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Ch04 Balanced Search 
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Presentation for use with the textbook Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Why care about advanced implementations?

Same entries, different insertion sequence:

 Not good! Would like to keep tree balanced.
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Balanced binary tree
 The disadvantage of a binary search tree is that its 

height can be as large as N-1
 This means that the time needed to perform insertion 

and deletion and many other operations can be O(N) 
in the worst case

 We want a tree with small height
 A binary tree with N node has height at least  (log 

N) 
 Thus, our goal is to keep the height of a binary 

search tree O(log N)
 Such trees are called balanced binary search trees.  

Examples are AVL tree, and red-black tree.
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Approaches to balancing trees
 Don't balance

 May end up with some nodes very deep
 Strict balance

 The tree must always be balanced perfectly
 Pretty good balance

 Only allow a little out of balance
 Adjust on access

 Self-adjusting
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Balancing Search Trees

 Many algorithms exist for keeping 
search trees balanced
 Adelson-Velskii and Landis (AVL) trees

(height-balanced trees) 
 Red-black trees (black nodes balanced 

trees) 
 Splay trees and other self-adjusting trees
 B-trees and other multiway search trees

6

Perfect Balance
 Want a complete tree after every operation

 Each level of the tree is full except possibly in the 
bottom right

 This is expensive
 For example, insert 2 and then rebuild as a complete 

tree

Insert 2 &
complete tree
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6 91 4
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AVL - Good but not Perfect Balance

 AVL trees are height-balanced binary search 
trees

 Balance factor of a node
 height(left subtree) - height(right subtree)

 An AVL tree has balance factor calculated at 
every node
 For every node, heights of left and right subtree can 

differ by no more than 1
 Store current heights in each node

8

Height of an AVL Tree
 N(h) = minimum number of nodes in an AVL 

tree of height h.
 Basic case:

 N(0) = 1, N(1) = 2
 Inductive case:

 N(h) = N(h-1) + N(h-2) + 1
 Theorem (from Fibonacci analysis)

 N(h) > h

where   1.618, the golden ratio. 
h-1 h-2

h

7

8



5

9

Height of an AVL Tree

 N(h) > h (  1.618)
 Suppose we have n nodes in an AVL 

tree of height h.
 n > N(h) (because N(h) was the minimum)

 n > h hence log n > h (relatively well 
balanced tree!!)

 h < 1.44 log2n (i.e., Find takes O(logn))
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Node Heights

1
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2

0

6

4 9

81 5

1

height of node = h
balance factor = hleft-hright

empty height = -1

0

0

height=2   BF=1-0=1

0

6

4 9

1 5

1

Tree A (AVL) Tree B (AVL)

9

10



6

11

Node Heights after Insert 7

2

10

3

0

6

4 9

81 5

1

height of node = h
balance factor = hleft-hright

empty height = -1

1

0

2

0

6

4 9

1 5

1

0
8

0
7

balance factor 
1-(-1) = 2

-1

Tree A (AVL) Tree B (not AVL)
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Insert and Rotation in AVL Trees

 Insert operation may cause balance factor to 
become 2 or –2 for some node 
 only nodes on the path from insertion point to 

root node have possibly changed in height
 So after the Insert, go back up to the root 

node by node, updating heights
 If a new balance factor (the difference hleft-

hright) is 2 or –2, adjust tree by rotation
around the node
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Single Rotation in an AVL Tree

2

10

2

0

6

4 9

81 5

1

0
7

0

1

0

2

0

6

4

9

8

1 5

1

0
7

14

Let the node that needs 
rebalancing be .

Cases:    1              3       4           2
There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of . (left-left)
2. Insertion into right subtree of right child of . (right-right)

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of . (left-right)
4. Insertion into left subtree of right child of . (right-left)

The rebalancing is performed through four 
separate rotation algorithms.

