
Journal of Parallel and Distributed Computing 62, 945–960 (2002)
doi:10.1006/jpdc.2001.1824

1Thi

An ear

with IC
Scalable Self-Stabilization

Sukumar Ghosh1 and Xin He

Department of Computer Science, University of Iowa, Iowa City, Iowa 52242

E-mail: ghosh@cs.uiowa.edu, xhe@cs.uiowa.edu

Received February 1, 2000; accepted January 11, 2002

This paper presents a methodology for a synchronous non-reactive

distributed system on a tree topology to stabilize from a k-faulty configuration

in a time independent of the size n of the system. In the proposed meth-

odology, processes first measure and compare the sizes of the faulty regions,

and then use this information to schedule actions in such a way that the size

of the faulty regions progressively shrink, until they completely disappear.

We demonstrate that when k processes fail, the stabilization time is Oðk2Þ.
Apart from its applicability to a wide class of problems, the proposed method

achieves scalability with a low space complexity of OðD:ðD:k þ log2 nÞÞ per

process, where D is the maximum degree of a node. # 2002 Elsevier Science (USA)
1. INTRODUCTION

A self-stabilizing distributed system guarantees spontaneous recovery from an

arbitrary bad configuration that may be reached by a failure or a perturbation in the

system. We assume that faults or perturbations instantaneously corrupt the state of

one or more processes, but do not affect the programs in any way. In most of the

stabilization algorithms for distributed systems, the time required to stabilize has no

connection with the severity of the failure, as a result, the time to recover from a

single failure may be as large as the time to recover from a massive failure. This is

undesirable. The goal of a scalable self-stabilizing system is to ensure that the

recovery time indeed depends only on the severity of the failure, and is independent

of the size of the network.

Define a k-faulty configuration as one that is reached by the failure of k processes

from a legitimate configuration. It is quite possible that a particular system

configuration is reachable by k faults from one legitimate configuration, and l faults
(k=l) from another legitimate configuration. In such cases, the number of failures

will be designated by the minimum of (k; l). If the worst-case stabilization time from
s research was supported in part by the National Science Foundation under Grant CCR-9901391.

lier version of this paper was presented at the 4th Workshop on Self-Stabilizing Systems held jointly

DCS ’99.

945 0743-7315/02 $35.00

2002 Elsevier Science (USA)
All rights reserved.

GHOSH AND HE946
an arbitrary k-faulty configuration is independent of the size of the network, then the

self-stabilizing system will be called fault-scalable, or simply scalable. A system is

fault-containing [6], when it recovers from every single failure in Oð1Þ time. A special

version of scalable stabilization, called time-adaptive stabilization, was introduced in

[9] to design a persistent bit protocol, in which the stabilization time is proportional

to the number of faults.

Although the system can stabilize to any one of the legitimate configurations, it is

often desirable, and sometimes expected, that recovery leads to one of the nearest

legitimate configurations. In particular, when failures are believed to be minor in

nature (i.e., k5n, the total number of processes), and there is no ambiguity about

which processes are faulty, it is desirable that non-faulty processes remain

unperturbed during recovery. For this purpose, [6] introduced a new metric called

contamination number defined by the maximum number of processes that can change

their states during recovery from a faulty configuration. Ideally, only the faulty

processes should restore their states to return to the legitimate configuration. When

this is possible, we will say that recovery is ‘‘tight’’, and the contamination number

equals the number of faulty processes. However, this is not always true. The study of

scalable self-stabilization is the study of techniques by which the user can set an

upper bound on metrics like stabilization time, space complexity, and contamination

number, commensurate with the magnitude of the failure, and independent of n. We

limit our study to non-reactive systems only.

The difficulty of constraining the recovery time in stabilizing distributed systems

has been described in [6]. Dolev and Herman [5] presented their superstabilization

protocol, which is a stabilizing protocol with the additional guarantee of fast

convergence when starting from a legitimate configuration the system undergoes a

topology change. Refs. [5,6] emphasize single faults and do not address fault-

scalability. In a related work, Kutten and Patt-Shamir [9] presented a transformer

that converts a synchronous non-reactive persistent-bit protocol into an equivalent

stabilizing protocol whose stabilization time is OðkÞ, k being the number of faulty

processes. They use state replication and local voting for this purpose, which result in

high space (Oðn2Þ per process) and communication complexity. Another transformer

is presented by Afek and Dolev [1] for reactive systems, but once again, the solution

involves high space and communication complexity, combined with a global reset

method that takes over when local stabilization fails. Compared to these methods,

our method achieves fault-scalability with a much lower space complexity, but at the

expense of a higher stabilization time. An asynchronous version of Kutten and Patt-

Shamir’s earlier result is briefly reported in [10].

