
1

1

Ch04 Balanced Search
Trees

6

3 8

4

v

z

Presentation for use with the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Why care about advanced implementations?

Same entries, different insertion sequence:

 Not good! Would like to keep tree balanced.

1

2

2

Balanced binary tree
 The disadvantage of a binary search tree is that its

height can be as large as N-1
 This means that the time needed to perform insertion

and deletion and many other operations can be O(N)
in the worst case

 We want a tree with small height
 A binary tree with N node has height at least (log

N)
 Thus, our goal is to keep the height of a binary

search tree O(log N)
 Such trees are called balanced binary search trees.

Examples are AVL tree, and red-black tree.

4

Approaches to balancing trees
 Don't balance

 May end up with some nodes very deep
 Strict balance

 The tree must always be balanced perfectly
 Pretty good balance

 Only allow a little out of balance
 Adjust on access

 Self-adjusting

3

4

3

5

Balancing Search Trees

 Many algorithms exist for keeping
search trees balanced
 Adelson-Velskii and Landis (AVL) trees

(height-balanced trees)
 Red-black trees (black nodes balanced

trees)
 Splay trees and other self-adjusting trees
 B-trees and other multiway search trees

6

Perfect Balance
 Want a complete tree after every operation

 Each level of the tree is full except possibly in the
bottom right

 This is expensive
 For example, insert 2 and then rebuild as a complete

tree

Insert 2 &
complete tree

6

4 9

81 5

5

2 8

6 91 4

5

6

4

7

AVL - Good but not Perfect Balance

 AVL trees are height-balanced binary search
trees

 Balance factor of a node
 height(left subtree) - height(right subtree)

 An AVL tree has balance factor calculated at
every node
 For every node, heights of left and right subtree can

differ by no more than 1
 Store current heights in each node

8

Height of an AVL Tree
 N(h) = minimum number of nodes in an AVL

tree of height h.
 Basic case:

 N(0) = 1, N(1) = 2
 Inductive case:

 N(h) = N(h-1) + N(h-2) + 1
 Theorem (from Fibonacci analysis)

 N(h) > h

where   1.618, the golden ratio.
h-1 h-2

h

7

8

5

9

Height of an AVL Tree

 N(h) > h (  1.618)
 Suppose we have n nodes in an AVL

tree of height h.
 n > N(h) (because N(h) was the minimum)

 n > h hence log n > h (relatively well
balanced tree!!)

 h < 1.44 log2n (i.e., Find takes O(logn))

10

Node Heights

1

00

2

0

6

4 9

81 5

1

height of node = h
balance factor = hleft-hright

empty height = -1

0

0

height=2 BF=1-0=1

0

6

4 9

1 5

1

Tree A (AVL) Tree B (AVL)

9

10

6

11

Node Heights after Insert 7

2

10

3

0

6

4 9

81 5

1

height of node = h
balance factor = hleft-hright

empty height = -1

1

0

2

0

6

4 9

1 5

1

0
8

0
7

balance factor
1-(-1) = 2

-1

Tree A (AVL) Tree B (not AVL)

12

Insert and Rotation in AVL Trees

 Insert operation may cause balance factor to
become 2 or –2 for some node
 only nodes on the path from insertion point to

root node have possibly changed in height
 So after the Insert, go back up to the root

node by node, updating heights
 If a new balance factor (the difference hleft-

hright) is 2 or –2, adjust tree by rotation
around the node

11

12

7

13

Single Rotation in an AVL Tree

2

10

2

0

6

4 9

81 5

1

0
7

0

1

0

2

0

6

4

9

8

1 5

1

0
7

14

Let the node that needs
rebalancing be .

Cases: 1 3 4 2
There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of . (left-left)
2. Insertion into right subtree of right child of . (right-right)

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of . (left-right)
4. Insertion into left subtree of right child of . (right-left)

The rebalancing is performed through four
separate rotation algorithms.

