Homework I

1. [15 points]

Taking $\square=\{0,1\}$ and start $=\mathrm{S}$ in the BNF

$$
\mathrm{S}::=0 \mathrm{~B} \mid 1 \mathrm{~A}
$$

$$
\mathrm{A}::=0|0 \mathrm{~S}| 1 \mathrm{AA}
$$

$$
\mathrm{B}::=1|1 \mathrm{~S}| 0 \mathrm{BB}
$$

show derivation trees for each of the following
(a) 001011
(b) 10111001
(c) 10011100

2. [10 points]

Taking $\square=\{a, b\}$ and start $=S$ in the BNF below, show two distinct derivation trees for the string aab.
$\mathrm{S}::=\mathrm{aSB} \mid$
B ::= bB |

3. [10 points]

Consider the two grammars $\mathrm{G}_{1}($ start $=\mathrm{W})$ and $\mathrm{G}_{2}($ start $=\mathrm{Y})$ below with $\square=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. Determine whether or not they are equivalent (i.e., $L\left(G_{1}\right)=L\left(G_{2}\right)$ and prove your answer.

G_{1}	G_{2}
$\mathrm{~W}::=\mathrm{Wc} \mid \mathrm{X}$	$\mathrm{Y}::=\mathrm{aY} \mid \mathrm{Z}$
$\mathrm{X}::=\mathrm{aXb} \mid \square$	$\mathrm{Z}::=\mathrm{bZc} \mid \square$

4. [20 points]

Determine whether each of the following identities is true for all languages $\mathrm{L}_{1}, \mathrm{~L}_{2} \square \square^{*}$, and justify your answers.
(a) $\left(\mathrm{L}_{1} \square \mathrm{~L}_{2}\right)^{*}=\mathrm{L}_{1}^{*} \square \mathrm{~L}_{2}^{*}$
(b) $\left(\mathrm{L}_{1} \cdot \mathrm{~L}_{2}\right)^{*}=\mathrm{L}_{1}^{*} \cdot \mathrm{~L}_{2}^{*}$
(c) $\varnothing^{*}=\varnothing$
(d) $\left(\mathrm{L}_{1} \square \mathrm{~L}_{2}\right)^{*}=\mathrm{L}_{1}^{*} \square \mathrm{~L}_{2}^{*}$