The proposed methodology works for synchronous models of non-reactive

systems on tree topologies. Our approach leads to a worst-case stabilization time

T ðkÞ ¼ Oðk2Þ rounds from a k-faulty configuration, although for certain classes of

problems, the stabilization time will be simply OðkÞ. The additional space complexity

is OðD:ðD:k þ log2 nÞÞ per process (where D is the maximum degree of a node) for any

value of k. The contamination number depends solely on the location of the faulty

processes, and in some cases it can be as large as n=2. The ability to recover to the

original legal configuration is also determined by the location of the faulty regions.

The paper is organized as follows: Section 2 introduces the model and the notations

SCALABLE SELF-STABILIZATION 947
to be used. Section 3 presents the general idea behind our method. Section 4 gives an

outline of the implementation on a tree topology. Section 5 contains an analysis of

the algorithms, including the various performance issues. Finally, Section 6 contains

some concluding remarks. An appendix illustrating the applicability of our

methodology for some example problems appears at the end.

2. BACKGROUND

2.1. Model, Notations, and Definitions

Consider a tree of n processes. Let D designate the maximum degree of any node

representing a process. A process i is called a leaf if its degree is 1, and we say that

leafðiÞ is true.
Each process communicates with its neighbors using the locally shared memory

model. A global state or configuration of the system is a tuple consisting of the states

of all the processes. We use si to represent the state of process i. We consider a

synchronous model of computation, in which the execution of the protocol is

organized in rounds. In each round, every process obtains the values of the variables

of its immediate neighbors, and executes the protocol simultaneously as a single

atomic step. Note that the information exchange only occurs at the beginning of a

round. The modification to a local variable will not be visible to its neighbors until

next round.

We define a computation to be a sequence of global states ðS0; S1; :::Þ. The global

states or configurations are indexed, starting from S0. The simultaneous execution of

the protocol by all the enabled processes in a round changes the state Si to state Siþ1.

We define Si � Sj if both Si and Sj occur in the same computation and Si occurs
earlier than Sj.

Define the distance between two configurations Si and Sj as the number of

processes whose states need to be modified to reach one from the other. A fault or a

perturbation changes the state of a system from legitimate to illegitimate. A measure

of the extent of this failure is proposed below.

Definition 2.1. A configuration will be called k-faulty, if its smallest distance from

some legitimate configuration is k.

Note that this concept of fault is insensitive to the history of the system. It is more

relative than absolute. Thus, if a massive failure leads the system to a configuration

that is at a unit distance from another legitimate configuration, then that

configuration will be viewed as 1-faulty.

2.2. White and Black Processes

Since our system is non-reactive, in a legitimate configuration, no process is

eligible to execute an action. We call such processes white. A process with an eligible

action will be called black, and the execution of the corresponding action will change

its color to white. A legitimate configuration has only white processes, but in an

arbitrary configuration, some processes may be black.

FIG. 1. An illegitimate configuration with black and white regions.

GHOSH AND HE948
A single failure at a process will change its color from white to black. Depending

on the problem and the legitimacy predicate, one or more of the neighbors of the

faulty process may also turn black. Thus, a failure at any process i can cause at most

ð1þ DÞ white processes (which includes i and its D neighbors) to turn black. These

black processes define a black region of size 1. In general, a black region consists of a

maximal set of contiguous black processes. Such a region has the property that, by

allowing a subset of these processes to execute their actions, their colors become

white without affecting the colors of the neighboring processes. The number of black

processes that will execute such actions determines the size of the black region,

which, for this particular example, is one.

Similarly, in general, a white region consists of a maximal set of contiguous white

processes. In an illegitimate configuration, there will be black processes bordering

the white and black regions (Fig. 1). Due to actions taken by these black processes,

the size of the regions will increase or decrease. When the size of a region decreases

due to the actions of a black border process, we will include that black process into

the region. In a legitimate configuration, there will be only a single white region with

no bordering black process. The identification of the boundaries of white or black

regions will depend on the problem and the protocol. We refer the readers to the

three examples in Appendix A.