Insertions in AVL Trees 

13

14

8

15

j

k

X Y

Z

Consider a valid
AVL subtree

AVL Insertion: Outside Case

h

h h

h+1

h+2

Differ by 1

16

j

k

X
Y

Z

Inserting into X
destroys the AVL
property at node j

AVL Insertion: Outside Case

h

h+1 h

h+2

15

16

9

17

j

k

X
Y

Z

Do a “rotation to right”

AVL Insertion: Outside Case

h

h+1 h

18

j

k

X
Y

Z

Do a “right rotation”

Single right rotation

h

h+1 h

17

18

10

19

j

k

X Y Z

“Right rotation” done!
(“Left rotation” is mirror

symmetric)

Outside Case Completed

AVL property has been restored!

h

h+1

h

20

j

k

X Y

Z

AVL Insertion: Inside Case

Consider a valid
AVL subtree

h

hh

19

20

11

21

Inserting into Y
destroys the
AVL property
at node j

j

k

X
Y

Z

AVL Insertion: Inside Case

Does “right rotation”
restore balance?

h

h+1h

22

j
k

X

Y
Z

“One rotation”
does not restore
balance… now k is
out of balance

AVL Insertion: Inside Case

hh+1

h

21

22

12

23

Consider the structure
of subtree Y… j

k

X
Y

Z

AVL Insertion: Inside Case

h

h+1h

24

j

k

X

V

Z

W

i

Y = node i and
subtrees V and W

AVL Insertion: Inside Case

h

h+1h

h or h-1

23

24

13

25

j

k

X

V

Z

W

i

AVL Insertion: Inside Case

We will do a left-right
“double rotation” . . .

26

j

k

X V

Z
W

i

Double rotation : first rotation

left rotation complete

25

26

14

27

j

k

X V

Z
W

i

Double rotation : second rotation

Now do a right rotation

28

jk

X V ZW

i

Double rotation : second rotation

right rotation complete

Balance has been
restored

hh h or h-1

27

28

15

29

Implementation

height
key

rightleft

Once you have
performed a
rotation (single or
double) you won’t
need to go back up
the tree

Class BinaryNode
KeyType: Key
int: Height
BinaryNode: LeftChild
BinaryNode: RightChild

Constructor(KeyType: key)
Key = key
Height = 0

End Constructor
End Class

Java-like Pseudo-Code

rotateToRight(BinaryNode: x) {
BinaryNode y = x.LeftChild;
x.LeftChild = y.RightChild;
y.RightChild = x;
return y;

}

29

30

16

Java-like Pseudo-Code

rotateToLeft(BinaryNode: x) {
BinaryNode y = x.rightChild;
x.rightChild = y.leftChild;
y.leftChild = x;
return y;

}

32

Double Rotation

 Implement Double Rotation in two lines.

DoubleRotateToLeft(n : binaryNode) {
rotateToRight(n.rightChild);
rotateToLeft(n);

}

DoubleRotateToRight(n : binaryNode) {
rotateToLeft(n.leftChild);
rotateToRight(n);

}

X

n

V W

Z

31

32

17

33

Insertion in AVL Trees

 Insert at the leaf (as for all BST)
 only nodes on the path from insertion point to

root node have possibly changed in height
 So after the Insert, go back up to the root

node by node, updating heights
 If a new balance factor (the difference hleft-

hright) is 2 or –2, adjust tree by rotation
around the node

34

Insert in ordinary BST

Algorithm insert(k, v)
input: insert key k into the tree rooted by v
output: the tree root with k adding to v.
if isNull (v)

return newNode(k)
if k ≤ key(v) // duplicate keys are okay

leftChild(v)  insert (k, leftChild(v))
else if k  key(v)

rightChild(v)  insert (k, rightChild(v))
return v

33

34

18

35

Insert in AVL trees
Insert(v : binaryNode, x : element) : {

if v = null then
{v  new node; v.data  x; height  0;}

else case
v.data = x : ; //Duplicate do nothing
v.data > x : v.leftChild  Insert(v.leftChild, x);

// handle left-right and left-left cases
if ((height(v.leftChild)- height(v.rightChild)) = 2)then
if (v.leftChild.data > x) then //outside case
v = RotateToRight (v);

else //inside case
v = DoubleRotateToRightt (v);}

v.data < x : v.righChild  Insert(v.rightChild, x);
// handle right-right and right-left cases
… …

Endcase
v.height  max(height(v.left),height(v.right)) +1;
return v;

}

36

Example of Insertions in an AVL Tree

1

0

2
20

10 30

25

0

35
0

Insert 5, 40

35

36

19

37

Example of Insertions in an AVL Tree

1

0

2
20

10 30

25

1

35
0

5
0

20

10 30

25

1

355

40

0

0

0 1

2

3

Now Insert
45

38

Single rotation (outside case)

