
Supplement 2 22C:111

page 1 of 2

Sample Extended BNF:
Haskell expression fragment

This BNF for Haskell expressions is taken directly from the Haskell 98 Report, but
extracts only selected parts.

 exp Æ exp0

 expi Æ expi+1 [qop(n,i) expi+1] | lexpi | rexpi (0≤ i ≤9)
 lexpi Æ (lexpi | expi+1) qop(l,i) expi+1 (0≤ i ≤9, left-assoc)
 rexpi Æ expi+1 qop(r,i) (rexpi | expi+1) (0≤ i ≤9, right-assoc)
 qop(n,4) Æ < | <= | == | /= | >= | > (non-assoc, prec 4)
 qop(l,6) Æ + | – (left-assoc, prec 6)
 qop(l,7) Æ * | / (left-assoc, prec 7)
 qop(r,8) Æ ** | ^^ | ^ (right-assoc, prec 8)
 qop(r,9) Æ . (right-assoc, prec 9)
 exp10 Æ \ apat1 … apatn -> exp (lambda abstraction, n≥1)

| let decls in exp (let expression)
| if exp then exp else exp (conditional)
| case exp of { alts } (case expression)
| do { stmts } (do expression)
| fexp

fexp Æ [fexp] aexp (optional function application)

aexp Æ qvar (qualified variable)
| gcon (general constructor)
| literal (number, string, etc.)
| (exp) (parenthesized expression)
| (exp1, … , expn) (tuple, n≥2)
| [exp1, … , expn] (list, n≥0)

 qvar Æ identifier
 literal Æ numeral | charconst | stringconst | boolconst

partial EBNF for Haskell expressions

Operations and expressions are categorized as left/right/non-associative, and the
syntax categories provided reflect both this and the precedence of operations. A

Supplement 2 22C:111

page 2 of 2

more complete table of Haskell operators appears below. Haskell syntax for
variables and numbers is not included here, but is not significantly different from other
programming languages. Note that a number of symbols (e.g., |, [,]) are used both
as Haskell characters and BNF markup, and the Haskell BNF distinguishes their use
by different fonts — this is a serious potential source of confusion. The BNF
instances of these symbols are written in bold in the BNF above.

The Haskell operators, their associativity and precedence, are summarized in the
following table:

prec left-assoc non-assoc right-assoc
9 !! .
8 **, ^^,^
7 *, /, %, `div`,

`mod`, `rem`, `quot`
6 +, -
5 :, ++
4 /=, <, <=, ==, >, >=, `elem`,

`notElem`
3 &&
2 ||
1 <-
0 $, `seq`