3. THE MAIN IDEA

3.1. Shrinking Regions

Assume that due to the failure of one or more processes, multiple regions have

been created in the system. Due to the inadequacy of global knowledge, the non-

faulty processes bordering a region may sometimes falsely believe that they are

faulty, causing them to execute actions that can increase the extent of failure. Our

method uses an intelligent scheduling mechanism, using which, in a time independent

of the size of the network, and commensurate with the magnitude of the failure, a

legitimate configuration is restored by meeting the following two goals:

Goal 1. The number of black regions is reduced to 0.

Goal 2. The number of white regions is reduced to 1.

SCALABLE SELF-STABILIZATION 949
Note that these two goals are not equivalent. A configuration may have two or

more white regions and no black region (see Example 2 in Appendix A).

Informally, the size of a region is determined by the number of processes in that

region. A more precise definition is as follows:

Definition 3.1. The size of a region is the number of processes that have to

change their states so that the region disappears, and the processes in that region

merges with those in a neighboring region. The boundaries of a region are defined by

the leaf and the border processes.

Definition 3.2. For any region, a border process is a black process, whose actions

reduce the number of processes belonging to the region.

It is important to define or identify actions that shrink the sizes of regions by

undoing the effect of failures. An existing algorithm that is known to be stabilizing,

may not have such an action for every type of failure. In such cases, appropriate

recovery actions need to be defined and added to the existing actions of the

processes. From this perspective, the proposed methodology can be viewed as a

transformer that converts a stabilizing solution into a scalable solution.

Given a distributed system and its legitimacy predicate, an illegitimate

configuration will consist of a single black region, or several black and white

regions. In case there are multiple regions, a pair of adjacent regions can be (i) black

and white, or (ii) white and white. To restore legitimacy, we will use the following

strategies:

Strategy 1. Each border process of a black region will schedule recovery actions to

reduce the size of the black region.

Strategy 2. Border processes at the boundary between two or more white regions

will schedule recovery actions on the basis of the relative sizes of the regions around

them, so that the size of the white region of the smallest size2 will be reduced. This

will be called the shortest region first strategy. We will say that the shortest region

‘‘yields’’ to a neighboring region of larger size, or a neighboring region of larger size

‘‘takes over’’ the shortest region.

Repeated application of the above two strategies will lead to the following results:

Lemma 3.1. All black regions belonging to the initial configuration eventually

disappear.

Proof. Every action by a border process of a black region reduces the size of the

black region, and no action by any other process increases its size.]

Lemma 3.1 implies that in a bounded number of actions, the system configuration

will reduce to a set of white regions only.
2When two adjacent white regions have equal sizes, process id’s of the neighboring border processes will

be used as tiebreakers.

GHOSH AND HE950
Theorem 3.1. Starting from a configuration consisting of multiple white regions

only, the shortest region first strategy eventually reduces the number of white regions to

one.

Proof. Starting from a configuration consisting of white regions only (which is

eventually reached per Lemma 3.1), construct a maximal chain of contiguous white

regions ð0; 1; 2; . . . ; i� 1; iÞ in the order of decreasing sizes. The last region i must

either be a boundary region, or be surrounded by regions of larger sizes. In either

case, the length of this chain must be finite. Note that there may be multiple such

maximal chains in a given configuration of the system.

The shortest region first strategy guarantees that actions in each round reduce the

size of region i, until this region disappears, i.e., merges with a neighboring white

region. Repeated application of this strategy will help reduce the number of white

regions to one, and the system will reach a legitimate configuration.]

4. IMPLEMENTATION

4.1. Main Structure

A process can determine its color by examining the states of its immediate

neighbors. This can be completed in Oð1Þ rounds.
The identification of the border processes will depend on the problem

specification, and the legitimacy predicate. To implement Strategy 1, once a black

process learns that it borders a black region, it immediately schedules an action that

shrinks the size of the black region. Multiple border processes may schedule their

shrinking moves at the same time, however, care must be taken so that only non-

neighboring border process execute such moves in the same round.

To implement Strategy 2, border processes of neighboring white regions will be

required to compare their sizes, before the process bordering the shortest

white region executes a shrinking move to reduce its size. This will be done

using a signaling mechanism explained in the next subsection. The life of a typical

process is outlined in Fig. 2. The above program is executed by each process in every

round.
FIG. 2. The main program for every process.