2

0

3
20

10 30

25

1

35
2

5
0

20

10 30

25

1

405

40

0

0

0

1

2

3

45

Imbalan
ce

35 45
0 0

1

Now Insert
34

37

38

20

39

Double rotation (inside case)

3

0

3
20

10 30

25

1

40
2

5
0

20

10 35

30

1

405

45

0 1

2

3

Imbalance

45
0

1

Insertion of 34

35

34

0

0

1 25 340

In Class Exercises
 Build an AVL tree with the following values:

15, 20, 24, 10, 13, 7, 30, 36, 25

39

40

21

15

15, 20, 24, 10, 13, 7, 30, 36, 25

20

24

15

20

24

10

13

15

20

24

13

10

13

20

24

1510

13

20

24

1510

15, 20, 24, 10, 13, 7, 30, 36, 25

7

13

20

2415

10

7

30

3613

20

3015

10

7

3624

41

42

22

13

20

3015

10

7

3624

15, 20, 24, 10, 13, 7, 30, 36, 25

25

13

20

30

15

10

7

36

24

2513

24

36

20

10

7

25

30

15

Possible Quiz Questions

 Build an AVL tree by inserting the
following values in the given order:
1, 2, 3, 4, 5, 6.

43

44

23

45

AVL Tree Deletion

 Similar but more complex than insertion
 Rotations and double rotations needed to

rebalance
 Imbalance may propagate upward so that

many rotations may be needed.

46

Deletion
• Removal begins as in a binary search tree, which means

the node removed will become an empty external node. Its
parent may have an imbalance.

• Example:
44

17

7832 50

8848

62

54

44

17

7850

8848

62

54

before deletion of 32 after deletion

45

46

24

Rebalancing after a Removal
• Let z be the first unbalanced node encountered while travelling up the tree

from w. Also, let y be the child of z with the larger height, and let x be the
child of y with the larger height

• We perform a rotateToLeft to restore balance at z
• As this restructuring may upset the balance of another node higher in the

tree, we must continue checking for balance until the root of T is reached

44

17

7850

8848

62

54

w

x

y

z

44

17

78

50 88

48

62

54

48

Deletion in standard BST
Algorithm remove(k, v)

input: delete the node containing key k
output: the tree without k.
if isNull (v)

return v
if k < key(v) // duplicate keys are okay

leftChild(v)  remove(k, leftChild(v))
else if k  key(v)

rightChild(v)  remove(k, rightChild(v))
else if isNull(leftChild(v))

return rightChild(v)
else if isNull(rightChild(v))

return leftChild(v)
node max  treeMaximum(leftChild(v))
key(v)  key(min)
rightChild(v)  remove(key(min), rightChild(v))
return v

47

48

25

Deletion in AVL Trees
Algorithm remove(k, v)

input: delete the node containing key k
output: the tree without k.
if isNull (v)

return v
if k < key(v) // duplicate keys are okay

leftChild(v)  remove(k, leftChild(v))
else if k  key(v)

rightChild(v)  remove(k, rightChild(v))
else if isNull(leftChild(v))

return rightChild(v)
else if isNull(rightChild(v))

return leftChild(v)
node max  treeMaximum(leftChild(v))
key(v)  key(max)
leftChild(v)  remove(key(max), leftChild(v))
AVLbalance(v)
return v

AVLbalance(v)
Assume the height is
updated in rotations.

if (v.left.height >
v.right.height+1) {
y = v.left
if (y.right.height >

y.left.height)
DoubleRotateToRight(v)

else rotateToRight(v)
}

if (v.right.height >
v.left.height+1) {
y = v.right
if (y.left.height >

y.right.height)
DoubleRotateToLeft(v)

else rotateToLeft(v)
}

AVL Tree Example:

• Now remove 53

14

17

7

4

53

11

12

8 13

49

50

26

AVL Tree Example:

• Now remove 53, unbalanced

14

17

7

4

11

12

8 13

AVL Tree Example:

• Balanced!

14

17

7

4

11

128

13

Now try Remove 11

51

52

27

AVL Tree Example:

• Remove 11, replace it with the largest, i.e., 8, in its
left branch.

14

17

7

4

8

12

13

Now try Remove 8.

AVL Tree Example:

• Remove 8, unbalanced

14

17

4

7

12

13

53

54

28

AVL Tree Example:

• Remove 8, unbalanced

14

17

4

7

12

13

AVL Tree Example:

• Balanced!!

