String Notations

For a set C of characters, the notation C^* denotes the set of all finite strings over C. Each $x \in C^*$ has a **length**, $len(x) \ge 0$, the number of characters in string x. The **null string** which has length 0 is included in C^* and is written as ε .

For strings $u,v \in C^*$, their **concatenation** is $uv \in C^*$ (u followed by v) and len(uv) = len(u) + len(v). Also for $w \in C^*$ and $n \ge 0$ an integer, $w^n = ww \dots w$ (n copies) is the n-fold concatenation of w with itself, and $w^0 = \varepsilon$. Note that $w^n w^m = w^{n+m}$ for all $m, n \ge 0$.

A **language** is just a subset of C^{*}. Since a language L is a set, we may speak of its cardinality (number of elements), card(L). For sets of strings $S,T \subseteq C^*$ we perform the usual set-theoretic operations of union, intersection and complementation. We also perform **set concatenation** S • T to get a new set S • T = { st | s \in S and t \in T}. We can observe that card(S • T) \leq card(S) * card(T). We also use the notation Sⁿ to denote the set of strings S • S • ... • S (n copies), where S⁰ = { ϵ }. And **set iteration** or **star** is defined as an arbitrary number of iterations, S^{*} = S⁰ \cup S¹ \cup ... \cup Sⁿ \cup ... The laws of exponents are valid for the power notation for set concatenation as well as string concatenation.

Regular Expressions

The set operations \cup , \bullet , and ^{*} are called the *regular expression* operations. A regular expression is a prototypical description of a language. A **regular expression** over a character set C is a formula (or pattern) involving characters from C plus several auxiliary symbols, constructed according to the following rules:

- each λ∈C is a regular expression, and auxiliary symbols ε and Ø are regular expressions;
- (2) using additional auxiliary symbols I (or), (concatenation), * (star), and parenthesis, if A and B are regular expressions, then so are
 - (a) (A | B),
 - (b) (A B), and
 - (c) (A^{*});
- (3) only formulas constructed by repeated application of rules (1) and (2) are regular expressions.

The formal rules for writing regular expressions as given above require a fully parenthesized form. To provide a more practical format, the regular expression operations are given precedence so that parenthesis can often be omitted: * is highest, • is intermediate, and I is lowest; also, in place of A • B we normally write AB. Each regular expression A denotes a language $L(A) \subseteq C^*$, referred to as a *regular language*, as defined by:

L(λ) = { λ } for $\lambda \in C$, L(ϵ) = { ϵ }, L(\emptyset) = \emptyset , if A = B | C, then L(A) = L(B) \cup L(C), if A = B[•]C, then L(A) = L(B) • L(C), if A = B^{*}, then L(A) = (L(B))^{*}.

Examples

For all these examples we take the character set $C = \{0,1\}$. Note that a regular expression written in precedence-oriented shorthand such as $(00)^* 1^*$ in the fully parenthesized form of the formal definition would be written as $(((0 \cdot 0)^*) \cdot (1^*))$. We use precedence conventions in these examples:

- 001 | 010 | 100 denotes the language with three strings {001, 010, 100}
- $(0 \mid 1)^*$ denotes the (infinite) language consisting of *all* strings, { ϵ , 0, 1, 00, 01, ... }
- 0(0 | 1)* denotes the (infinite) language consisting of *all* strings beginning with '0'
- (0 | 1)*1 denotes the (infinite) language consisting of *all* strings ending with '1'
- 0*(10*10*)* denotes the (infinite) language consisting of *all* strings having an even number of '1's
- $0 \mid 1 \mid 0(0 \mid 1)*0 \mid 1(0 \mid 1)*1$ denotes the (infinite) language consisting of *all* strings with the same first and last character