SCALABLE SELF-STABILIZATION 951
4.2. The Signaling Mechanism

Here, we outline a method for comparing the sizes of adjacent white regions. The

probing method resembles echo depth sounding, and works as follows. Once two

adjacent border processes i and j of adjacent white regions identify each other, they

send out waves to probe the sizes of their respective regions using depth-first search

(DFS). The DFS wave is carried forward by white processes inside the region, and is

continued until the other border processes of that region are found. Note that the

task of locating the other boundaries of that region reduces to locating the nearest

black processes or leaf processes in that region. When this is done, an echo of the

wave is carried back to the initiator. This echo contains the count of the processes

visited by the wave using DFS.

While this simple mechanism will work, it has one major weakness: the time

required to compare the size of two regions will depend on the size of the bigger

region. This can be as large as ðn� 1Þ for a single fault, and will prevent the

stabilization time to be independent of the size n of the network, that has been

our original goal. To overcome this shortcoming, we will use an incremental probing

method. In this method, instead of each border process independently sending

out a wave to explore the nearest boundary of its region, adjacent border

processes will coordinate with one another to send out probes of predefined probing

distances. The probing distance acts as a lease, and with each new process visited

using DFS, the probing distance is decremented, until the distance reduces to zero,

and the lease expires. Initially, all the adjacent border processes start with a probing

distance x ¼ 2. For any region, regardless of whether exploration of all the

boundaries using DFS is complete, the echo of the probe will come back after the

expiry of the lease. If all the processes in the region are visited by the probe, then the

echo returns the size of that region, otherwise a failure is reported to the initiator by

returning a ?.

Now, if every probe sent out in the different directions fails to complete the DFS

explorations of the respective regions, then the probing distance is doubled. The

technique is similar to binary search. The comparison of the region sizes using probes

terminates, when the DFS exploration of at least one region is completed. The

following outcomes are possible:

* Exactly one probe returns a size, but all other probes return ?. In this case,
the region whose probe returned the size is the smallest.

* More probes than one return the values of the sizes of their respective
regions. In this case, these regions are smaller than the remaining regions
whose probes returned ?. Once the sizes are known, the smallest one can be
identified by a direct comparison of these sizes. If two sizes are equal then the
identifiers of the border processes will be used as a tiebreaker.

An outline of the size comparison procedure is presented in Fig. 3. The procedure

is simultaneously executed by each set of adjacent border processes of white regions.

Here, ready is a boolean flag that is set to true whenever the border process is ready

to send out the probe. At the end of each probing session, the value of ready is reset

to false.

FIG. 3. The signaling mechanism for comparing the sizes of white regions.

GHOSH AND HE952
There are several algorithms for self-stabilizing DFS token circulation

in the published literature. We can, for example, use the protocol proposed

by Petit and Villain [11] on a tree topology. For DFS, the time required to

traverse any subtree containing k nodes is 2k rounds. Additionally, Petit’s

algorithm uses ðDþ 2Þ states per process, where D is the maximum degree of a

node. The only modification that we need is to load the token with a integer, that will

return the size of the region to the initiator when the traversal is complete, or a �1

(representing ?) when the traversal has to be prematurely terminated following the

expiry of the lease.

Concurrent Probing. Now, take a second look at the maximal chain of white

regions 1; 2; 3; . . . ; i in the order of decreasing sizes. In a tree topology, each of these

regions can have two or more borders. Since no one has global knowledge, it is

conceivable that a region j belonging to this chain may expand due to the local

action of one border process, but contract due to the local action of another border

process. As a result, one may wonder about the real progress of the computation, as

perceived by the growth and shrinkage of the regions. Additionally, the overlapped

actions initiated at multiple borders can cause the measure of the size of a region to

become stale, before a shrinking action is executed. Fortunately, regardless of such

phenomenon, the last region i in the chain can only shrink at each of its borders that

are not leaf processes. Thus, the basic principle of Strategy 2 remains in force,

guaranteeing the progress of computation, and convergence towards a legitimate

configuration.

SCALABLE SELF-STABILIZATION 953
5. ANALYSIS OF THE ALGORITHM

5.1. Time Complexity

Let L be the legitimacy predicate for the original problem, which is defined in terms

of the output variables. The new variables introduced for the implementation of the

algorithm constitute the state variables. The color of a process will depend only on the

output variables, and not on the state variables. The predicate L0 describes the overall
legitimate state, that includes both the output and the state variables.

