Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Ch04 Balanced Search Trees

Why care about advanced implementations?

Same entries, different insertion sequence:

(b)

Not good! Would like to keep tree balanced.

Balanced binary tree

- The disadvantage of a binary search tree is that its height can be as large as N-1
- This means that the time needed to perform insertion and deletion and many other operations can be $\mathrm{O}(\mathrm{N})$ in the worst case
- We want a tree with small height
- A binary tree with N node has height at least Θ (log N)
- Thus, our goal is to keep the height of a binary search tree $\mathrm{O}(\log \mathrm{N})$
- Such trees are called balanced binary search trees. Examples are AVL tree, and red-black tree.

Approaches to balancing trees

- Don't balance
- May end up with some nodes very deep
- Strict balance
- The tree must always be balanced perfectly
- Pretty good balance
- Only allow a little out of balance

Adjust on access

- Self-adjusting

Balancing Search Trees

- Many algorithms exist for keeping search trees balanced
- Adelson-Velskii and Landis (AVL) trees (height-balanced trees)
- Red-black trees (black nodes balanced trees)
- Splay trees and other self-adjusting trees
- B-trees and other multiway search trees

Perfect Balance

- Want a complete tree after every operation
- Each level of the tree is full except possibly in the bottom right
- This is expensive
- For example, insert 2 and then rebuild as a complete tree

AVL - Good but not Perfect Balance

- AVL trees are height-balanced binary search trees
- Balance factor of a node
- height(left subtree) - height(right subtree)
- An AVL tree has balance factor calculated at every node
- For every node, heights of left and right subtree can differ by no more than 1
- Store current heights in each node

Height of an AVL Tree

- $N(h)=$ minimum number of nodes in an AVL tree of height h.
- Basic case:
- $\mathrm{N}(0)=1, \mathrm{~N}(1)=2$
- Inductive case:

$$
\text { - } N(h)=N(h-1)+N(h-2)+1
$$

- Theorem (from Fibonacci analysis)
- $N(h) \geq \phi^{h}$
where $\phi \approx 1.618$, the golden ratio.

Height of an AVL Tree

$\square N(h) \geq \phi^{h} \quad(\phi \approx 1.618)$

- Suppose we have n nodes in an AVL tree of height h.
- $n \geq N(h)$ (because $N(h)$ was the minimum)
- $\mathrm{n} \geq \phi^{\mathrm{h}}$ hence $\log _{\phi} \mathrm{n} \geq \mathrm{h}$ (relatively well balanced tree!!)
- $\mathrm{h} \leq 1.44 \log _{2} \mathrm{n}$ (i.e., Find takes $\mathrm{O}(\operatorname{logn})$)

Node Heights

Node Heights after Insert 7

Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or -2 for some node
- only nodes on the path from insertion point to root node have possibly changed in height
- So after the Insert, go back up to the root node by node, updating heights
- If a new balance factor (the difference $h_{\text {left }}{ }^{-}$ $\mathrm{h}_{\text {right }}$) is 2 or -2 , adjust tree by rotation around the node

Single Rotation in an AVL Tree

Insertions in AVL Trees

Let the node that needs rebalancing be α.

Cases: 1

There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of α. (left-left)
2. Insertion into right subtree of right child of α. (right-right) Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of α. (left-right)
4. Insertion into left subtree of right child of α. (right-left)

The rebalancing is performed through four separate rotation algorithms.

15

AVL Insertion: Outside Case

17

Single right rotation

Outside Case Completed

AVL property has been restored!

AVL Insertion: Inside Case

\qquad

AVL Insertion: Inside Case

21

AVL Insertion: Inside Case

AVL Insertion: Inside Case

Consider the structure of subtree Y...

