Homework IX

1. [15 points]

Consider the recursive program over all integers Z
$P: f(x, y)=$ if $x>10$ then $x-1$ else $f(x+2, f(x, y+1))$.
Determine the least fixed point of the functional \mathcal{P} (i.e., the recursive function defined using lazy evaluation) and justify your answer.

2. [20 points]

(a) Show that if X is a pointed cpo, C is a chain of X, and $f: X \rightarrow X$ is a monotone function whose domain includes C, then $f(C)=\{f(x) \mid x \square C\}$ is also a chain.
(b) Suppose we define a function mp: Nat $\square \mathrm{Nat} \rightarrow$ Nat, where Nat, and Nat \square Nat are the pointed cpos from our text, by
$\mathrm{mp}\left(\square_{\mathrm{Nat}}, \square_{\mathrm{Nat}}\right)=\square_{\mathrm{Nat}}$,
$m p\left(0, \square_{N a t}\right)=0$,
$\mathrm{mp}\left(\square_{\mathrm{Nat}}, 0\right)=0$, and
$m p(m, n)=m * n$ for $m, n \square\{0,1,2, \ldots\}$.
Determine whether or not mp is monotone and continuous (justify your answer).

3. [25 points]

Let \square be the Wren program fragment

```
    if A=B or A=-B
        then if A>B then C:= A else C:= B-A+1 end if
        else if A*B>0 then C:= A*B else C:= 1-A*B end if
    end if
```

Assuming a store, sto, where sto(A) and sto(B) denote (positive, negative, or zero) integer values, use the denotational semantics of Wren to argue that if execute[]] sto = sto', then sto'(C)=int(c) with $\mathrm{c}>0$.