If L is true, we say the system has reached output stabilization. If L0 is true, then the

state variables have also stabilized. Once the output variables have stabilized leading

to the formation of one white region, the DFS probing is unnecessary, so the state

stabilization is quiescent. The DFS probe is triggered by black processes bordering

adjacent white regions.

Theorem 5.1. L? L0 in OðnÞ rounds.

Theorem 5.2. A black region of size k disappears in OðkÞ rounds.

Proof. Regardless of the problem specification, a border process of a black region

can identify itself in Oð1Þ rounds. Since in each round thereafter, the size of the black

region reduces by 1, it takes at most OðkÞ rounds for the black region to completely

disappear.]

Note. In fact, due to multiple non-neighboring processes simultaneously executing

their moves, the time for a black region to disappear will be OðDÞ where D is the

diameter of the black region.

Theorem 5.3. Consider a maximal chain of white regions 0; 1; 2; . . . ; i� 1; i in the

order of decreasing sizes. Then the smallest region i will shrink and merge with a

neighboring white region is OðS2ðiÞÞ rounds, where SðiÞ is the size of the smallest

region i.

Proof. Using probing distances 2; 4; 8; 16; . . . , it takes OðSðiÞÞ rounds for

a number of adjacent border processes (i.e., a border process of i and its

neighboring border processes) to identify region i as the region of smallest size.

This is followed by a move that will shrink the size of the region by at least one.

Therefore, in

OðSðiÞ þ ðSðiÞ � 1Þ þ ðSðiÞ � 2Þ þ 	 	 	 þ 2þ 1Þ;

i.e., OðS2ðiÞÞ rounds, the region i will disappear and merge with a neighboring white

region.]

Theorem 5.4. If a failure hits k adjacent processes, and the region formed by the

faulty processes is smaller than the remaining white regions, then the stabilization time

is Oðk2Þ rounds.

Proof. If the faulty region is a black region, then the system will stabilize in OðkÞ
rounds (Theorem 5.2). The stabilization time will be worse, when the region is white.

FIG. 4. All regions are white. (a) The white region at the middle takes over the smaller white region

before yielding to the largest white region. (b) A bad scenario.

GHOSH AND HE954
The result immediately follows from Theorem 5.3, since the k-faulty region is the

smallest white region.]

If the faulty processes form a single region that is larger than one of the remaining

white regions, then the stabilization time will be determined by the size of the

smallest region that will shrink in the final stage. Consider the faulty configuration in

Fig. 4a. Here, the white region at the middle created by the faulty processes will first

take over the neighboring white region whose size is smaller than k, before shrinking
and restoring stability. The stabilization time in such cases is still Oðk2Þ, although the

constant might be bigger. This also leads to the issue of contamination. During

stabilization, the processes belonging to the smaller region have to temporarily

change their states (to be consistent with the affected region) before stabilizing to the

original configuration. Such contaminations are an unavoidable part of the proposed

algorithm.

Now, consider that the k faulty processes are not contiguous, i.e., they do not form

a single faulty region. How does it affect the stabilization time? Assume that the

faulty processes have formed r disjoint white regions 0; 1; 2; 	 	 	 ; r � 1, and the

number of processes in region i is ki. Thus,

k ¼ k0 þ k1 þ k2 þ 	 	 	 þ kr�1:

If each white region ki is bordered by white regions of larger size, then the recovery

time for that region is Oðk2i Þ, and the entire system will stabilize in time T ðkÞ rounds,
where

T ðkÞ ¼Oðk20 þ k21 þ k22 þ 	 	 	 þ k2r�1Þ

¼Oðk2Þ:

In fact, due to the synchronous operation of the schedulers, the various regions

will start shrinking simultaneously, and the stabilization time is Oðk2maxÞ, where, kmax
is the maximum size of the white region formed by the faulty processes.

SCALABLE SELF-STABILIZATION 955
A bad scenario corresponds to the existence of a chain of white regions of sizes

1; 1; 2; 4; 8; 16; . . ., the odd numbered regions being created by failures, and the even

numbered ones being the leftover white regions (Fig. 4b). In this case, the stabilization

will take place as follows: the first region will take over the second one, the sum total

of these two will take over the third one, and so on. Assume that there are ð1þ rÞ
odd-numbered white regions created by the failure of k processes. Then,

k ¼ 1þ 2þ 8þ 32þ 128þ 	 	 	 þ ðr þ 1Þterms

¼ 1þ 2=3 	 ð4r � 1Þ :

In this case, the stabilization time T ðkÞ from the k-faulty configuration will be

T ðkÞ ¼Oð12 þ 22 þ 42 þ 82 þ 162 þ 	 	 	 þ ð2r þ 1ÞÞterms

¼Oð1þ 4=3 	 ð42r � 1ÞÞ :

It follows from the above that T ðkÞ ¼ Oðk2Þ. In fact, due to the synchronous

operation of the schedulers, the recovery will be faster that what has been shown in

the above estimate. We conjecture that from every possible k-faulty configuration,

the system will stabilize in Oðk2Þ rounds.
Per Theorem 5.1, once L is restored, the state stabilization is completed inOðnÞ rounds.