14

174

7

12

13

55

56

29

Deletion in AVL Trees
Algorithm remove(k, v)

input: delete the node containing key k
output: the tree without k.
if isNull (v)

return v
if k < key(v) // duplicate keys are okay

leftChild(v)  remove(k, leftChild(v))
else if k  key(v)

rightChild(v)  remove(k, rightChild(v))
else if isNull(leftChild(v))

return rightChild(v)
else if isNull(rightChild(v))

return leftChild(v)
node max  treeMaximum(leftChild(v))
key(v)  key(max)
leftChild(v)  remove(key(max), leftChild(v))
return AVLbalance(v)

AVLbalance(v) {
Assume the height is updated in
rotations.

if (v.left.height >
v.right.height+1) {

y = v.left
if (y.right.height >

y.left.height)
v = DoubleRotateToRight(v)

else v = rotateToRight(v)
}

if (v.right.height >
v.left.height+1) {

y = v.right
if (y.left.height >

y.right.height)
v = DoubleRotateToLeft(v)

else v = rotateToLeft(v)
}
return v
}

Remove 24 and 20 from the AVL tree.

13

24

36

20

10

7

25

30

15

13

20

36

15

10

7

25

30

13

15

36

10

7

25

30

13

30

36

10

7

25

15

57

58

30

59

AVL Tree Performance
 AVL tree storing n items

 The data structure uses O(n) space
 A single restructuring takes O(1) time

 using a linked-structure binary tree

 Searching takes O(log n) time
 height of tree is O(log n), no restructures needed

 Insertion takes O(log n) time
 initial find is O(log n)
 restructuring up the tree, maintaining heights is O(log n)

 Removal takes O(log n) time
 initial find is O(log n)
 restructuring up the tree, maintaining heights is O(log n)

60

Arguments for AVL trees:

1. Search is O(log N) since AVL trees are always balanced.
2. Insertion and deletions are also O(logn)
3. The height balancing adds no more than a constant factor to the

speed of insertion.

Arguments against using AVL trees:
1. Difficult to program & debug; more space for height.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use

other structures (e.g. B-trees).
4. May be OK to have O(N) for a single operation if the total run time

for many consecutive operations is fast (e.g. Splay trees).

Pros and Cons of AVL Trees

59

60

31

Red-Black Tree

• A ref-black tree is a binary
search such that each node
has a color of either red or
black.

• The root is black.

• Empty (or null) nodes are
assumed black.

• Every path from a node to a
leaf contains the same
number of black nodes.

• If a node is red then its
parent must be black.

Class BinaryNode
KeyType: Key
Boolean: isRed
BinaryNode: LeftChild
BinaryNode: RightChild

Constructor(KeyType: key)
Key = key
isRed = true

End Constructor
End Class

Example
The root is black.

The parent of any
red node must be

black.

61

62

32

63

Theorem: Any red-black tree with root x,
has n ≥ 2h/2 – 1 nodes, where h is the
height of tree rooted by x.

Proof: We repeatedly replace the subtree
rooted by a red node by one of its children.

Let the height of the new tree be h’, then h’ >=
h/2, because the number of red nodes in any
path is no more than the number of black
nodes.

The new tree is a perfect binary tree, because it
has the same of nodes from the root to any
leaf. It must have 2h’ – 1 nodes.

So h ≤ 2log(n+1).

Maintain the Red Black Properties in a Tree
 Insertions

 Must maintain rules of Red Black Tree.
 New Node always added at leaf
 can't be black or we will violate rule of the same

of blacks along any path
 therefore the new node must be red
 If parent is black, done (trivial case)
 If parent red, things get interesting because a

red node with a red parent violates no double
red rule.

63

64

33

The parent of a red node must
be black.

Algorithm: Insertion
A red-black tree is a particular binary search tree, so create a
new node as red and insert it as in normal search tree.

What property is violated?

5
79

Violation!

7

Solution: (1) Rotate; (2) Switch colors.

Example of Inserting Sorted Numbers
 1 2 3 4 5 6 7 8 9 10

1

Insert 1. A leaf is
red. Realize it is
root so recolor
to black.

1

65

66

34

Insert 2
1

2

make 2 red. Parent
is black so done.

Insert 3 1

2

3

Insert 3. Parent is red.
2’s uncle, i.e., the sibling
of the parent of 2, is black (null).
3 is outside relative
to grandparent. Rotate
parent and grandparent

2

1 3

nil

nil

nil nil

67

68

35

Insert 4

4 has a red uncle (1).
So switch the great parent (2)’s
color with parent and uncle.

