Fixedpoint Study Solution

We always start with the initial approximation f_{0} that is completely undefined. Then each successive approximation is generated by inserting the previous one into the functional form $\mathrm{f}(\mathrm{n})=$ if $\mathrm{n}=0$ then 0 else $\mathrm{n}+\mathrm{f}(\mathrm{n}-1)$.

$$
\begin{aligned}
f_{0}(n) & =\perp \\
f_{1}(n) & =\text { if } n=0 \text { then } 0 \text { else } n+f_{0}(n-1)=\text { if } n=0 \text { then } 0 \text { else } n+\perp=\text { if } n=0 \text { then } 0 \text { else } \perp \\
f_{2}(n) & =\text { if } n=0 \text { then } 0 \text { else } n+f_{1}(n-1)=\text { if } n=0 \text { then } 0 \text { else } n+(\text { if }(n-1)=0 \text { then } 0 \text { else } \perp) \\
& =\text { if } n=0 \text { then } 0 \text { else if } n=1 \text { then } 1 \text { else } \downarrow \\
f_{3}(n) & =\text { if } n=0 \text { then } 0 \text { else } n+f_{2}(n-1)=\text { if } n=0 \text { then } 0 \text { else } n+f_{2}(n-1) \\
& =\text { if } n=0 \text { then } 0 \text { else } n+(\text { if }(n-1)=0 \text { then } 0 \text { else if }(n-1)=1 \text { then } 1 \text { else } \perp) \\
& =\text { if } n=0 \text { then } 0 \text { else if } n=1 \text { then } 1 \text { else if } n=2 \text { then } 3 \text { else }+
\end{aligned}
$$

The initial approximation $\left(f_{0}\right)$ is defined nowhere. Approximation f_{1} is defined only for $n=0$, approximation f_{2} for $\mathrm{n}<2$, and in general, approximation f_{k} is defined for $\mathrm{n}<\mathrm{k}$. Where an approximation is defined, at each stage the argument n is added into the result from the previous stage for argument $n-1$. So when it's defined, the result is $n+(n-1)+(n-2)+\ldots$ Therefore, in general
$f_{k}(n)=$ if $n \leq k$ then $\left(\sum_{i=1}^{n}\right.$ I) else $\perp=$ if $n \leq k$ then $n^{*}(n+1) / 2$ else \perp.
Since in the limit k is unbounded, lub $\left\{f_{k}\right\}=f$, where $f(n)=n^{*}(n-1) / 2$ for all $n \geq 0$.