AVL Insertion: Inside Case

$Y=$ node i and subtrees V and W

25

Double rotation : first rotation

27

Double rotation : second rotation

right rotation complete

Implementation

Once you have performed a rotation (single or double) you won't need to go back up the tree

```
Class BinaryNode
                                    KeyType: Key
                                    int: Height
                                    BinaryNode: LeftChild
                                    BinaryNode: RightChild
    Constructor(KeyType: key)
                Key = key
                Height = 0
        End Constructor
End Class
```


Java-like Pseudo-Code

rotateToRight(BinaryNode: x) \{
BinaryNode y = x.LeftChild;
x.LeftChild $=y$.RightChild;
y.RightChild $=x$;
return y ;
\}

Rotate with left child

Java-like Pseudo-Code

```
                rotateToLeft( BinaryNode: x ) {
```

 BinaryNode y = x.rightChild;
 x.rightChild = y.leftChild;
 y. leftChild \(=x\);
 return \(y\);
 \}

Rotate with right child

Double Rotation

- Implement Double Rotation in two lines.

Insertion in AVL Trees

\square Insert at the leaf (as for all BST)

- only nodes on the path from insertion point to root node have possibly changed in height
- So after the Insert, go back up to the root node by node, updating heights
- If a new balance factor (the difference $h_{\text {left }}{ }^{-}$ $h_{\text {right }}$) is 2 or -2 , adjust tree by rotation around the node

Insert in ordinary BST

```
Algorithm insert(k,v)
    input: insert key }k\mathrm{ into the tree rooted by v
    output: the tree root with }\boldsymbol{k}\mathrm{ adding to }\boldsymbol{v}\mathrm{ .
    if isNull (v)
        return newNode(k)
    if k\leq\boldsymbol{key}(\boldsymbol{v})\quad// duplicate keys are okay
        leftChild(v) \leftarrow insert (k,leftChild(v))
    else if k>key(v)
        rightChild(v) < insert (k, rightChild(v))
    return v
```


Insert in AVL trees

```
Insert(v : binaryNode, x : element) : {
    if v = null then
        {v < new node; v.data & x; height & 0;}
    else case
    v.data = x : ; //Duplicate do nothing
    v.data > x : v.leftChild < Insert(v.leftChild, x);
        // handle left-right and left-left cases
        if ((height(v.leftChild)- height(v.rightChild)) = 2)then
            if (v.leftChild.data > x ) then //outside case
                v = RotateToRight (v);
            else //inside case
                v = DoubleRotateToRightt (v);}
    v.data < x : v.righChild & Insert(v.rightChild, x);
        // handle right-right and right-left cases
        ... ..
        Endcase
        v.height & max(height(v.left),height(v.right)) +1;
        return v;
}
```


Example of Insertions in an AVL Tree

Example of Insertions in an AVL Tree

Single rotation (outside case)

Double rotation (inside case)

In Class Exercises

\square Build an AVL tree with the following values:
$15,20,24,10,13,7,30,36,25$

41

43

Possible Quiz Questions

- Build an AVL tree by inserting the following values in the given order:
$1,2,3,4,5,6$.

AVL Tree Deletion

- Similar but more complex than insertion
- Rotations and double rotations needed to rebalance
- Imbalance may propagate upward so that many rotations may be needed.

Deletion

Removal begins as in a binary search tree, which means the node removed will become an empty external node. Its parent may have an imbalance.

- Example:

before deletion of 32 after deletion

Rebalancing after a Removal

- Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height
- We perform a rotateToLeft to restore balance at z
- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached

Deletion in standard BST

```
Algorithm remove (k, v)
    input: delete the node containing key \(k\)
    output: the tree without \(\boldsymbol{k}\).
    if isNull (v)
        return \(v\)
    if \(k<\boldsymbol{k e y}(v) \quad / /\) duplicate keys are okay
        leftChild \((v) \leftarrow \operatorname{remove}(k\), leftChild(v))
    else if \(k>\operatorname{key}(v)\)
        rightChild \((v) \leftarrow \operatorname{remove}(k\), rightChild \((v))\)
    else if isNull(leftChild(v))
        return rightChild(v)
    else if isNull(rightChild(v))
        return leftChild(v)
    node max \(\leftarrow\) treeMaximum(leftChild(v))
    \(\boldsymbol{k e y}(v) \leftarrow \boldsymbol{k e y}(\) min \()\)
    \(\operatorname{rightChild}(v) \leftarrow \operatorname{remove}(\operatorname{key}(\min )\), rightChild(v))
    return \(v\)
```