Insertions in AVL Trees 
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j

k

X Y

Z

Consider a valid
AVL subtree

AVL Insertion: Outside Case

h

h h

h+1

h+2

Differ by 1
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j

k

X
Y

Z

Inserting into X
destroys the AVL 
property at node j

AVL Insertion: Outside Case

h

h+1 h

h+2
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j

k

X
Y

Z

Do a “rotation to right”

AVL Insertion: Outside Case

h

h+1 h

18

j

k

X
Y

Z

Do a “right rotation”

Single right rotation

h

h+1 h
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j

k

X Y Z

“Right rotation” done!
(“Left rotation” is mirror

symmetric)

Outside Case Completed

AVL property has been restored!

h

h+1

h

20

j

k

X Y

Z

AVL Insertion: Inside Case

Consider a valid
AVL subtree

h

hh
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Inserting into Y 
destroys the
AVL property
at node j 

j

k

X
Y

Z

AVL Insertion: Inside Case

Does “right rotation”
restore balance?

h

h+1h

22

j
k

X

Y
Z

“One rotation”
does not restore
balance… now k is
out of balance

AVL Insertion: Inside Case

hh+1

h

21
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Consider the structure
of subtree Y… j

k

X
Y

Z

AVL Insertion: Inside Case

h

h+1h

24

j

k

X

V

Z

W

i

Y = node i and
subtrees V and W

AVL Insertion: Inside Case

h

h+1h

h or h-1
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j

k

X

V

Z

W

i

AVL Insertion: Inside Case

We will do a left-right 
“double rotation” . . .

26

j

k

X V

Z
W

i

Double rotation : first rotation

left rotation complete

25
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j

k

X V

Z
W

i

Double rotation : second rotation

Now do a right rotation

28

jk

X V ZW

i

Double rotation : second rotation

right rotation complete

Balance has been 
restored

hh h or h-1

27
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Implementation

height
key

rightleft

Once you have 
performed a 
rotation (single or 
double) you won’t 
need to go back up 
the tree

Class BinaryNode
KeyType: Key
int: Height
BinaryNode: LeftChild
BinaryNode: RightChild

Constructor(KeyType: key)
Key = key
Height = 0

End Constructor
End Class

Java-like Pseudo-Code

rotateToRight( BinaryNode: x ) {
BinaryNode y = x.LeftChild;
x.LeftChild = y.RightChild;
y.RightChild = x;
return y;

}

29
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Java-like Pseudo-Code

rotateToLeft( BinaryNode: x ) {
BinaryNode y = x.rightChild;
x.rightChild = y.leftChild;
y.leftChild = x;
return y;

}

32

Double Rotation

 Implement Double Rotation in two lines.

DoubleRotateToLeft(n : binaryNode) {
rotateToRight(n.rightChild);
rotateToLeft(n);

}

DoubleRotateToRight(n : binaryNode) {
rotateToLeft(n.leftChild);
rotateToRight(n);

}

X

n

V W

Z

31
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Insertion in AVL Trees

 Insert at the leaf (as for all BST)
 only nodes on the path from insertion point to 

root node have possibly changed in height
 So after the Insert, go back up to the root 

node by node, updating heights
 If a new balance factor (the difference hleft-

hright) is 2 or –2, adjust tree by rotation
around the node

34

Insert in ordinary BST

Algorithm insert(k, v)
input: insert key k into the tree rooted by v
output: the tree root with k adding to v.
if isNull (v)

return newNode(k)
if k ≤ key(v)    // duplicate keys are okay

leftChild(v)  insert (k, leftChild(v))
else if k  key(v) 

rightChild(v)  insert (k, rightChild(v))
return v

33
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Insert in AVL trees
Insert(v : binaryNode, x : element) : {

if v = null then
{v  new node; v.data  x; height  0;}

else case
v.data = x : ; //Duplicate do nothing
v.data > x : v.leftChild  Insert(v.leftChild, x);

// handle left-right and left-left cases
if ((height(v.leftChild)- height(v.rightChild)) = 2)then
if (v.leftChild.data > x ) then //outside case
v = RotateToRight (v);

else //inside case
v = DoubleRotateToRightt (v);}

v.data < x :  v.righChild  Insert(v.rightChild, x);
// handle right-right and right-left cases
… …

Endcase
v.height  max(height(v.left),height(v.right)) +1;
return v;

}

36

Example of Insertions in an AVL Tree

1

0

2
20

10 30

25

0

35
0

Insert 5, 40

35

36
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Example of Insertions in an AVL Tree

1

0

2
20

10 30

25

1

35
0

5
0

20

10 30

25

1

355

40

0

0

0 1

2

3

Now Insert 
45

38

Single rotation (outside case)
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3
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Imbalan
ce

35 45
0 0

1

Now Insert 
34
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Double rotation (inside case)