5.2. Space Complexity

The space complexity is determined by the variables required in the DFS probing.

Using [11], the number of variables is ðDþ 2Þ per process per probe. Since probes can
be concurrently sent out by every border process, and there can be at most k:D
border processes for the k-faulty processes in the region, the space complexity will be

Oðk:D2Þ. This will take care of all query-response variables that might be needed to

complete the probes. Additionally, since process identifiers are used to break ties

while comparing the sizes of adjacent regions, an extra space of OðDlog2 nÞ per

process will be required. Therefore, the overall space complexity is OðD:ðk:Dþ
log2 nÞÞ per process.

Note that the space complexity depends on k, so the space requirement decreases

as the Extent of the failure decreases. During stabilization, the faulty regions

progressively shrink, until their sizes reduce to zero. This makes our algorithm

memory adaptive, when dynamic memory management is available.

5.3. Contamination

The degree of contamination is determined by the number of non-faulty processes

that might have to change their output variables before the system reaches a stable

configuration, and is called the contamination number. Note that the study of

contamination is meaningful, only when the system is destined to return to its

original configuration. We focus on a few cases here.

Case 1. Assume that the faulty processes form one contiguous black region of size

k. Since black regions shrink regardless of their sizes and the characteristics of their

neighborhood, no contamination is foreseen.

White region of
size n/2

(a)

Faulty white region

of size k

Several white regionsSeveral white regions

each of size k-1 each of size k-1

A
each of size k-1

Several white regionsFaulty white region
of size k

(b)

FIG. 5. An illustration of contamination during stabilization. In (a) the system recovers to the original

configuration, but in (b), it is not so, even if k5n.

GHOSH AND HE956
Case 2. Assume that the faulty processes form a single white region of size k
(Fig. 5a). In this case, this region, before shrinking, can take over one or more

adjacent regions of size k or smaller, before yielding to a white region of size greater

than or equal to n=2. In this specific case, the contamination number is n=2, but the
system is guaranteed to recover to its original configuration. However, regardless of

the value of k, the ability to recover to the original legal configuration will depend on

the location of the faulty processes. For example, in Fig. 5b, even if k is a small

fraction of n, the system will not recover to the original legal configuration, since the

size of each of the adjacent regions is smaller than k.
Case 3. When the faulty processes form a single white region of size k, and k > n=2,

the system does not recover to the original configuration, so the estimation of

contamination is meaningless.

6. CONCLUSION

The classification of processes into black and white provides a general framework

for addressing the problem of stabilization where the recovery time scales with the

number of failures, and not with the size of the network. This method has been

illustrated on tree networks only. The case of general networks requires additional

investigation. Some cases of cyclic topology cannot be directly handled using this

SCALABLE SELF-STABILIZATION 957
approach. For example, in a cyclic topology, if failures turn every process black, then

there will be no border process that can be entrusted with initiating the recovery.

Given a stabilization protocol, sometimes new actions have to be added to

implement scalable self-stabilization as explained in Examples 2 and 3 of Appendix

A. Readers are cautioned that unless our methodology is used, these new actions can

potentially prevent the system from reaching stability when used along with the

actions of the original protocol.

The recovery mechanism proposed in the paper depends on the map of the black

and white regions, which is related to the number of faulty processes. We

demonstrate that, the stabilization time scales with the number of faulty processes,

and is independent of the size of the network. Moreover, the stabilization time from

a configuration containing two or more regions of k contiguous faults separated by

regions of size k þ 1 or more, will be the same as that from a single faulty region of

size k.
There are many systems in which it is impossible to have adjacent white regions in

an illegitimate configuration. In such cases, stabilization only requires application of

Strategy 1, which can be done in OðkÞ time. Only when there is a possibility of

adjacent white regions being present in an illegitimate configuration, the worst case

figures of stabilization and contamination are applicable.

