Homework I

1. [15 points] Taking $\Sigma = \{0,1\}$ and start = S in the BNF S ::= 0B | 1A A ::= 0 | 0S | 1AA B ::= 1 | 1S | 0BB show derivation trees for each of the following (a) 001011 (b) 10111001 (c) 10011100

2. [10 points]

Taking $\Sigma = \{a,b\}$ and start = S in the BNF below, show two distinct derivation trees for the string aab.

 $S ::= aSB | \varepsilon$ $B ::= bB | \varepsilon$

3. [10 points]

Consider the two grammars G_1 (start=W) and G_2 (start=Y) below with $\Sigma = \{a,b,c\}$. Determine whether or not they are equivalent (i.e., $L(G_1) = L(G_2)$ and prove your answer.

G ₁	G ₂
$ \begin{array}{c} W ::= Wc \mid X \\ X ::= aXb \mid \epsilon \end{array} $	$\begin{array}{l} Y ::= aY \mid Z \\ Z ::= bZc \mid \epsilon \end{array}$

4. [20 points]

Determine whether each of the following identities is true for all languages $L_1, L_2 \subseteq \Sigma^*$, and justify your answers.

(a)
$$(L_1 \cup L_2)^* = L_1^* \cup L_2^*$$

(b) $(L_1 \cdot L_2)^* = L_1^* \cdot L_2^*$
(c) $\emptyset^* = \emptyset$
(d) $(L_1 \cap L_2)^* = L_1^* \cap L_2^*$