Implementation
 We can represent a heap with n keys

by means of an array of length n.
 For the node at index i

 the left child is at index 2i + 1
 the right child is at index 2i 2

 Links between nodes are not
explicitly stored

 The (first portion of) input array A is
used as heap.

 In-place (no additional array is
needed) heap-sort:

For k = 1 to n-1
A.insert(A[k]);

For k = n-1 downto 1
A[k] = A.removeMax();

• Time Complexity: O(n log n)

9

57

62

9 7 5 2 6

0 1 2 3 4

Heap:

2 6 7 9 5

0 1 2 3 4

Input:

19

20

Priority Queues 9/24/2019

11

Possible Quiz Questions
 Show the contents of the following

arrays during the heap sort whenever
there is a change.
 A = [1, 2, 4, 3]
 B = [3, 4, 2, 1]
 C = [4, 1, 2, 3]

21

 We can construct a heap
storing n given keys using a
bottom-up construction with
log n phases, so that the time
of building a heap of n
elements is O(n), instead of
O(n log n).

 The process is divided into
log n phases.

 In phase i, pairs of heaps
with 2i 1 keys plus one item
are merged into heaps with
2i11 keys

Bottom-up Heap Construction

2i 1 2i 1

2i11

21

22

Priority Queues 9/24/2019

12

Merging Two (Min) Heaps
 We are given two

heaps and a key k
 We create a new heap

with the root node
storing k and with the
two heaps as subtrees

 We perform down-
heap-bubble to restore
the heap-order
property

7

3

58

2

64

3

58

2

64

2

3

58

4

67

7

Example of Max Heap

1516 124 76 2023

25

1516

5

124

11

76

27

2023

A = [10, 7, 8, 25, 5, 11, 27, 16, 15, 4, 12, 6, 7, 23, 20]

23

24

Priority Queues 9/24/2019

13

Example (contd.)

25

1516

12

54

11

76

27

2023

25

1516

5

124

11

76

27

2023

Example (contd.)
7 8

25 27

25

1516

12

54

11

76

27

2023

16

157

12

54

11

76

23

208

25

26

Priority Queues 9/24/2019

14

Example (end)
10

25 27

16

157

12

54

11

76

23

208

27

25 23

16

157

12

54

11

76

20

108

Building a Heap

Alg: BuildMaxHep(A)
1. n = length[A]
2. for i ← n/2-1 downto 0
3. do MaxHeapify(A, i, n)

 Convert an array A[0 … n-1] into a max-heap (n =
length[A])

 The elements in the subarray A[(n/2 .. n-1] are leaves
 Apply MaxHeapify on elements between 0 and n/2-1

2
14 8

1
16

7

4

3
9 10

0

1 2

3 4 5 6

7 8 9

4 1 3 2 16 9 10 14 8 7A:

27

28

Priority Queues 9/24/2019

15

Maintaining the Heap Property
 Assumptions:

 Left and Right
subtrees of i are
max-heaps

 A[i] may be
smaller than its
children

Alg: MaxHeapify(A, i, n) {

1. l ← Left(i); // Left(i) = 2i+1

2. r ← Right(i); // Right(i) = 2i+2

3. max ←i ;
4. if (l < n && A[l] > A[max]) max ←l;
5. if (r < n && A[r] > A[max]) max ←r;
6. if (max i) {
7. exchange A[i] ↔ A[max];
8. MaxHeapify(A, max, n);

9. }}

30

Running Time of BUILD MAX HEAP

 Running time: O(n lgn)

 This is not an asymptotically tight upper bound

Alg: BuildMaxHeap(A)
1. n = length[A]

2. for i ← n/2-1 downto 0
3. do MaxHeapify(A, i, n) O(lgn)

O(n)

29

30

Priority Queues 9/24/2019

16

Analysis
 We visualize the worst-case time of a heapify (or bubble-down) with a

given path that goes first right and then repeatedly goes left until the
bottom of the heap (this path may differ from the actual heapify path)

 Since each edge is traversed by at most once by these paths, the total
length of these paths is O(n).

 Thus, bottom-up heap construction runs in O(n) time.
 Bottom-up heap construction is faster than n successive insertions and

speeds up the first phase of heap-sort.

32

Running Time of BUILD MAX HEAP
 MaxHeapify takes O(h) the cost of MaxHeapify on a node i is

proportional to the height of the node i in the tree

Height Level
h0 = 3 (lgn)

h1 = 2

h2 = 1

h3 = 0

i = 0

i = 1

i = 2

i = 3 (lgn)

No. of nodes
20

21

22

23

hi = h – i height of the heap rooted at level i
ni = 2i number of nodes at level i

i

h

i
ihnnT

0

)(ih
h

i

i
0

2)(nO

31

32

Priority Queues 9/24/2019

17

33

Running Time of BUILD MAX HEAP
i

h

i
ihnnT

0

)(Cost of MaxHeapify at level i number of nodes at that level

 ih
h

i

i
0

2 Replace the values of ni and hi computed before

h
h

i
ih

ih
2

20

 Multiply by 2h both at the nominator and

denominator and write 2i as i2

1

h

k
k

h k

0 2
2 Change variables: k = h - i

0 2k

k

k
n The sum above is smaller than the sum of all

elements to

)(nO The sum above is smaller than 2

Running time of BuildMaxHeap: T(n) = O(n)

HeapSort(A)

Alg: HeapSort(A) {

1. n = A.length;
2. for i ← n/2-1 downto 0
3. MaxHeapify(A, i, n);
4. for i ← n – 1 downto 1 { // A[0..i] is a max heap
5. exchange A[i] ↔ A[0];
6. MaxHeapify(A, 0, i); // A[i..n-1] is sorted with max (n – i)
7. }} // elements of the original array.

 Convert an array A[0 … n-1] into a max-heap
 The elements in the subarray A[n/2 .. n-1] are leaves.
 Apply MaxHeapify on elements between 0 and n/2-1

 Repeatedly swap the max heap element with the last unsorted
element and call MaxHeapify to maintain the heap property.

33

34

Priority Queues 9/24/2019

18

35

Example: A=[7, 4, 3, 1, 2]

MaxHeapify(A, 1, 4) MaxHeapify(A, 1, 3) MaxHeapify(A, 1, 2)

MaxHeapify(A, 1, 1)

Possible Quiz Questions
 Show the contents of the following

arrays during the heap sort whenever
there is a change, when the bottom-up
heap construction is used.
 A = [1, 2, 4, 3]
 B = [3, 4, 2, 1]
 C = [4, 1, 2, 3]

36

35

36

Priority Queues 9/24/2019

19

37

Stability
 A STABLE sort preserves relative order of records with

equal keys

Sorted on first key:

Sort file on second key:

Records with key value
3 are not in order on

first key!!

Summary
 A priority queue stores a collection of items
 Each item has a key value.
 Main methods of the Priority Queue ADT

 insert(x)
inserts an item x

 removeMax() (or removeMin())
removes and returns the item with max (or smallest) key

 Using an array-based priority queue, each insert and
removeMax can be implemented in O(log n).

 For Heap Sort, we create an array-based max heap in O(n) and
each removeMax takes O(log n), so the total time is O(n log n).

 Heap Sort is a non-stable, in-place, optimal sorting method.

37

38

