
22C:111 -- Fall 2005

page 1 of 3

Exam I
Sample Solutions

Problem 1.
(a) X is the correct answer -- the number of choices of 0 {110} 1 corresponds to the

number of times around the outer-loop of diagram A; for each 0 {110} 1 choice, the
number of choices of 110 corresponds to the number of times around the inner-loop on
that pass of the outer loop. For instance, W is wrong because it does not include 0101
while A does.

(b) Z is the correct answer -- e agrees with B by the "straight through" path, 0{1}0Z
agrees for the 1-subloop possibly followed by another outer-loop iteration, and 0Z0Z
agrees for the B-recursion for the first Z and another possible outer-loop iteration for
the second. For instance, Y is wrong because it allows 0100 while B does not.

Problem 2.
Function application has higher precedence than list construction (:) so both the typing
and derivation structure should indicate that f is applied only to x, and the result of the
expression is a list with first element f x and tail xs. Note that the "types" referred to are
either concrete (Int, Bool, etc.) or polymorphic (a, b, etc.) types.
(a) f x is function application and since there are no pre-defined types involved, f is

polymorphic with f :: a -> b, x :: a, and f x :: b. From its use with ':', xs is a list whose
element type is undetermined, so xs :: [c]. For f x : xs to be type correct, it must be
that c = b. Hence the types are f :: a -> b, x :: a, and xs :: [b].

22C:111 -- Fall 2005

page 2 of 3

(b) The lower precedence operation ':' will appear earlier (i.e., above) function
application in the derivation tree. To introduce the ':' operation, we must derive
qop(r,5), and this in turn requires deriving rexp5, so this guides the first steps.
Specifically,

exp

exp

rexp

exp exp

exp

fexp

aexp

qvar

xs

qop

exp

fexp

fexp aexp

qvar

x

aexp

qvar

f

5

5

6 (r,5) 6

10 10

...

:
... ...

22C:111 -- Fall 2005

page 3 of 3

Problem 3
This problem requires nested repetitions -- at the outer level, to cycle through each list
item, and then for each one to search for a repetition. For this problem, we present two
solutions. First, a recursive approach. Recursion is used for the outer repetition, and the
nested cycle is accomplished iteratively using pre-defined functions filter and elem. Note
that neither the amount nor depth of recursion exceed the length of the argument list.

> extractRepeats [] = []
> extractRepeats (x:xs)
> | elem x xs = x:extractRepeats rest -- add x, repeat with later x removed
> | otherwise = extractRepeats xs -- x not duplicated, drop x and repeat
> where rest = filter (/=x) xs

A solution without recursion can also be constructed. The outer repetition is
accomplished using list comprehension with a generator for the list indices, followed by
two filters for the nested repetitions using elem, take, and drop pre-defined functions; the
first filter checks that an item xs!!k is duplicated later in the list, and the second makes
sure items repeated multiple times appear in the result only once.

> extractRepeats2 xs
> = [xs!!k | k<-[0..length xs -1], -- generate each index
> elem (xs!!k) (drop (k+1) xs), -- test item reappearing later in xs
> not (elem (xs!!k) (take k xs))] -- but not earlier