3

0

3
20

10 30

25

1

40
2

5
0

20

10 35

30

1

405

45

0 1

2

3

Imbalance

45
0

1

Insertion of  34

35

34

0

0

1 25 340

In Class Exercises
 Build an AVL tree with the following values:

15, 20, 24, 10, 13, 7, 30, 36, 25
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15

15, 20, 24, 10, 13, 7, 30, 36, 25

20

24

15

20

24

10

13

15

20

24

13

10

13

20

24

1510

13

20

24

1510

15, 20, 24, 10, 13, 7, 30, 36, 25

7

13

20

2415

10

7

30

3613

20

3015

10

7

3624
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13

20

3015

10

7

3624

15, 20, 24, 10, 13, 7, 30, 36, 25

25

13

20

30

15

10

7

36

24

2513

24

36

20

10

7

25

30

15

Possible Quiz Questions

 Build an AVL tree by inserting the 
following values in the given order:
1, 2, 3, 4, 5, 6.

43

44



23

45

AVL Tree Deletion

 Similar but more complex than insertion
 Rotations and double rotations needed to 

rebalance
 Imbalance may propagate upward so that 

many rotations may be needed.

46

Deletion
• Removal begins as in a binary search tree, which means 

the node removed will become an empty external node. Its 
parent may have an imbalance.

• Example: 
44

17

7832 50

8848

62

54

44

17

7850

8848

62

54

before deletion of 32 after deletion

45
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Rebalancing after a Removal
• Let z be the first unbalanced node encountered while travelling up the tree 

from w. Also, let y be the child of z with the larger height, and let x be the 
child of y with the larger height

• We perform a rotateToLeft to restore balance at z
• As this restructuring may upset the balance of another node higher in the 

tree, we must continue checking for balance until the root of T is reached

44

17

7850

8848

62

54

w

x

y

z

44

17

78

50 88

48

62

54

48

Deletion in standard BST
Algorithm remove(k, v)

input: delete the node containing key k
output: the tree without k.
if isNull (v)

return v     
if k < key(v)    // duplicate keys are okay

leftChild(v)  remove(k, leftChild(v))
else if k  key(v) 

rightChild(v)  remove(k, rightChild(v))
else if isNull(leftChild(v))

return rightChild(v)
else if isNull(rightChild(v))

return leftChild(v)
node max  treeMaximum(leftChild(v))
key(v)  key(min)
rightChild(v)  remove(key(min), rightChild(v))
return v

47
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Deletion in AVL Trees
Algorithm remove(k, v)

input: delete the node containing key k
output: the tree without k.
if isNull (v)

return v     
if k < key(v)    // duplicate keys are okay

leftChild(v)  remove(k, leftChild(v))
else if k  key(v) 

rightChild(v)  remove(k, rightChild(v))
else if isNull(leftChild(v))

return rightChild(v)
else if isNull(rightChild(v))

return leftChild(v)
node max  treeMaximum(leftChild(v))
key(v)  key(max)
leftChild(v)  remove(key(max), leftChild(v))
AVLbalance(v)
return v

AVLbalance(v)
Assume the height is 
updated in rotations.

if (v.left.height >
v.right.height+1) {
y = v.left
if (y.right.height >

y.left.height) 
DoubleRotateToRight(v) 

else  rotateToRight(v)
}

if (v.right.height >
v.left.height+1) {
y = v.right
if (y.left.height >

y.right.height) 
DoubleRotateToLeft(v) 

else  rotateToLeft(v)
}

AVL Tree Example:

• Now remove 53

14

17

7

4

53

11

12

8 13

49
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AVL Tree Example:

• Now remove 53, unbalanced

14

17

7

4

11

12

8 13

AVL Tree Example:

• Balanced!    

14

17

7

4

11

128

13

Now try Remove 11

51
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AVL Tree Example:

• Remove 11, replace it with the largest, i.e., 8, in its 
left branch.

14

17

7

4

8

12

13

Now try Remove 8.

AVL Tree Example:

• Remove 8, unbalanced

14

17

4

7

12

13

53

54



28

AVL Tree Example:

• Remove 8, unbalanced

14

17

4

7

12

13

AVL Tree Example:

• Balanced!!

