

C-3.1 Suppose you are given a sorted array, A, of n distinct integers in the range from
1 to n+1, so there is exactly one integer in this range missing from A. Describe
an O(log n)-time algorithm for finding the integer in this range that is not in A.

def ModifiedBinarySearch(arr, l, r, x):

 while l <= r:

 mid = (l + r)/2;

 if arr[mid] == mid + 1:

 return mid

 elif arr[mid] > mid:

 r = mid - 1

 else:

 l = mid + 1

C-3.2 Let S and T be two ordered arrays, each with n items. Describe an O(log n)-
time algorithm for finding the kth smallest key in the union of the keys from S
and T (assuming no duplicates).

def kthlargest(arr1, arr2, k):

if len(arr1) == 0:

return arr2[k]

 elif len(arr2) == 0:

return arr1[k]

m1 = len(arr1)/2

m2 = len(arr2)/2

if m1 + m2 < k:

if arr1[m1] > arr2[m2]:

return kthlargest(arr1, arr2[m2+1:], k-m2-1)

else:

return kthlargest(arr1[m1+1:], arr2, k-m1-1)

else:

 if arr1[m1]>arr2[m2]:

return kthlargest(arr1[:m1], arr2, k)

else:

return kthlargest(arr1, arr2[:m2], k)

C-3.3 Describe how to perform the operation findAllElements(k), which returns every
element with a key equal to k (allowing for duplicates) in an ordered set of n keyvalue
pairs stored in an ordered array, and show that it runs in time O(log n+s),
where s is the number of elements returned.

def findAllElements(arr, l, r, k):

 while l <= r:

 mid = (l + r)/2;

 if arr[mid].key <= k:

 r = mid - 1

 else:

 l = mid + 1

 allElements = []

 while arr[mid].key == k:

 allElements.append(arr[mid])

 mid += 1

 return allElements

C-3.4 Describe how to perform the operation findAllElements(k), as defined in the
previous exercise, in an ordered set of key-value pairs implemented with a binary
search tree T, and show that it runs in time O(h + s), where h is the height of T
and s is the number of items returned.

def findAllElements(k, v, c):

if v is an external node then

return c

if k = key(v) then

c.addLast(v)

return findAllElements(k,T.right(v), c)

else if k < key(v) then

return findAllElements(k,T.left(v), c)

else // {we know k > key(v)}
return findAllElements(k,T.right(v), c)

C-3.7 Let S be an ordered set of n items stored in a binary search tree, T, of height h.
Show how to perform the following method for S in O(h) time:
countAllInRange(k1, k2): Compute and return the number of items in S with
key k such that k1 ≤ k ≤ k2.

def getCount(root, low, high):

 if root.data == high and root.data == low:

 return 1

 # If current node is in range, then include it in count and
 # recurse for left and right children of it

 if root.data <= high and root.data >= low:

 return (1 + getCount(root.left, low, high) +

 getCount(root.right, low, high))

 # If current node is smaller than low,
 # then recurse for right child

 elif root.data < low:

 return getCount(root.right, low, high)

 # Else recur for left child

 else:

 return getCount(root.left, low, high)

C 3.12 Without using calculus (as in the previous exercise), show that, if n is a power of
2 greater than 1, then, for Hn, the nth harmonic number,
Hn ≤ 1 + Hn/2.
Use this fact to conclude that Hn ≤ 1 + log n, for any n ≥ 1.

Hn = 1 + ½ + ⅓ + ¼ + … + 1 /(n/2) + 1/(n/2 + 1) + … + 1/n

Hn/2 = 1 + ½ + ⅓ + ¼ + … + 1 / n/2

Hn - Hn/2 = 1/(n/2 + 1) + 1/(n/2 + 2) + … + 1/n

Hn - Hn/2 <= 1/(n/2) + 1/(n/2) + … + 1/(n/2)

Hn - Hn/2 <= (n/2) * 1/(n/2) // 1/(n/2) is being added (n/2) times

Hn - Hn/2 <= 1
Hn <= 1 + Hn/2

Hn ≤ 1 + log n

Hn <= 1 + Hn/2

Hn/2 <= 1 + Hn/4 = 1 + Hn/(2^2)

Hn <= 1 + 1 + Hn/4 = 2 + Hn/(2^2)

Hn <= 1 + 1 + 1 + Hn/8 = 3 + Hn/(2^3)

...

...

...
Hn <= 1 + 1 + 1 … 1 + Hn/(2^k) = k(1) + Hn/(2^k)

when 2^k = n ⇒ k = log(n)

Hn <= logn + H1
Hn <= logn + 1

