
22C:111

page 1 of 3

BNF Processing in Prolog
Language Recognition and Parsing

Introduction
BNF provides a means to formally describe programming languages, communications
protocols, and a variety of other aspects of computing that are sequence oriented. The
purpose of these descriptions is to serve as a precise basis for the understanding and
use of a notation. In this article, we provide a brief introduction to how program language
processing is accomplished.

Program language processing is normally divided into four phases: lexical analysis,
parsing, compilation, and execution.
• Lexical analysis consists of processing a string of characters and assembling them into a

list of “tokens” — basic units such as identifiers — that comprise the program text of
interest. This process depends on language conventions about white space and
comments that are removed in this phase.

• Parsing is the process of recognizing a valid program and transforming it into the
hierarchical structure of its components — the derivation tree. This phase normally
operates on the result of the lexical analysis.

• Compiling is the process of transforming the derivation tree into executable code, either
for actual computer hardware or for a virtual machine.

• The final phase is the execution of the generated code.

For this discussion, we will treat only simple BNF that includes no white space or comment
conventions. Therefore, there will be no discussion of lexical processing, and the parser
will act directly on character strings rather than on “tokens”.

Language Recognition
Language recognition and parsing have much in common (in fact almost everything). We
will begin by examining the recognition problem, and subsequently add the small changes
needed to perform parsing. BNF defines a language, and in fact, we can use one BNF to
determine several languages by selecting various of the non-terminals as a start symbol.
We utilize that perspective in the method we develop. When we write BNF in this
discussion, we will use upper case to denote non-terminals, and lower-case to denote
terminals. If we are considering the language L(A) for a non-terminal A, then each of its
productions provides one of the ways to qualify a string in the language. Suppose one of
the productions is A Æ aAbA. Then this production qualifies a string s into L(A) provided s
= axby where x and y are substrings also both in L(A). Given an arbitrary candidate
string, it can be tested by seeing if it can be decomposed into axby where x and y are
also in L(A). in Prolog, the append utility, together with recursion, is perfectly suited to this
task. If we have an (unknown) candidate string Ws, and if the goal append([a|Xs], [b|Ys],
Ws) succeeds, then we will have one possible solution for Xs = x, and Ys = y. This
leaves only the tests on Xs and Ys. Hence a suitable clause for this production is

langA(Ws) :- append([a|Xs], [b|Ys], Ws), langA(Xs), langA(Ys).
The fact that Prolog’s append processing will search for all possible ways of
decomposing a string Ws (there may be numerous points where a potential interior 'b'
may key the decomposition) ensures that this process will reliably determine if the given
production can apply.

The example in the previous paragraph illustrates a process that is sufficiently general to
be adapted to any production. There is always one predicate for each non-terminal. And
for each production for a non-terminal, there is exactly one corresponding clause. If the
production is terminating, the clause is a fact, and if the production is non-terminating, the
clause is conditional. For conditional clauses, the body of the clause is based on the right-
hand side of the production. The body of a conditional clause uses the 'append' predicate
to split a candidate string into pieces that correspond to the components of the right-hand
side of the production. Since 'append' produces only two pieces, we may need to use
'append' repeatedly if there are more than two components. For instance, for A Æ BCD, a

22C:111

page 2 of 3

candidate string Ws must be split into 3 pieces, Bs, Cs, and Ds. This can be done using
append twice,

append(Bs,Xs,Ws), append(Cs,Ds,Xs).
The first append goal generates a first component, Bs, and then the second and third
components, Cs and Ds, are extracted by splitting the other component, Xs, of the first
goal. This process can be repeated if there are more pieces to be extracted. Then the
corresponding pieces must be tested to see if they match as required, e.g., langB(Bs),
etc. Since append will succeed for every possible way of splitting a candidate string into
pieces, this provides an exhaustive search for an appropriate structure in a candidate
string.

We illustrate the application of this process to the BNF appearing in Figure 1. This
grammar defines the language consisting of all sequences of 'a' and 'b' (regardless of
character order), where the number of 'a's is equal to the number of 'b's (why?).

A Æ e
A Æ aAbA
A Æ bAaA

Figure 1.