14

174

7

12

13

55
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Deletion in AVL Trees
Algorithm remove(k, v)

input: delete the node containing key k
output: the tree without k.
if isNull (v)

return v     
if k < key(v)    // duplicate keys are okay

leftChild(v)  remove(k, leftChild(v))
else if k  key(v) 

rightChild(v)  remove(k, rightChild(v))
else if isNull(leftChild(v))

return rightChild(v)
else if isNull(rightChild(v))

return leftChild(v)
node max  treeMaximum(leftChild(v))
key(v)  key(max)
leftChild(v)  remove(key(max), leftChild(v))
return AVLbalance(v)

AVLbalance(v) {
Assume the height is updated in 
rotations.

if (v.left.height >
v.right.height+1) {

y = v.left
if (y.right.height >

y.left.height) 
v = DoubleRotateToRight(v) 

else  v = rotateToRight(v)
}

if (v.right.height >
v.left.height+1) {

y = v.right
if (y.left.height >

y.right.height) 
v = DoubleRotateToLeft(v) 

else  v = rotateToLeft(v)
}
return v
}

Remove 24 and 20 from the AVL tree.

13

24

36

20

10

7

25

30

15

13

20

36

15

10

7

25

30

13

15

36

10

7

25

30

13

30

36

10

7

25

15
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AVL Tree Performance
 AVL tree storing n items

 The data structure uses O(n) space
 A single restructuring takes O(1) time

 using a linked-structure binary tree

 Searching takes O(log n) time
 height of tree is O(log n), no restructures needed

 Insertion takes O(log n) time
 initial find is O(log n)
 restructuring up the tree, maintaining heights is O(log n)

 Removal takes O(log n) time
 initial find is O(log n)
 restructuring up the tree, maintaining heights is O(log n)

60

Arguments for AVL trees:

1. Search is O(log N) since AVL trees are always balanced.
2. Insertion and deletions are also O(logn)
3. The height balancing adds no more than a constant factor to the 

speed of insertion.

Arguments against using AVL trees:
1. Difficult to program & debug; more space for height.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use 

other structures (e.g. B-trees).
4. May be OK to have O(N) for a single operation if the total run time 

for many consecutive operations is fast (e.g. Splay trees).

Pros and Cons of AVL Trees

59
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Red-Black Tree

• A ref-black tree is a binary
search such that each node
has a color of either red or 
black.

• The root is black.

• Empty (or null) nodes are 
assumed black. 

• Every path from a node to a 
leaf contains the same
number of black nodes.

• If a node is red then its
parent must be black.

Class BinaryNode
KeyType: Key
Boolean: isRed
BinaryNode: LeftChild
BinaryNode: RightChild

Constructor(KeyType: key)
Key = key
isRed = true

End Constructor
End Class

Example
The root is black.

The parent of any 
red node must be 

black.

61
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Theorem: Any red-black tree with root x, 
has  n ≥ 2h/2 – 1 nodes, where h is the 
height of tree rooted by x.

Proof: We repeatedly replace the subtree 
rooted by a red node by one of its children.

Let the height of the new tree be h’, then h’ >= 
h/2, because the number of red nodes in any 
path is no more than the number of black 
nodes.

The new tree is a perfect binary tree, because it 
has the same of nodes from the root to any 
leaf. It must have 2h’ – 1 nodes.

So h ≤ 2log(n+1).

Maintain the Red Black Properties in a Tree
 Insertions

 Must maintain rules of Red Black Tree.
 New Node always added at leaf
 can't be black or we will violate rule of the same 

# of blacks along any path
 therefore the new node must be red
 If parent is black, done (trivial case)
 If parent red, things get interesting because a 

red node with a red parent violates no double 
red rule.

63
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The parent of a red node must 
be black.

Algorithm: Insertion
A red-black tree is a particular binary search tree, so create a 
new node as red and insert it as in normal search tree.

What property is violated?

5
79

Violation!

7

Solution: (1) Rotate; (2) Switch colors.

Example of Inserting Sorted Numbers
 1 2 3 4 5 6 7 8 9 10

1

Insert 1. A leaf is 
red. Realize it is
root so recolor
to black.

1

65
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Insert 2
1

2

make 2 red. Parent
is black so done.

Insert 3 1

2

3

Insert 3. Parent is red. 
2’s uncle, i.e., the sibling
of the parent of 2, is black (null).
3 is outside relative 
to grandparent. Rotate
parent and grandparent

2

1 3

nil

nil

nil nil

67
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Insert 4

4 has a red uncle (1).
So switch the great parent (2)’s 
color with parent and uncle.