2

1 3

4

When adding 4
parent is red.

2

1 3

4

2 is set to black if it’s the root.

2

1 3

4

Insert 5
2

1 3

4

5

5's parent is red.
5’s uncle is
black (null).
5 is outside relative to
grandparent (3) so rotate
parent and grandparent then
recolor

nil

69

70

36

Finish insert of 5

2

1 4

3 5

nil

Insert 6
2

1 4

3 5

6

6 has a red uncle (3).
So switch the grandparent (4)’s
color with parent (5) and uncle (3).

71

72

37

Finishing insert of 6

2

1 4

3 5

6

4's parent is black
so done.

Insert 7
2

1 4

3 5

6

7

7's parent is red.
Parent's sibling is
black (null). 7 is
outside relative to
grandparent (5) so
rotate parent and
grandparent then recolor

nil

73

74

38

Finish insert of 7

2

1 4

3 6

5 7

Insert 8 2

1 4

3 6

5 7
8’s parent is red and its
uncle (5) is also red.
Switching the color of 6
with 5 and 7creates a
problem because 6's
parent, 4, is also red.
Must handle the red-red
violation at 6.

8

75

76

39

Still Inserting 8
2

1 4

3 6

5 7

8’s parent is red and its
uncle (5) is also red.
Switching the color of 6
with 5 and 7creates a
problem because 6's
parent, 4, is also red.
Must handle the red-red
violation at 6.

8

6’s uncle (1) is black.
So rotate and recolor.

Finish inserting 8

4

2

3

6

5 71

8

77

78

40

Insert 9
4

2

3

6

5 71

8

9

Finish Inserting 9
4

2

3

6

5 81

7 9
After rotations and recoloring

79

80

41

Insert 10
4

2

3

6

5 81

7 9
10 has a red uncle. Grandparent
(8) switch colors with parent (9)
and uncle (7).

10

Insert 10
4

2

3

6

5 81

7 9

10
8 has a red uncle (2).
Grandparent (4) switch colors
with parent (2) and uncle (6).
4 is recolored black as root.

81

82

42

Finishing Insert 10
4

2

3

6

5 81

7 9

10

Algorithm: Insertion
We have detected a need for balance when X is red and its parent, too.

• If X has a red uncle: colour the parent and uncle black, and grandparent
red. Then replace X by grandparent to see if new X’s parent is red.

X

83

84

43

Algorithm: Insertion
We have detected a need for balance when X is red and its parent, too.

• If X has a red uncle: colour the parent and uncle black, and grandparent
red. Then replace X by grandparent to see if new X’s parent is red.

X

Algorithm: Insertion
We have detected a need for balance when X is red and his parent too.

• If X has a red uncle: colour the parent and uncle black, and grandparent red.
Then replace X by grandparent to see if new X’s parent is red.

• If X is a left child and has a black uncle: colour the parent black and the
grandparent red, then rotateToRight(X.parent.parent)

X

85

86

44

Algorithm: Insertion
We have detected a need for balance when X is red and his parent too.

• If X has a red uncle: colour the parent and uncle black, and grandparent red.
Then replace X by grandparent to see if X’s parent is red.
• If X is a left child and has a black uncle: colour the parent black and the
grandparent red, then rotateRight(X.parent.parent)

Algorithm: Insertion
We have detected a need for balance when X is red and his parent too.

• If X has a red uncle: colour the parent and uncle black, and grandparent red.
Then replace X by grandparent to see if X’s parent is red.
• If X is a left child and has a black uncle: colour the parent black and the
grandparent red, then rotateRight(X.parent.parent)
• If X is a right child and has a black uncle, then rotateLeft(X.parent) and

X

87

88

45

Algorithm: Insertion
We have detected a need for balance when X is red and his parent too.

• If X has a red uncle: colour the parent and uncle black, and grandparent red.
Then replace X by grandparent to see if X’s parent is red.

• If X is a left child and has a black uncle: colour the parent black and the
grandparent red, then rotateToRight(X.parent.parent)

• If X is a right child and has a black uncle, then rotateToLeft(X.parent) and

X

Algorithm: Insertion
We have detected a need for balance when X is red and his parent too.

• If X has a red uncle: colour the parent and uncle black, and grandparent red.
Then replace X by grandparent to see if X’s parent is red.

