C-3.1 Suppose you are given a sorted array, A, of \mathbf{n} distinct integers in the range from 1 to $n+1$, so there is exactly one integer in this range missing from A. Describe an $O(\log n)$-time algorithm for finding the integer in this range that is not in A.

```
def ModifiedBinarySearch(arr, l, r, x):
    while l <= r:
        mid = (l + r)/2;
        if arr[mid] == mid + 1:
            return mid
        elif arr[mid] > mid:
            r = mid - 1
        else:
            l = mid + 1
```

C-3.2 Let S and T be two ordered arrays, each with n items. Describe an $\mathrm{O}(\log \mathrm{n})$ time algorithm for finding the kth smallest key in the union of the keys from S and T (assuming no duplicates).

```
def kthlargest(arr1, arr2, k):
    if len(arr1) == 0:
        return arr2[k]
    elif len(arr2) == 0:
        return arr1[k]
m1 = len(arr1)/2
m2 = len(arr2)/2
    if m1 + m2 < k:
        if arr1[m1] > arr2[m2]:
            return kthlargest(arr1, arr2[m2+1:], k-m2-1)
        else:
```

 return kthlargest(arr1[m1+1:], arr2, k-m1-1)
 else:
 if arr1[m1]>arr2[m2]:
 return kthlargest(arr1[:m1], arr2, k)
 else:

```
return kthlargest(arr1, arr2[:m2], k)
```

C-3.3 Describe how to perform the operation findAlIElements(k), which returns every element with a key equal to k (allowing for duplicates) in an ordered set of n keyvalue pairs stored in an ordered array, and show that it runs in time $\mathbf{O}(\log \mathrm{n}+\mathrm{s})$, where s is the number of elements returned.

```
def findAllElements(arr, l, r, k):
    while l <= r:
        mid = (1 + r)/2;
            if arr[mid].key <= k:
            r = mid - 1
        else:
            l = mid + 1
    allElements = []
    while arr[mid].key == k:
        allElements.append (arr[mid])
        mid += 1
    return allElements
```

C-3.4 Describe how to perform the operation findAllElements(k), as defined in the previous exercise, in an ordered set of key-value pairs implemented with a binary search tree T, and show that it runs in time $O(h+s)$, where h is the height of T and s is the number of items returned.

```
def findAllElements(k, v, c):
    if v is an external node then
        return c
    if k = key(v) then
        c.addLast(v)
        return findAllElements(k,T.right(v), C)
    else if k < key(v) then
            return findAllElements(k,T.left(v), c)
    else // {we know k > key(v)}
        return findAllElements(k,T.right(v), c)
```

C-3.7 Let S be an ordered set of \mathbf{n} items stored in a binary search tree, T , of height h . Show how to perform the following method for S in $O(h)$ time: countAllinRange(k1, k2): Compute and return the number of items in S with key \mathbf{k} such that $\mathbf{k} \mathbf{1} \mathbf{\leq k} \mathbf{\leq k 2}$.

```
def getCount(root, low, high):
    if root.data == high and root.data == low:
        return 1
    # If current node is in range, then include it in count and
    # recurse for left and right children of it
    if root.data <= high and root.data >= low:
        return (1 + getCount(root.left, low, high) +
                        getCount(root.right, low, high))
    # If current node is smaller than low,
    # then recurse for right child
    elif root.data < low:
        return getCount(root.right, low, high)
    # Else recur for left child
    else:
        return getCount(root.left, low, high)
```

C 3.12 Without using calculus (as in the previous exercise), show that, if \mathbf{n} is a power of 2 greater than 1, then, for Hn , the nth harmonic number, $\mathrm{Hn} \leq 1+\mathrm{Hn} / 2$.
Use this fact to conclude that $\mathrm{Hn} \leq 1+\log n$, for any $n \geq 1$.

```
\(H_{n}=1+1 / 2+1 / 3+1 / 4+\ldots+1 /(n / 2)+1 /(n / 2+1)+\ldots+1 / n\)
\(H_{n / 2}=1+1 / 2+1 / 3+1 / 4+\ldots+1 / n / 2\)
\(H_{n}-H_{n / 2}=1 /(n / 2+1)+1 /(n / 2+2)+\ldots+1 / n\)
\(H_{n}-H_{n / 2}<=1 /(n / 2)+1 /(n / 2)+\ldots+1 /(n / 2)\)
\(H_{n}-H_{n / 2}<=(n / 2) * 1 /(n / 2) \quad / / 1 /(n / 2)\) is being added ( \(n / 2\) ) times
\(\mathrm{H}_{\mathrm{n}}-\mathrm{H}_{\mathrm{n} / 2}<=1\)
\(H_{n}<=1+H_{n / 2}\)
```

$H n \leq 1+\log n$

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{n}}<=1+\mathrm{H}_{\mathrm{n} / 2} \\
& \mathrm{H}_{\mathrm{n} / 2}<=1+\mathrm{H}_{\mathrm{n} / 4}=1+\mathrm{H}_{\mathrm{n} /\left(2^{\wedge} 2\right)} \\
& \mathrm{H}_{\mathrm{n}}<=1+1+\mathrm{H}_{\mathrm{n} / 4}=2+\mathrm{H}_{\mathrm{n} /\left(2^{\wedge} 2\right)} \\
& \mathrm{H}_{\mathrm{n}}<=1+1+1+\mathrm{H}_{\mathrm{n} / 8}=3+\mathrm{H}_{\mathrm{n} /\left(2^{\wedge} 3\right)} \\
& \ldots \\
& \ldots \\
& \cdots \\
& \mathrm{H}_{\mathrm{n}}<=1+1+1 \ldots 1+\mathrm{H}_{\mathrm{n} /\left(2^{\wedge} \mathrm{K}\right)}=\mathrm{k}(1)+\mathrm{H}_{\mathrm{n} /\left(2^{\wedge} \mathrm{K}\right)}
\end{aligned}
$$

when $2^{\wedge} \mathrm{k}=\mathrm{n} \Rightarrow \mathrm{k}=\log (\mathrm{n})$
$\mathrm{H}_{\mathrm{n}}<=\log \mathrm{n}+\mathrm{H}_{1}$ $H_{n}<=\log n+1$