2

1 3

4

When adding 4
parent is red.

2

1 3

4

2 is set to black if it’s the root.

2

1 3

4

Insert 5
2

1 3

4

5

5's parent is red.
5’s uncle is
black (null). 
5 is outside relative to
grandparent (3) so rotate
parent and grandparent then
recolor

nil

69
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Finish insert of 5

2

1 4

3 5

nil

Insert 6
2

1 4

3 5

6

6 has a red uncle (3).
So switch the grandparent (4)’s 
color with parent (5) and uncle (3).

71
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Finishing insert of 6

2

1 4

3 5

6

4's parent is black
so done.

Insert 7
2

1 4

3 5

6

7

7's parent is red.
Parent's sibling is
black (null). 7 is
outside relative to
grandparent (5) so 
rotate parent and 
grandparent then recolor

nil

73
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Finish insert of 7

2

1 4

3 6

5 7

Insert 8 2

1 4

3 6

5 7
8’s parent is red and its 
uncle (5) is also red.
Switching the color of 6 
with 5 and 7creates a 
problem because 6's 
parent, 4, is also red. 
Must handle the red-red 
violation at 6.

8

75
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Still Inserting 8
2

1 4

3 6

5 7

8’s parent is red and its 
uncle (5) is also red.
Switching the color of 6 
with 5 and 7creates a 
problem because 6's 
parent, 4, is also red. 
Must handle the red-red 
violation at 6.

8

6’s uncle (1) is black.
So rotate and recolor.

Finish inserting 8

4

2

3

6

5 71

8

77
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Insert 9
4

2

3

6

5 71

8

9

Finish Inserting 9
4

2

3

6

5 81

7 9
After rotations and recoloring

79
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Insert 10
4

2

3

6

5 81

7 9
10 has a red uncle. Grandparent 
(8) switch colors with parent (9) 
and uncle (7).

10

Insert 10
4

2

3

6

5 81

7 9

10
8 has a red uncle (2). 
Grandparent (4) switch colors 
with parent (2) and uncle (6).
4 is recolored black as root.

81

82
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Finishing Insert 10
4

2

3

6

5 81

7 9

10

Algorithm: Insertion
We have detected a need for balance when X is red and its parent, too.

• If X has a red uncle: colour the parent and uncle black, and grandparent 
red. Then replace X by grandparent to see if new X’s parent is red.

X

83
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Algorithm: Insertion
We have detected a need for balance when X is red and its parent, too.

• If X has a red uncle: colour the parent and uncle black, and grandparent 
red. Then replace X by grandparent to see if new X’s parent is red.

X

Algorithm: Insertion
We have detected a need for balance when X is red and his parent too.

• If X has a red uncle: colour the parent and uncle black, and grandparent red. 
Then replace X by grandparent to see if new X’s parent is red.

• If X is a left child and has a black uncle: colour the parent black and the 
grandparent red, then rotateToRight(X.parent.parent)

X

85
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Algorithm: Insertion
We have detected a need for balance when X is red and his parent too.

• If X has a red uncle: colour the parent and uncle black, and grandparent red. 
Then replace X by grandparent to see if X’s parent is red.
• If X is a left child and has a black uncle: colour the parent black and the 
grandparent red, then rotateRight(X.parent.parent)

Algorithm: Insertion
We have detected a need for balance when X is red and his parent too.

• If X has a red uncle: colour the parent and uncle black, and grandparent red. 
Then replace X by grandparent to see if X’s parent is red.
• If X is a left child and has a black uncle: colour the parent black and the 
grandparent red, then rotateRight(X.parent.parent)
• If X is a right child and has a black uncle, then rotateLeft(X.parent) and

X

87
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Algorithm: Insertion
We have detected a need for balance when X is red and his parent too.

• If X has a red uncle: colour the parent and uncle black, and grandparent red. 
Then replace X by grandparent to see if X’s parent is red.

• If X is a left child and has a black uncle: colour the parent black and the 
grandparent red, then rotateToRight(X.parent.parent)

• If X is a right child and has a black uncle, then rotateToLeft(X.parent) and

X

Algorithm: Insertion
We have detected a need for balance when X is red and his parent too.

• If X has a red uncle: colour the parent and uncle black, and grandparent red. 
Then replace X by grandparent to see if X’s parent is red.

