Homework VIII

1 (corrected). [20 points]

The Fibonacci numbers are defined by fib $(0)=0$, fib(1) $=1$, and fib(n) $=\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)$ for $n \geq 2$. Consider the recursive program over all integers Z
$\mathcal{P}: f(n)=$ if $n=0$ or $n=1$ then n else $f(n-1)+f(n-2)$.
(a) Show that the Fibonacci function fib (i.e., the partial function that is undefined for arguments less than 0) is a fixed point of the corresponding fixed point functional \mathcal{P}, $\mathcal{P}(\mathrm{g})(\mathrm{n})=$ if $\mathrm{n}=0$ or $\mathrm{n}=1$ then n else $\mathrm{g}(\mathrm{n}-1)+\mathrm{g}(\mathrm{n}-2)$.
(b) Show that the total function $\mathrm{h}: \mathrm{Z}-->\mathrm{Z}$ is also a fixed point of \mathcal{P}, where h is defined by $h(n)=f i b(n)$ if $n \geq 0$,
$h(n)=f i b(-n)$ if $n<0$ and n odd,
$h(n)=-f i b(-n)$ if $n<0$ and n even.

2. [25 points]

Determine the least fixed point of the functional associated with the recursive function below (over all integers Z) and justify your answer.
$f(n)=$ if $n>7$ then $n-5$ else $f(f(n+6))$

3. [20 points]

Show that the following functions are continuous:
(a) or: Bool \square Bool $-->$ Bool (i.e., logical or), where Bool and Bool \square Bool are the pointed cpos from our text.
(b) \geq : Nat \square Nat $-->$ Bool, where Nat, Nat \square Nat and Bool are the pointed cpos from our text.