Deletion in AVL Trees

Algorithm remove(k, v)
input: delete the node containing key k
output: the tree without \boldsymbol{k}.
if isNull (v)
return v
if $\boldsymbol{k}<\boldsymbol{\operatorname { k e y }}(\boldsymbol{v}) \quad / /$ duplicate keys are okay
leftChild $(v) \leftarrow \operatorname{remove}(k$, leftChild $(v))$
else if $k>k e y(v)$
$\operatorname{rightChild}(v) \leftarrow \operatorname{remove}(k$, rightChild $(v))$
else if isNull(leftChild(v))
return rightChild(v)
else if isNull(rightChild(v))
return leftChild(v)
node max \leftarrow treeMaximum(leftChild(v))
$\operatorname{key}(v) \leftarrow \operatorname{key}(\max)$
leftChild $(v) \leftarrow \operatorname{remove}($ key $($ max $)$, leftChild $(v))$
AVLbalance (v)
return v

AVLbalance(v)
Assume the height is updated in rotations.
if (v.left.height > v.right.height +1) \{ $y=v . l e f t$ if (y.right.height > y.left.height) DoubleRotateToRight(v) else rotateToRight(v)
\}
if (v.right.height > v.left.height+1) \{ $y=$ v.right if (y.left.height > y.right.height) DoubleRotateToLeft(v) else rotateToLeft(v)
\}

AVL Tree Example:

- Now remove 53

AVL Tree Example:

- Now remove 53, unbalanced

51

AVL Tree Example:

- Balanced!

Now try Remove 11

AVL Tree Example:

- Remove 11, replace it with the largest, i.e., 8 , in its left branch.

Now try Remove 8.

53

AVL Tree Example:

- Remove 8, unbalanced

AVL Tree Example:

- Remove 8, unbalanced

55

AVL Tree Example:

- Balanced!!

Deletion in AVL Trees

```
Algorithm remove ( \(k, v\) )
    input: delete the node containing key \(k\)
    output: the tree without \(k\).
    if isNull ( \(v\) )
        return \(v\)
    if \(\boldsymbol{k}<\boldsymbol{\operatorname { k e y }}(\boldsymbol{v}) \quad / /\) duplicate keys are okay
        leftChild \((v) \leftarrow \operatorname{remove}(k\), leftChild \((v))\)
    else if \(k>k e y(v)\)
        \(\operatorname{rightChild}(v) \leftarrow \operatorname{remove}(k\), rightChild \((v))\)
    else if isNull(leftChild(v))
        return rightChild(v)
    else if isNull(rightChild(v))
        return leftChild(v)
    node max \(\leftarrow\) treeMaximum(leftChild(v))
    \(\operatorname{key}(v) \leftarrow \operatorname{key}(\max )\)
    leftChild \((v) \leftarrow \operatorname{remove}(\) key \((\) max \()\), leftChild \((v))\)
    return AVLbalance(v)
```

AVLbalance(v) \{
Assume the height is updated in
rotations.
if (v.left.height >
v.right.height+1) \{
$y=v . l e f t$
if (y .right. height >
y.left.height)
$\mathrm{v}=$ DoubleRotateToRight(v)
else $v=$ rotateToRight (v)
\}
if (v.right.height >
v.left.height+1) \{
$y=v . r i g h t$
if (y.left.height >
y.right.height)
$\mathrm{v}=$ DoubleRotateToLeft(v)
else $\mathrm{v}=$ rotateToLeft(v)
\}
return v
\}