• If X is a left child and has a black uncle: colour the parent black and the 
grandparent red, then rotateRight(X.parent.parent)

• If X is a right child and has a black uncle, then rotateLeft(X.parent) and

X
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Double Rotation
 What if X is at left right relative to G?

 a single rotation will not work
 Must perform a double rotation

 rotate X and P
 rotate X and G G

P S

ED
XA

B C

After Double 
Rotation

X

P G

S
CA B

ED
Double rotation is also needed when X is 
at right left position relative to G.

G

X S

ED
P C

A B
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Properties of Red Black Trees
 If a Red node has any children, it must have 

two children and they must be black. (Why?)
 If a black node has only one child, that child 

must be a Red leaf. (Why?)
 Due to the rules there are limits on how 

unbalanced a Red Black tree may become. 

Red Black Trees vs AVL Trees
 AVL trees provide faster lookups than Red 

Black Trees because they are more strictly 
balanced.

 Red Black Trees provide faster insertion and 
removal operations than AVL trees as fewer 
rotations are done due to relatively relaxed 
balancing.

 AVL trees store balance factors or 
heights with each node, thus requires storage 
for an integer per node whereas Red Black Tree 
requires only 1 bit of information per node.
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Splay Trees
6

3 8

4

v

z

Motivation for Splay Trees
Problems with AVL Trees

 extra storage/complexity for height fields
 ugly delete code

Solution: splay trees
 blind adjusting version of AVL trees
 amortized time for all operations is O(log n)
 worst case time is O(n)
 insert/find always rotates node to the root!
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Splay Tree Idea

17

10

92

5

3

You’re forced to make 
a really deep access:

Since you’re down there anyway,
fix up a lot of deep nodes!

Splaying Cases
Node n being accessed is:

 Root
 Child of root
 Has both parent (p) and grandparent (g)

Zig-zig pattern: g  p  n is left-left or right-
right (outside nodes)

Zig-zag pattern: g  p  n is left-right or right-
left (inside nodes)
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Access root:
Do nothing (that was easy!)

X

n

Y

root

X

n

Y

root

Access child of root:
Zig (AVL single rotation)

p

X

n

Y

Z

n

Z

p

Y

X

root root
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Access (LR, RL) grandchild:
Zig-Zag (AVL double rotation)

g

X
p

Y

n

Z

W

n

Y

g

W

p

ZX

Access (LL, RR) grandchild:
Zig-Zig

n

Z

Y

p

X

g

W

g

W

X

p

Y

n

Z

Rotate top-down – why?
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Splaying Example:
Find(6)

2

1

3

4

5

6

Find(6)

2

1

3

6

5

4

zig-zig

… still splaying …

zig-zig
2

1

3

6

5

4

1

6

3

2 5

4
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… 6 splayed out!

zig

1

6

3

2 5

4

6

1

3

2 5

4

Splay it Again!
Find (4)

Find(4)

zig-zag

6

1

3

2 5

4

6

1

4

3 5

2
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… 4 splayed out!

zig-zag

6

1

4

3 5

2

61

4

3 5

2

Splay Tree Definition

 A splay tree is a binary search tree 
where a node is splayed after it is 
accessed (for a search or update)
 deepest internal node accessed is splayed
 splaying costs O(h), where h is height of 

the tree – which is still O(n) worst-case
O(h) rotations, each of which is O(1)
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Splay Trees do Rotations after 
Every Operation (Even Search)

 new operation: splay
 splaying moves a node to the root using rotations

 right rotation
 makes the left child x of a node y

into y’s parent; y becomes the 
right child of x

y

x

T1 T2

T3

y

x

T1

T2 T3

 left rotation
 makes the right child y of a node x

into x’s parent; x becomes the left 
child of y

y

x

T1 T2

T3

y

x

T1

T2 T3

(structure of tree above y 
is not modified)

(structure of tree above x 
is not modified)

a right rotation about y a left rotation about x

Splay Trees 110

Visualizing the 
Splaying Cases zig-zag

y

x

T2 T3

T4

z

T1

y

x

T2 T3 T4

z

T1

y

x

T1 T2

T3

z

T4

zig-zig

y

z

T4T3

T2

x

T1

zig
x

w

T1 T2

T3

y

T4

y

x

T2 T3 T4

w

T1
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Splaying:

is x the 
root?

