
22C:111

page 1 of 2

Exam I
Open book/notes

1. [20 points]
In each part of this problem, there is an extended BNF expression (terminal
character set = {a, b}) and a syntax diagram. Determine whether or not the pair is
equivalent, and either explain the equivalence, or if they are not equivalent, give
an example of a string that is described by one but not the other.

2. [25 points]
Write the Haskell definition of a function 'delSpaces' that accepts one argument
that is a string (i.e., [char]), and returns a value that is a copy of the argument
string with all spaces deleted. For example, delSpaces "now is the time " =
"nowisthetime".

Your solution will not receive full credit without an explanation of its operation and
justification that it behaves as required.

(a) (a* b)*

a b

(b) (abab)* aba a b a

b

22C:111

page 2 of 2

3. [25 points]
For the Haskell expression below, show its derivation tree (from <exp>):

2*x + x^3 > 0
The necessary portion of the BNF is included below. Bold | denotes the BNF
alternative operator, bold () denotes BNF grouping not expression parenthesis,
and bold [] denotes the BNF “optional” operator (zero or one) -- in ordinary font,
these are each Haskell characters. Syntax categories lexp and rexp are for left
and right associative operators, respectively. The productions for identifiers and
various types of literal constants are omitted — for this problem, assume that
these syntax categories derive their familiar results in a single step.

 exp Æ exp0

 expi Æ expi+1 [qop(n,i) expi+1] | lexpi | rexpi (0≤ i ≤9)
 lexpi Æ (lexpi | expi+1) qop(l,i) expi+1 (0≤ i ≤9)
 rexpi Æ expi+1 qop(r,i) (rexpi | expi+1) (0≤ i ≤9)
 qop(n,4) Æ < | > (non-assoc, prec 4)
 qop(l,6) Æ + | – (left assoc, prec 6)
 qop(l,7) Æ * | / (left assoc, prec 7)
 qop(r,8) Æ ^ | ** (right assoc, prec 8)
 exp10 Æ fexp
 fexp Æ [fexp] aexp
 aexp Æ qvar | literal
 qvar Æ identifier
 literal Æ numeral | charconst | stringconst | boolconst

(partial) Haskell EBNF

4. [30 points]
Provide a Haskell definition of a polymorphic function 'replace' that takes three
arguments — values x and y of polymorphic type 'a' and a list xs of type [a] —
and returns the list xs with each occurrence of x replaced by y, and other
elements unchanged. For instance, replace 's' 'l' "bass" yields "ball".

Your solution will not receive full credit without an explanation of its operation and
justification that it behaves as required.