AVL Tree Performance

- AVL tree storing n items
- The data structure uses $O(n)$ space
- A single restructuring takes O (1) time
- using a linked-structure binary tree
- Searching takes $O(\log n)$ time
- height of tree is $\mathrm{O}(\log n)$, no restructures needed
- Insertion takes $O(\log n)$ time
- initial find is $\mathrm{O}(\log n)$
- restructuring up the tree, maintaining heights is $O(\log n)$
- Removal takes O(logn) time
- initial find is $\mathrm{O}(\log n)$
- restructuring up the tree, maintaining heights is $O(\log n)$

Pros and Cons of AVL Trees

Arguments for AVL trees:

1. Search is $\mathrm{O}(\log \mathrm{N})$ since AVL trees are always balanced.
2. Insertion and deletions are also O(logn)
3. The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:

1. Difficult to program \& debug; more space for height.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
4. May be OK to have $\mathrm{O}(\mathrm{N})$ for a single operation if the total run time for many consecutive operations is fast (e.g. Splay trees).

Red-Black Tree

- A ref-black tree is a binary search such that each node has a color of either red or black.
- The root is black.
- Empty (or null) nodes are assumed black.
- Every path from a node to a leaf contains the same number of black nodes.

Class BinaryNode KeyType: Key Boolean: isRed
BinaryNode: LeftChild BinaryNode: RightChild
Constructor(KeyType: key) Key = key isRed = true
End Constructor
End Class

- If a node is red then its parent must be black.

Example

The root is black.

Theorem: Any red-black tree with root \boldsymbol{x}, has $\mathbf{n} \geq \mathbf{2}^{\mathbf{h} / \mathbf{2}} \mathbf{- 1}$ nodes, where h is the height of tree rooted by x.
Proof: We repeatedly replace the subtree rooted by a red node by one of its children.
Let the height of the new tree be h^{\prime}, then $\mathrm{h}^{\prime}>=$ $h / 2$, because the number of red nodes in any path is no more than the number of black nodes.
The new tree is a perfect binary tree, because it has the same of nodes from the root to any leaf. It must have $2^{h^{\prime}}-1$ nodes.
So $h \leq 2 \log (n+1)$.

Maintain the Red Black Properties in a Tree

-Insertions

- Must maintain rules of Red Black Tree.
- New Node always added at leaf
- can't be black or we will violate rule of the same \# of blacks along any path
- therefore the new node must be red
- If parent is black, done (trivial case)
- If parent red, things get interesting because a red node with a red parent violates no double red rule.

Algorithm: Insertion

A red-black tree is a particular binary search tree, so create a new node as red and insert it as in normal search tree.

Violation!

What property is violated?
The parent of a red node must be black.

Solution: (1) Rotate; (2) Switch colors.

Example of Inserting Sorted Numbers

Insert 1. A leaf is red. Realize it is root so recolor to black.

Insert 2

make 2 red. Parent
is black so done.

Insert 3

Insert 3. Parent is red.
2's uncle, i.e., the sibling of the parent of 2 , is black (null).
3 is outside relative

to grandparent. Rotate parent and grandparent

68

69

Finish insert of 5

71

Insert 6

6 has a red uncle (3).
So switch the grandparent (4)'s
color with parent (5) and uncle (3).

Finishing insert of 6

73

Insert 7

7's parent is red. Parent's sibling is black (null). 7 is outside relative to grandparent (5) so
 rotate parent and
grandparent then recolor

Finish insert of 7

75

Insert 8

8's parent is red and its uncle (5) is also red.
Switching the color of 6 with 5 and 7 creates a problem because 6's
parent, 4 , is also red.
Must handle the red-red
violation at 6 .

Still Inserting 8.

 uncle (5) is also red.
Switching the color of 6 with 5 and 7 creates a problem because 6's

6's uncle (1) is black. So rotate and recolor. parent, 4, is also red.
Must handle the red-red violation at 6 .

Finish inserting 8

79

Finish Inserting 9

Insert 10

81

Finishing Insert 10

83

Algorithm: Insertion

We have detected a need for balance when X is red and its parent, too.

