Fixedpoint Study Solution

We always start with the initial approximation f_0 that is completely undefined. Then each successive approximation is generated by inserting the previous one into the functional form f(n) = if n=0 then 0 else n + f(n-1).

$$f_0(n) = \downarrow$$

$$f_1(n) = if n=0$$
 then 0 else $n + f_0(n-1) = if n=0$ then 0 else $n + 1 = if n=0$ then 0 else $1 = 1$

- $f_2(n) = if n=0$ then 0 else $n + f_1(n-1) = if n=0$ then 0 else n + (if (n-1)=0 then 0 else $\downarrow)$
 - = if n=0 then 0 else if n=1 then 1 else \perp
- $f_3(n) = if n=0$ then 0 else $n + f_2(n-1) = if n=0$ then 0 else $n + f_2(n-1)$
 - = if n=0 then 0 else n + (if (n-1)=0 then 0 else if (n-1)=1 then 1 else \downarrow)
 - = if n=0 then 0 else if n=1 then 1 else if n=2 then 3 else \perp

The initial approximation (f_0) is defined nowhere. Approximation f_1 is defined only for n=0, approximation f_2 for n<2, and in general, approximation f_k is defined for n<k. Where an approximation is defined, at each stage the argument n is added into the result from the previous stage for argument n–1. So when it's defined, the result is n + (n–1) + (n–2) + ... Therefore, in general

$$f_{k}(n) = if n \le k$$
 then $\binom{n}{\sum_{i=1}^{n}} i$ else $\perp = if n \le k$ then $n^{*}(n+1)/2$ else \perp .

Since in the limit k is unbounded, lub $\{f_k\} = f$, where $f(n) = n^*(n-1)/2$ for all $n \ge 0$.