Another form of local stabilization addressed in these contexts is k-stabilization
[3]. This ensures that if less than k failures occur (for a known k), then the

stabilization time is Oðk2Þ. Without a prior estimate of k, this method can be

expensive in terms of time, since no performance benefit is guaranteed when the

actual number of failures is 5k.
Apart from general applicability to a wide class of problems, our method is space-

efficient. Furthermore, since only a small fraction of the black processes initiate the

recovery by comparing the sizes of their local regions, the communication

complexity, measured by the number of shared registers read or written in each

round, is low. The communication overhead monotonically decreases with the

number of regions. Since the state stabilization is quiescent, the communication

complexity reduces to zero when a legitimate configuration is reached. This is in

contrast with the method proposed in [9], where an active broadcast is used, and the

communication complexity remains unchanged regardless of whether the system

reaches a legitimate configuration.

Our method does not cost any extra memory in the legitimate state, which is of

significance when dynamic memory allocation is used. An asynchronous version of our

algorithm for a more restricted class of topology (chain of processes) appears in [7].

APPENDIX A

We present here three example systems, illustrate the formation of black and white

regions, and discuss about the applicability of the methodology presented in this

paper.

Example 1. This example is about maximal matching on a chain of processes.

Each process i should find a neighboring matching process j and set its pointer

FIG. 6. An illegitimate configuration for the system of Example 1.

FIG. 7. An illegitimate configuration for the system of Example 2.

GHOSH AND HE958
towards that process. A process is allowed to remain single, only if there is no

unmatched neighbor } in this case, the process will reset its pointer to null. A

stabilizing algorithm for maximal matching appears in [8].

Figure 6 shows an illegitimate configuration for this system. It has two white

regions separated by a black region. The configuration is 2-faulty. As soon as the

black processes execute moves, the system recovers to a legitimate configuration.

Note that, in this system, there will not be adjacent white regions. The system

returns to a legitimate configuration as soon as the black regions disappear. This

expedites the recovery, since stabilization is possible in OðkÞ time, k being the number

of faulty processes.

Example 2. Consider the tree network of Fig. 7. Each process has a variable x
whose value belongs to the set f0; 1; 2g. In a legitimate configuration, we want the

values of each of these processes to be identical. For stabilization only, the following

protocol (for every process i) would work:

do 9j 2 N ðiÞ : xðjÞ ¼ xðiÞ �3 1-xðiÞ :¼ xðjÞod:

However, to apply our methodology, the above protocol is not adequate. To

realize this, consider a 1-faulty configuration in which the faulty process is in state 1,

and every other process is in state 0. Using the above protocol, the system can only

recover to a legitimate configuration in which the state of every process is 1, and the

time to reach this configuration will depend on the size of the network! This is

undesirable.

FIG. 8. An illegitimate configuration for the spanning tree of Example 3.

SCALABLE SELF-STABILIZATION 959
To apply our methodology, we modify the protocol (for process i) as follows:

do9j 2 N ðiÞ : xðiÞ=xðjÞ-xðiÞ :¼ xðjÞod:

Now, there are three white regions adjacent to one another. Interestingly, the

black processes at the border of these regions do not form a black region, since

actions taken by them will not cause the region to disappear. These black processes

serve as the border processes of these regions, and for this reason, we include them in

the white regions. The black color can be attributed to the mutual inconsistency

among the three white regions. The occurrence of adjacent white regions is typical in

consensus-type protocols.

Example 3. The final example is that of a stabilizing spanning tree construction,

based on the well-known protocol by Chen et al. [4]. Each process has two variables:

a parent variable P points to a parent of that node, and a level variable L that is set to

LðP Þ þ 1.

The example in Fig. 8 shows that, due to one process d accidentally corrupting its

pointer P , the system has entered an illegitimate configuration since the parent

pointers formed a directed cycle. The original stabilization protocol in [4] is as follows:

ðLðiÞ=nÞ ^ ðLðiÞ=LðP ðiÞÞ þ 1Þ ^ ðLðP ðiÞÞ=nÞ - LðiÞ :¼ LðP ðiÞÞ þ 1,
ðLðiÞ=nÞ ^ ðLðP ðiÞÞ ¼ nÞ - LðiÞ :¼ n,
ðLðiÞ ¼ nÞ ^ ð9k 2 N ðiÞ : LðkÞ5n� 1Þ - LðiÞ :¼ LðkÞ þ 1; P ðiÞ :¼ k.