- If X has a red uncle: colour the parent and uncle black, and grandparent red. Then replace X by grandparent to see if new X's parent is red.

Algorithm: Insertion

We have detected a need for balance when X is red and its parent, too. - If X has a red uncle: colour the parent and uncle black, and grandparent red. Then replace X by grandparent to see if new X 's parent is red.

85

Algorithm: Insertion

We have detected a need for balance when X is red and his parent too.

- If X has a red uncle: colour the parent and uncle black, and grandparent red. Then replace X by grandparent to see if new X's parent is red.
- If X is a left child and has a black uncle: colour the parent black and the grandparent red, then rotateToRight(X.parent.parent)

Algorithm: Insertion

We have detected a need for balance when X is red and his parent too.

- If X has a red uncle: colour the parent and uncle black, and grandparent red. Then replace X by grandparent to see if X 's parent is red.
- If X is a left child and has a black uncle: colour the parent black and the grandparent red, then rotateRight(X.parent.parent)

Algorithm: Insertion

We have detected a need for balance when X is red and his parent too.

- If X has a red uncle: colour the parent and uncle black, and grandparent red. Then replace X by grandparent to see if X 's parent is red.
 grandparent red, then rotateRight(X.parent.parent)

Algorithm: Insertion

We have detected a need for balance when X is red and his parent too.

- If X has a red uncle: colour the parent and uncle black, and grandparent red. Then replace X by grandparent to see if X 's parent is red.
- If X is a right child and has a black uncle, then rotateToLeft(X.parent) and
- If X is a left child and has a black uncle: colour the parent black and the grandparent red, then rotateToRight(X.parent.parent)

89

Algorithm: Insertion

We have detected a need for balance when X is red and his parent too.

- If X has a red uncle: colour the parent and uncle black, and grandparent red. Then replace X by grandparent to see if X's parent is red.
- If X is a right child and has a black uncle, then rotateLeft(X.parent) and
- If X is a left child and has a black uncle: colour the parent black and the grandparent red, then rotateRight(X.parent.parent)

90

Double Rotation

What if X is at left right relative to G ?

- a single rotation will not work

Must perform a double rotation

- rotate X and P
- rotate X and G

91

92

Properties of Red Black Trees

- If a Red node has any children, it must have two children and they must be black. (Why?)
- If a black node has only one child, that child must be a Red leaf. (Why?)
- Due to the rules there are limits on how unbalanced a Red Black tree may become.

Red Black Trees vs AVL Trees

- AVL trees provide faster lookups than Red Black Trees because they are more strictly balanced.
- Red Black Trees provide faster insertion and removal operations than AVL trees as fewer rotations are done due to relatively relaxed balancing.
- AVL trees store balance factors or
heights with each node, thus requires storage for an integer per node whereas Red Black Tree requires only 1 bit of information per node.

95

Motivation for Splay Trees

Problems with AVL Trees

- extra storage/complexity for height fields
- ugly delete code

Solution: splay trees

- blind adjusting version of AVL trees
- amortized time for all operations is $O(\log n)$
- worst case time is $\mathrm{O}(\mathrm{n})$
- insert/find always rotates node to the root!

Splay Tree Idea

Splaying Cases

Node n being accessed is:

- Root
- Child of root
- Has both parent (p) and grandparent (g)

Zig-zig pattern: $g \rightarrow p \rightarrow n$ is left-left or rightright (outside nodes)
Zig-zag pattern: $\mathrm{g} \rightarrow \mathrm{p} \rightarrow \mathrm{n}$ is left-right or rightleft (inside nodes)

Access root:

Do nothing (that was easy!)

99

Access child of root:
Zig (AVL single rotation)

101

102

Splaying Example:
Find(6)

Find(6)

(2) zig-zig

103

104

105

... 4 splayed out!

