String Notations

For a set C of characters, the notation C^{*} denotes the set of all finite strings over C . Each $x \square C^{*}$ has a length, len $(x) \geq 0$, the number of characters in string x. The null string which has length 0 is included in C^{*} and is written as \square.

For strings $u, v \square C^{*}$, their concatenation is $u v \square C^{*}$ (u followed by v) and len(uv) = $\operatorname{len}(u)+\operatorname{len}(v)$. Also for $w \square C^{*}$ and $n \geq 0$ an integer, $w^{n}=w w \ldots w$ (n copies) is the $n-$ fold concatenation of w with itself, and $w^{0}=\square$. Note that $w^{n} w^{m}=w^{n+m}$ for all $m, n \geq 0$.

A language is just a subset of C *. Since a language L is a set, we may speak of its cardinality (number of elements), card(L). For sets of strings $S, T \square C^{*}$ we perform the usual set-theoretic operations of union, intersection and complementation. We also perform set concatenation $S \bullet T$ to get a new set $S \bullet T=\{$ st $\mid s \square S$ and $t \square T\}$. We can observe that $\operatorname{card}(S \bullet T) \leq \operatorname{card}(S) * \operatorname{card}(T)$. We also use the notation S^{n} to denote the set of strings $S \bullet S \bullet \ldots \bullet S$ (n copies), where $S^{0}=\{\square\}$. And set iteration or star is defined as an arbitrary number of iterations, $S^{*}=S^{0} \square S^{1} \square \ldots \square S^{n} \square \ldots$ The laws of exponents are valid for the power notation for set concatenation as well as string concatenation.

Regular Expressions

The set operations \square, \bullet, and * are called the regular expression operations. A regular expression is a prototypical description of a language. A regular expression over a character set C is a formula (or pattern) involving characters from C plus several auxiliary symbols, constructed according to the following rules:
(1) each CD C is a regular expression, and auxiliary symbols \square and \varnothing are regular expressions;
(2) using additional auxiliary symbols I (or), • (concatenation), * (star), and parenthesis, if A and B are regular expressions, then so are
(a) $(A \mid B)$,
(b) $(A \cdot B)$, and
(c) $\left(\mathrm{A}^{*}\right)$;
(3) only formulas constructed by repeated application of rules (1) and (2) are regular expressions.

The formal rules for writing regular expressions as given above require a fully parenthesized form. To provide a more practical format, the regular expression operations are given precedence so that parenthesis can often be omitted: * is highest, • is intermediate, and I is lowest; also, in place of A - B we normally write AB. Each regular expression A denotes a language $L(A) \square C^{*}$, referred to as a regular language, as defined by:

```
\(\mathrm{L}(\mathrm{C})=\{\mathrm{C}\}\) for DC C ,
\(L(\square)=\{\square\}\),
\(L(\varnothing)=\varnothing\),
if \(A=B \mid C\), then \(L(A)=L(B) \square L(C)\),
if \(A=B \bullet C\), then \(L(A)=L(B) \bullet L(C)\),
if \(A=B^{*}\), then \(L(A)=(L(B))^{*}\).
```


Examples

For all these examples we take the character set $\mathrm{C}=\{0,1\}$. Note that a regular expression written in precedence-oriented shorthand such as $(00)^{*} 1^{*}$ in the fully parenthesized form of the formal definition would be written as $\left(\left((0 \bullet 0)^{*}\right) \bullet\left(1^{*}\right)\right)$. We use precedence conventions in these examples:

- $001|010| 100$ denotes the language with three strings $\{001,010,100\}$
- ($0 \mid 1)^{*}$ denotes the (infinite) language consisting of all strings, $\{\square 0,1,00,01, \ldots\}$
- $0(0 \mid 1)^{*}$ denotes the (infinite) language consisting of all strings beginning with ' 0 '
- $(0 \mid 1)^{*} 1$ denotes the (infinite) language consisting of all strings ending with ' 1 '
- $0^{*}\left(10^{*} 10^{*}\right)^{*}$ denotes the (infinite) language consisting of all strings having an even number of '1's
- $0|1| 0(0 \mid 1)^{*} 0 \mid 1(0 \mid 1)^{*} 1$ denotes the (infinite) language consisting of all strings with the same first and last character

