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Exam I
Sample Solutions

Problem 1.
(a) X is the correct answer -- the number of choices of 0 {110} 1 corresponds to the

number of times around the outer-loop of diagram A; for each 0 {110} 1 choice, the
number of choices of 110 corresponds to the number of times around the inner-loop on
that pass of the outer loop. For instance, W is wrong because it does not include 0101
while A does.

(b) Z is the correct answer -- e agrees with B by the "straight through" path, 0{1}0Z
agrees for the 1-subloop possibly followed by another outer-loop iteration, and 0Z0Z
agrees for the B-recursion for the first Z and another possible outer-loop iteration for
the second. For instance, Y is wrong because it allows 0100 while B does not.

Problem 2.
Function application has higher precedence than list construction (:) so both the typing
and derivation structure should indicate that f is applied only to x, and the result of the
expression is a list with first element f x and tail xs. Note that the "types" referred to are
either concrete (Int, Bool, etc.) or polymorphic (a, b, etc.) types.
(a) f x is function application and since there are no pre-defined types involved, f is

polymorphic with f :: a -> b, x :: a, and f x :: b. From its use with ':', xs is a list whose
element type is undetermined, so xs :: [c]. For  f x : xs to be type correct, it must be
that c = b. Hence the types are f :: a -> b, x :: a, and xs :: [b].
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(b) The lower precedence operation ':' will appear earlier (i.e., above) function
application in the derivation tree. To introduce the ':' operation, we must derive
qop(r,5), and this in turn requires deriving rexp5, so this guides the first steps.
Specifically,
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Problem 3
This problem requires nested repetitions -- at the outer level, to cycle through each list
item, and then for each one to search for a repetition. For this problem, we present two
solutions. First, a recursive approach. Recursion is used for the outer repetition, and the
nested cycle is accomplished iteratively using pre-defined functions filter and elem. Note
that neither the amount nor depth of recursion exceed the length of the argument list.

> extractRepeats [] = []
> extractRepeats (x:xs)
>   | elem x xs     = x:extractRepeats rest   -- add x, repeat with later x removed
>   | otherwise     = extractRepeats xs       -- x not duplicated, drop x and repeat
>     where rest = filter (/=x) xs

A solution without recursion can also be constructed. The outer repetition is
accomplished using list comprehension with a generator for the list indices, followed by
two filters for the nested repetitions using elem, take, and drop pre-defined functions; the
first filter checks that an item xs!!k is duplicated later in the list, and the second makes
sure items repeated multiple times appear in the result only once.

> extractRepeats2 xs
> = [xs!!k | k<-[0..length xs -1],   -- generate each index
>                 elem (xs!!k) (drop (k+1) xs),   -- test item reappearing later in xs
>                 not (elem (xs!!k) (take k xs))] -- but not earlier