If the faulty process is able to reset its parent pointer to the correct value, then the

system will return to a legitimate configuration in one step. Interestingly, the

available actions in the protocol do not leave room for such an action! The recovery

is initiated after every process in the directed cycle executes the action

L=LðP Þ þ 1-L :¼ LðP Þ þ 1. This makes the value of L grow up to the size of the

network n, following which the errand process resets its parent pointer. Accordingly,

the stabilization time depends on n.
To apply the proposed methodology, we need to modify the existing protocol by

adding at least one additional action:

ðLðiÞ= LðP ðiÞ þ 1ÞÞ ^ ðLðiÞ5n� 1Þ ^ 9j 2 N ðiÞ : LðjÞ

¼minfLðkÞ : k 2 N ðiÞg-P ðiÞ :¼ j; LðiÞ :¼ LðjÞ þ 1:

Furthermore, since by definition, the root has a level 0, and we want the disjoint

segments to merge with the root segment in a consistent manner, we need to define

any white region containing the root as the region of largest size, regardless of the

GHOSH AND HE960
number of processes contained in that region. This will enable every other white

region to merge with the white region containing the root, using the shortest-first

strategy.

For the current example, the black process d (which is a black region with only

one process in it) will execute a move per strategy 1, and restore the original

configuration.

ACKNOWLEDGMENTS

We acknowledge the constructive criticisms from the reviewers that led to

substantial improvements in the content as well as the presentation of the paper. We

also thank Sriram V. Pemmaraju for his help with the performance analysis of the

algorithms.

REFERENCES

1. Y. Afek and S. Dolev, Local stabilizer, in ‘‘Proceedings of the Fifth Israeli Symposium on Theory of

Computing and Systems,’’ pp. 74–84, 1997.

2. J. Beauquier, S. Delaet, S. Dolev, and S. Tixeuil, Transient fault detectors, in ‘‘DISC’98,’’ pp. 62–74,

1998.

3. J. Beauquier, C. Genolini, and S. Kutten, Optimal reactive k-stabilization: The case of mutual

exclusion, in ‘‘Proceedings of the 18th Annual Symposium on Principles of Distributed Computing,’’

pp. 209–218, 1999.

4. N.S. Chen, H.P. Yu, and S.T. Huang, A self-stabilizing algorithm for constructing spanning trees,

Inform. Process. Lett. 39 (1991), 147–151.

5. S. Dolev and T. Herman, Superstabilizing protocols for dynamic distributed systems, Chicago

J. Theoret. Comput. Sci. 3(4) (1997).

6. S. Ghosh, A. Gupta, T. Herman, and S.V. Pemmaraju, Fault-containing self-stabilizing algorithms, in

‘‘Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing,’’

pp. 45–54, 1996.

7. S. Ghosh and X. He, Scalable self-stabilization, in ‘‘Proceedings of the Third Workshop on Self-

Stabilizing Systems’’ (published in association with the 19th IEEE International Conference on

Distributed Computing Systems ICDCS’99), pp. 18–24, 1999.

8. S.C. Hsu and S.T. Huang, A self-stabilizing algorithm for maximal matching, Inform. Process. Lett. 43

(1992), 77–81.

9. S. Kutten and B. Patt-Shamir, Time-adaptive self stabilization, in ‘‘Proceedings of the 16th Annual

ACM Symposium on Principles of Distributed Computing,’’ pp. 149–158, 1997.

10. S. Kutten and B. Patt-Shamir, Asynchronous time-adaptive self-stabilization, in ‘‘Proceedings of the

17th Annual ACM Symposium on Principles of Distributed Computing,’’ pp. 319, 1998.

11. F. Petit and V. Villain, Time and space optimality of distributed depth-first token circulation

algorithms, ‘‘DIMACS Workshop on Distributed Data and Structures,’’ pp. 91–106, Carleton

University Press, Princeton, NJ, 1999.

	1. INTRODUCTION
	2. BACKGROUND
	FIGURE 1

	3. THE MAIN IDEA
	4. IMPLEMENTATION
	FIGURE 2
	FIGURE 3

	5. ANALYSIS OF THE ALGORITHM
	FIGURE 4
	FIGURE 5

	6. CONCLUSION
	APPENDIX A
	FIGURE 6
	FIGURE 7
	FIGURE 8

	ACKNOWLEDGMENTS
	REFERENCES

