Class example from 11/5/2004

Show $\square\{A>B \square B>0\} A:=A+B ; B:=A-B\{A>B \square B>0\}$
Step 0: formulate Q so that
$\square-\{A>B \square B>0\}$
$A:=A+B ;$
\{Q\}
$B:=A-B$
$\{A>B \square B>0\}$
Based on intuitive understanding of the code, we take $Q=A>2 B \square B>0$.
Step 1: show
$\square\{A>B \square B>0\}$
$A:=A+B ;$
\{Q\}
$Q[A \square A+B]=A+B>2 B \square B>0 \equiv A>B \square B>0$ so by the axiom of assignment, Step 1 is established.

Step 2: show
$\square\{B>0 \square A>B\}$
$B:=A-B$
$\{A>B \square B>0\}$
$\{A>B \square B>0\}[B \square A-B]=A>A-B \quad A-B>0 \equiv B>0 \square A>B$ so by the axiom of assignment, Step 2 is established.

Step 3: $Q \quad B>0 \square A>B$ so by Step 2 and strengthening the pre-condition - $-\{Q\}$
$B:=A-B$
$\{A>B \cap B>0\}$
Step 4: By steps 1 and 3 and the inference rule for sequential execution, $\square-\{A>B \cap B>0\} A:=A+B ; B:=A-B\{A>B \cap B>0\}$ is established.