stop

is x a child of 
the root?

right-rotate 
about the root

left-rotate about 
the root

is x the left 
child of the 
root?

is x a left-left 
grandchild?

is x a left-right 
grandchild?

is x a right-right 
grandchild?

is x a right-left 
grandchild?

right-rotate about g, 
right-rotate about p

left-rotate about g, 
left-rotate about p

left-rotate about p, 
right-rotate about g

right-rotate about p, 
left-rotate about g

start with 
node x

 “x is a left-left grandchild” means x is a left child of its 
parent, which is itself a left child of its parent 

 p is x’s parent; g is p’s parent

no

yes

yes

yes

yes

yes

yes

no

no

yes zig-zig

zig-zag

zig-zag

zig-zig

zigzig

112

Splay Tree Operations
 Which nodes are splayed after each operation?

use the predecessor of the node to be removedRemove item 
with key k

use the new node containing the entry insertedInsert (k,v)

if key found, use that node
if key not found, use parent of ending external node

Search for k

splay nodemethod
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Why Splaying Helps
 If a node n on the access path is at depth d before 

the splay, it’s at about depth d/2 after the splay
 Exceptions are the root, the child of the root, and the node 

splayed

 Overall, nodes which are below nodes on the access 
path tend to move closer to the root

 Splaying gets amortized O(log n) performance. (Maybe 
not now, but soon, and for the rest of the operations.)

Splay Operations: Find

 Find the node in normal BST manner
 Splay the node to the root
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Splay Operations: Insert

 Ideas?
 Can we just do BST insert?

Digression: Splitting

 Split(T, x) creates two BSTs L and R:
 all elements of T are in either L or R  (T = L 

 R)
 all elements in L are  x
 all elements in R are  x
 L and R share no elements (L  R = )
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Splitting in Splay Trees
How can we split?

 We have the splay operation.
 We can find x or the parent of where x 

should be.
 We can splay it to the root.
 Now, what’s true about the left subtree of the 

root?
 And the right?

Split
split(x)

T L R

splay

OR

L R L R

 x  x> x < x
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Back to Insert

split(x)

L R

x

L R
> x< x

void insert(Node root, Object x)
{

<left, right> = split(root, x);
root = newNode(x, left, right);

}

Splay Operations: Delete

find(x)

L R

x

L R
> x< x

delete x

Now what?
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Join
Join(L, R): given two trees such that L < R, merge them

Splay on the maximum element in L, then attach R

L R R
splay

L

Delete Completed

T

find(x)

L R

x

L R
> x< x

delete x

T - x

Join(L,R)
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Insert Example

91

6

4 7

2

Insert(5)

split(5)

9

6

7

1

4

2

1

4

2

9

6

7

1

4

2

9

6

7

5

Delete Example

91

6

4 7

2

Delete(4)

find(4)
9

6

7

1

4

2

1

2

9

6

7

Find max

2

1

9

6

7

2

1

9

6

7
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Splay Tree Summary
Can be shown that any m consecutive operations starting 
from an empty tree take at most O(m log(n)), where n is 
the total number of elements in the tree.

 All splay tree operations run in amortized O(log n) time

O(N) operations can occur, but splaying makes them 
infrequent

Implements most-recently used (MRU) logic
 Splay tree structure is self-tuning

Splay Tree Summary (cont.)
Splaying can be done top-down; better because:

 only one pass
 no recursion or parent pointers necessary

There are alternatives to split/insert and join/delete

Splay trees are very effective search trees
 relatively simple: no extra fields required
 excellent locality properties:

frequently accessed keys are cheap to find (near top of tree)
infrequently accessed keys stay out of the way (near bottom 

of tree)
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Amortized Analysis of 
Splay Trees
 Running time of each operation is proportional to time 

for splaying.
 Define rank(v) as the logarithm (base 2) of the number 

of nodes in subtree rooted at v:
 rank(v) = log n(v) if null for external nodes
 rank(v) = log (2n(v)+1) if empty nodes for externals.

 Costs: zig = $1, zig-zig = $2, zig-zag = $2.
 Thus, cost for splaying a node at depth d = $d.
 Imagine that we store rank(v) cyber-dollars at each 

node v of the splay tree (just for the sake of analysis).
 The total counter values is rank(T) = sum of rank(v) for 

any node v in T.
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