107

Splay Tree Definition

- A splay tree is a binary search tree where a node is splayed after it is accessed (for a search or update)
- deepest internal node accessed is splayed - splaying costs $O(h)$, where h is height of the tree - which is still $O(n)$ worst-case - $\mathrm{O}(\mathrm{h})$ rotations, each of which is $\mathrm{O}(1)$

Splay Trees do Rotations after Every Operation (Even Search)

- new operation: splay
- splaying moves a node to the root using rotations
\square right rotation
- makes the left child x of a node y into y ' s parent; y becomes the right child of x
a right rotation about y
 is not modified)
\square left rotation
- makes the right child y of a node x into x^{\prime} s parent; x becomes the left child of y

111

Splay Tree Operations

- Which nodes are splayed after each operation?

method	splay node	
Search for k	if key found, use that node if key not found, use parent of ending external node	
Insert (k,v)	use the new node containing the entry inserted	
Remove item with key k	use the predecessor of the node to be removed	

Why Splaying Helps

- If a node n on the access path is at depth d before the splay, it's at about depth $d / 2$ after the splay
- Exceptions are the root, the child of the root, and the node splayed
- Overall, nodes which are below nodes on the access path tend to move closer to the root
- Splaying gets amortized $\mathrm{O}(\log \mathrm{n})$ performance. (Maybe not now, but soon, and for the rest of the operations.)

113

Splay Operations: Find

- Find the node in normal BST manner
- Splay the node to the root

Splay Operations: Insert

- Ideas?

■ Can we just do BST insert?

115

Digression: Splitting

- Split(T, x) creates two BSTs L and R:
- all elements of T are in either L or $R(T=L$ \checkmark R)
- all elements in L are $\leq x$
- all elements in R are $\geq x$
- L and R share no elements ($L \cap R=\varnothing$)

Splitting in Splay Trees

How can we split?

- We have the splay operation.
- We can find x or the parent of where x should be.
- We can splay it to the root.
- Now, what's true about the left subtree of the root?
- And the right?

Split

$\begin{array}{lll}\leq \mathrm{X} & >\mathrm{x} & <\mathrm{X}\end{array} \geq \mathrm{x}$

Back to Insert


```
void insert(Node root, Object x)
{
    <left, right> = split(root, x);
        root = newNode(x, left, right);
}
```


Splay Operations: Delete

Now what?

Join

Join (L, R) : given two trees such that $L<R$, merge them

Splay on the maximum element in L, then attach R

121

Delete Completed

$\operatorname{Join}(\mathrm{L}, \mathrm{R})$

123

124

Splay Tree Summary

Can be shown that any m consecutive operations starting from an empty tree take at most $O(m \log (n))$, where n is the total number of elements in the tree.
\rightarrow All splay tree operations run in amortized O(log n) time
$\mathrm{O}(\mathrm{N})$ operations can occur, but splaying makes them infrequent

Implements most-recently used (MRU) logic

- Splay tree structure is self-tuning

Splay Tree Summary (cont.)

Splaying can be done top-down; better because:

- only one pass
- no recursion or parent pointers necessary

There are alternatives to split/insert and join/delete

Splay trees are very effective search trees

- relatively simple: no extra fields required
- excellent locality properties:
frequently accessed keys are cheap to find (near top of tree) infrequently accessed keys stay out of the way (near bottom of tree)

Amortized Analysis of Splay Trees

- Running time of each operation is proportional to time for splaying.
- Define rank(v) as the logarithm (base 2) of the number of nodes in subtree rooted at v:
- $\operatorname{rank}(v)=\log n(v)$ if null for external nodes
- $\operatorname{rank}(v)=\log (2 n(v)+1)$ if empty nodes for externals.
- Costs: zig = \$1, zig-zig = \$2, zig-zag = \$2.
- Thus, cost for splaying a node at depth d = \$d.
- Imagine that we store rank(v) cyber-dollars at each node v of the splay tree (just for the sake of analysis).
- The total counter values is $\operatorname{rank}(T)=$ sum of $\operatorname{rank}(v)$ for any node v in T.