• If X is a left child and has a black uncle: colour the parent black and the
grandparent red, then rotateRight(X.parent.parent)

• If X is a right child and has a black uncle, then rotateLeft(X.parent) and

X

89

90

46

Double Rotation
 What if X is at left right relative to G?

 a single rotation will not work
 Must perform a double rotation

 rotate X and P
 rotate X and G G

P S

ED
XA

B C

After Double
Rotation

X

P G

S
CA B

ED
Double rotation is also needed when X is
at right left position relative to G.

G

X S

ED
P C

A B

91

92

47

Properties of Red Black Trees
 If a Red node has any children, it must have

two children and they must be black. (Why?)
 If a black node has only one child, that child

must be a Red leaf. (Why?)
 Due to the rules there are limits on how

unbalanced a Red Black tree may become.

Red Black Trees vs AVL Trees
 AVL trees provide faster lookups than Red

Black Trees because they are more strictly
balanced.

 Red Black Trees provide faster insertion and
removal operations than AVL trees as fewer
rotations are done due to relatively relaxed
balancing.

 AVL trees store balance factors or
heights with each node, thus requires storage
for an integer per node whereas Red Black Tree
requires only 1 bit of information per node.

93

94

48

95

Splay Trees
6

3 8

4

v

z

Motivation for Splay Trees
Problems with AVL Trees

 extra storage/complexity for height fields
 ugly delete code

Solution: splay trees
 blind adjusting version of AVL trees
 amortized time for all operations is O(log n)
 worst case time is O(n)
 insert/find always rotates node to the root!

95

96

49

Splay Tree Idea

17

10

92

5

3

You’re forced to make
a really deep access:

Since you’re down there anyway,
fix up a lot of deep nodes!

Splaying Cases
Node n being accessed is:

 Root
 Child of root
 Has both parent (p) and grandparent (g)

Zig-zig pattern: g  p  n is left-left or right-
right (outside nodes)

Zig-zag pattern: g  p  n is left-right or right-
left (inside nodes)

97

98

50

Access root:
Do nothing (that was easy!)

X

n

Y

root

X

n

Y

root

Access child of root:
Zig (AVL single rotation)

p

X

n

Y

Z

n

Z

p

Y

X

root root

99

100

51

Access (LR, RL) grandchild:
Zig-Zag (AVL double rotation)

g

X
p

Y

n

Z

W

n

Y

g

W

p

ZX

Access (LL, RR) grandchild:
Zig-Zig

n

Z

Y

p

X

g

W

g

W

X

p

Y

n

Z

Rotate top-down – why?

101

102

52

Splaying Example:
Find(6)

2

1

3

4

5

6

Find(6)

2

1

3

6

5

4

zig-zig

… still splaying …

zig-zig
2

1

3

6

5

4

1

6

3

2 5

4

103

104

53

… 6 splayed out!

zig

1

6

3

2 5

4

6

1

3

2 5

4

Splay it Again!
Find (4)

Find(4)

zig-zag

6

1

3

2 5

4

6

1

4

3 5

2

105

106

54

… 4 splayed out!

zig-zag

6

1

4

3 5

2

61

4

3 5

2

Splay Tree Definition

 A splay tree is a binary search tree
where a node is splayed after it is
accessed (for a search or update)
 deepest internal node accessed is splayed
 splaying costs O(h), where h is height of

the tree – which is still O(n) worst-case
O(h) rotations, each of which is O(1)

107

108

55

109

Splay Trees do Rotations after
Every Operation (Even Search)

 new operation: splay
 splaying moves a node to the root using rotations

 right rotation
 makes the left child x of a node y

into y’s parent; y becomes the
right child of x

y

x

T1 T2

T3

y

x

T1

T2 T3

 left rotation
 makes the right child y of a node x

into x’s parent; x becomes the left
child of y

y

x

T1 T2

T3

y

x

T1

T2 T3

(structure of tree above y
is not modified)

(structure of tree above x
is not modified)

a right rotation about y a left rotation about x

Splay Trees 110

Visualizing the
Splaying Cases zig-zag

y

x

T2 T3

T4

z

T1

y

x

T2 T3 T4

z

T1

y

x

T1 T2

T3

z

T4

zig-zig

y

z

T4T3

T2

x

T1

zig
x

w

T1 T2

T3

y

T4

y

x

T2 T3 T4

w

T1

109

110

56

111

Splaying:

is x the
root?