Since there is only one non-terminal, there is just one predicate we will call 'langA'. There
are three productions for A, so there are three clauses for langA. Each clause is modeled
as the right side of a corresponding production. For the terminating production A Æ e, we
have the following fact: langA(""). That is, according to this production, the null string (i.e.,
empty list) should be recognized (i.e., succeed). For the production A Æ aAbA, the
candidate string must be split into pieces using append, and the pieces tested. The
clause is

langA(Xs) :- append([97|A1], [98|A2], Xs), langA(A1), langA(A2).
Since the parameter Xs will be a Prolog string, the lists will contain ASCII codes. Therefore
we used the ASCII codes for 'a' and 'b' to identify the break points to split Xs (the 'name'
predicate could be inserted to have the system supply these codes). An entirely similar
analysis is used for the third production. The completed predicate definition appears in
Figure 2.

langA("").
langA(Xs) :- append([97|A1], [98|A2], Xs), langA(A1), langA(A2).
langA(Xs) :- append([98|A1], [97|A2], Xs), langA(A1), langA(A2).

Figure 2.

Queries using 'langA' will then succeed precisely when the argument belongs to L(A).
And, in fact, if the argument is a variable, elements of the language can be generated one
after another!

Parsing
The analysis we have performed for language recognition requires only a small additional
step to accomplish parsing — that is, to not only decide if a string is described by the
BNF, but if it is, to construct its derivation tree. To accomplish this additional processing,
we must provide a place for the derivation tree to be retained. This will be a second
parameter for the predicate. Also, to reflect the extended role of the resulting predicate we
will change its name (e.g., instead of 'langA', 'parseA'). Other than adding suitable
parameters in the recursive calls, the bodies of the clauses of this new predicate just
duplicate those of the recognition predicates.

The derivation trees are represented by Prolog terms. Prolog terms provide a very direct
representation of trees. The top level operator names the root node of the tree, the
number of child nodes is the number of arguments, and each argument term is just the
representation of the corresponding subtree. So for example, the term

22C:111

page 3 of 3

p2(a, p1, b, p3(b, p1, a, p1)) is the term form of the tree in Figure 3.

Figure 3.

For purposes of describing derivation trees, we attach a name (or label) to each of the
productions of the BNF. These names are arbitrary, but in a programming language
context, the names are chosen to be suggestive of their role constructing the language.
We continue the example of the previous section, and add labels to the productions as
shown in Figure 4. Using these production labels, Figure 3 depicts a derivation tree for the
string "abba".

p1: A Æ e
p2: A Æ aAbA
p3: A Æ bAaA

Figure 4.

Then in each of the language recognition clauses, the corresponding production name is
recorded in the head of the clause, and the calls in the body complete the evaluation of the
subtrees as they are used to recognize the candidate string. Thus a parsing predicate is
given in Figure 5. It is directly based on the predicate in Figure 2

parseA("", p1).
parseA(Xs, p2(a,T1,b,T2)) :- append([97|A1], [98|A2], Xs),

parseA(A1,T1), parseA(A2,T2).
parseA(Xs, p3(b,T1,a,T2)) :- append([98|A1], [97|A2], Xs),

parseA(A1,T1), parseA(A2,T2).
Figure 5.

For instance, in the second clause, the head of parseA records that this step is an
application of production p2 and involves the location of characters 'a' and 'b' as indicated,
plus subtrees to be constructed by parsing the corresponding pieces of the candidate
string Xs as constructed by the append goal. Subsequent parsing failure will cause
backtracking to 'append' for another possible decomposition (if any) of string Xs.

In the example presented here, we have included the terminal symbols (a, b) in the
derivation trees. In programming language processing, these symbols are needed to
construct the derivation tree, but need not be retained after it is constructed. For instance,
to process an if-statement,

if (<Boolean>) {<then-part>} else {<else-part>}
we need information about <Boolean>, <then-part>, and <else-part>, but once these parts
are extracted, it is of no help to retain the 'if', 'else' and other punctuation characters.
Therefore, in practical programming language processing, the terminal characters are
omitted from the derivation trees — these trees are referred to as abstract syntax trees
since they omit some available information (since it is subsequently of no use).

The above code is in our class directory. Try it out with a variety of queries. Also, other
examples illustrating this methodology are included in our class directory.

p2

a p1 b p3

b p1 a p1