stop

is x a child of
the root?

right-rotate
about the root

left-rotate about
the root

is x the left
child of the
root?

is x a left-left
grandchild?

is x a left-right
grandchild?

is x a right-right
grandchild?

is x a right-left
grandchild?

right-rotate about g,
right-rotate about p

left-rotate about g,
left-rotate about p

left-rotate about p,
right-rotate about g

right-rotate about p,
left-rotate about g

start with
node x

 “x is a left-left grandchild” means x is a left child of its
parent, which is itself a left child of its parent

 p is x’s parent; g is p’s parent

no

yes

yes

yes

yes

yes

yes

no

no

yes zig-zig

zig-zag

zig-zag

zig-zig

zigzig

112

Splay Tree Operations
 Which nodes are splayed after each operation?

use the predecessor of the node to be removedRemove item
with key k

use the new node containing the entry insertedInsert (k,v)

if key found, use that node
if key not found, use parent of ending external node

Search for k

splay nodemethod

111

112

57

Why Splaying Helps
 If a node n on the access path is at depth d before

the splay, it’s at about depth d/2 after the splay
 Exceptions are the root, the child of the root, and the node

splayed

 Overall, nodes which are below nodes on the access
path tend to move closer to the root

 Splaying gets amortized O(log n) performance. (Maybe
not now, but soon, and for the rest of the operations.)

Splay Operations: Find

 Find the node in normal BST manner
 Splay the node to the root

113

114

58

Splay Operations: Insert

 Ideas?
 Can we just do BST insert?

Digression: Splitting

 Split(T, x) creates two BSTs L and R:
 all elements of T are in either L or R (T = L

 R)
 all elements in L are  x
 all elements in R are  x
 L and R share no elements (L  R = )

115

116

59

Splitting in Splay Trees
How can we split?

 We have the splay operation.
 We can find x or the parent of where x

should be.
 We can splay it to the root.
 Now, what’s true about the left subtree of the

root?
 And the right?

Split
split(x)

T L R

splay

OR

L R L R

 x  x> x < x

117

118

60

Back to Insert

split(x)

L R

x

L R
> x< x

void insert(Node root, Object x)
{

<left, right> = split(root, x);
root = newNode(x, left, right);

}

Splay Operations: Delete

find(x)

L R

x

L R
> x< x

delete x

Now what?

119

120

61

Join
Join(L, R): given two trees such that L < R, merge them

Splay on the maximum element in L, then attach R

L R R
splay

L

Delete Completed

T

find(x)

L R

x

L R
> x< x

delete x

T - x

Join(L,R)

121

122

62

Insert Example

91

6

4 7

2

Insert(5)

split(5)

9

6

7

1

4

2

1

4

2

9

6

7

1

4

2

9

6

7

5

Delete Example

91

6

4 7

2

Delete(4)

find(4)
9

6

7

1

4

2

1

2

9

6

7

Find max

2

1

9

6

7

2

1

9

6

7

123

124

63

Splay Tree Summary
Can be shown that any m consecutive operations starting
from an empty tree take at most O(m log(n)), where n is
the total number of elements in the tree.

 All splay tree operations run in amortized O(log n) time

O(N) operations can occur, but splaying makes them
infrequent

Implements most-recently used (MRU) logic
 Splay tree structure is self-tuning

Splay Tree Summary (cont.)
Splaying can be done top-down; better because:

 only one pass
 no recursion or parent pointers necessary

There are alternatives to split/insert and join/delete

Splay trees are very effective search trees
 relatively simple: no extra fields required
 excellent locality properties:

frequently accessed keys are cheap to find (near top of tree)
infrequently accessed keys stay out of the way (near bottom

of tree)

125

126

64

127

Amortized Analysis of
Splay Trees
 Running time of each operation is proportional to time

for splaying.
 Define rank(v) as the logarithm (base 2) of the number

of nodes in subtree rooted at v:
 rank(v) = log n(v) if null for external nodes
 rank(v) = log (2n(v)+1) if empty nodes for externals.

 Costs: zig = $1, zig-zig = $2, zig-zag = $2.
 Thus, cost for splaying a node at depth d = $d.
 Imagine that we store rank(v) cyber-dollars at each

node v of the splay tree (just for the sake of analysis).
 The total counter values is rank(T) = sum of rank(v) for

any node v in T.

127

