A Tutorial of ZANS
— A Z Animation System

Xiaoping Jia
School of Computer Science, Telecommunication,
and Information Systems
DePaul University
Chicago, Illinois, U.S.A.
E-mail: jia@cs.depaul.edu
URL: http://venus.cs.depaul.edu/"xjia

Release 0.3
October 2002

Copyright (©1995-2002, Xiaoping Jia

Permission is granted to copy and distribute this document free of charge for educational or non-profit

uses, provided that it is copied and distributed as a whole and without modification. Copying and
distribution of this document and/or the ZANS tool for direct commercial gain without the author’s
written permission is prohibited. The ZANS tool is distributed without warranty. The author accepts
no liability, explicit or implied, for its accuracy and fitness for any purpose.

1 What is ZANS?

ZANS is an animation tool for Z specifications. It is a research prototype that is still evolving.!
This tutorial describes ZANS release 0.3.
The ultimate goals of ZANS are:

e Facilitate validation of Z specifications;
e Experiment design refinement and code synthesis based on Z specifications; and
e Assist learning of the Z specification language.
Currently, it supports the following features:
e type checking of Z specifications;
e expansion of schema expressions;

e evaluation of expressions and predicates;

11t is not thoroughly debugged and primitive in many aspects. Feedbacks and bug reports are appreciated.

e execution of operation schemas.

The input can be written in IATEX with zed or oz packages, or in ZSL — an ASCII version of
Z. The input forms and the type checking portion of ZANS are identical to those of ZTC version
2.03 [2]. Consult the User’s Guide of ZTC version 2.03 for details of the input forms. A Z
specification prepared for ZTC can be animated by ZANS with little or no modification. ZANS
supports the Z syntax defined in the second edition of ZRM [3]. However, some deficiencies
still remain in the current release of ZANS, most of which will be explained in more detail later
in this document:

e The mathematical tools library is not user extensible.
e The animation is crude, not optimized.

e The animation mechanism is not very smart, yet.

These deficiencies will be addressed in the future versions of the tool.
Despite these deficiencies, many of my students and myself find the tool quite useful. Some
of the student projects using ZANS will be made available.

2 Commands and Modes

To invoke ZANS, type zans on the command line. It will print out a brief message as follows
and enter the interpretation cycle.
This is ZANS. Version 0.3.

. Initializing.
. Loading Z mathematical tools library: /usr/local/lib/zans/mathl.zed

zans>
Now ZANS is waiting for a command. After you input a command, it will be interpreted
and the results will be shown. Then the cycle will be repeated.
Note: Don’t be alarmed if you see the following message when starting ZANS:
File not found: zans.cfg
No configuration file is found. Default input style is LaTeX.
If you are using the ITEX input form you can proceed without any problem. If you use
ZSL or I'TEX with oz, you should set up a configuration file (see section 5.2) before you start.
Not a lot of on-line help is available at this time. The help command will list all the
commands supported by ZANS.

zans> help

analyze animate assign clear debug execute exit expand
expfile eval help list load para pragma pred
restart script show source state stop style trans
var verbose
To exit ZANS, use the exit command. This will bring you back to your operating system
prompt.
After each session of ZANS, all the input and output of that session is saved in a log file
named zans03.1log. If you need to save the log, you have to rename the log file. Otherwise, it
will be overwritten when you run ZANS next time.

2.1 ZANS command format

A ZANS command consists of three parts separated by one or more spaces:
command-name [option | [arguments]

The option and arguments are optional. The option part must begin with a hyphen (-). Here
are some examples:

e load classman
Command load, no option, argument classman.

e execute -t Enrol Command execute, option -t, argument Enrol.

Most of the commands are single-line commands. It means that when you hit the
key, it signals the end of the command and ZANS starts to interpret the command. There are
also a number of multi-line commands. They are designed to allow lengthy arguments to the
commands, such as expressions or paragraphs in a specification. For a multi-line command a
single key will not terminate the command, instead a continuation prompt cont> will
appear. A multi-line command is terminated with two consecutive [return 's. Each command
is clearly indicated whether it is a single or multi line command in Appendix A.

Here is a multi-line command that allows you to input a Z paragraph interactively.

zans> para

cont> Message ::= ok
cont> | notok
cont>

. Type checking Free Type Definition: Message. "Stdin" Lines 1-2

2.2 ZANS operating modes

ZANS has two operating modes: the initial mode and the animation mode. The initial mode
is the mode is the mode you are in when you start ZANS. The animation mode is the mode in
which specifications can be animated. Most of the commands are available in both operating
modes and will leave the operating mode unchanged. However, certain commands are only
available in the animation mode. There are a pair of commands that will change the operating
mode from one to the other:

e animate: from initial to animation.

e clear: from animation to initial.

The tow different modes are indicated by different command prompts:
e zans> indicates the initial mode.

e anim> indicates the animation mode.

3 Evaluating expressions and predicates

The eval command allow you to evaluate any Z expressions interactively. It is a multi-line
command so that you can type in expressions that won’t fit in one line. Remember, you must
terminate a multi-line command with two consecutive ’s.

3.1 Simple expressions and predicates
The following command evaluates the set expression {z :1..13 @ 2 x z}.

zans> eval \{ x : 1 \upto 13 @ 2 * x \}
cont>

{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26}

Similar to the eval command, the pred command evaluates Z predicates. Here is a simple
example to evaluate predicate {1,2} C (1..7).

zans> pred \{ 1 , 2 \} \subset (1 \upto 7)
cont>

True

Here is a more complicated example: to check Vz :1..10 @ zmod2 = 1, i.e., whether every
natural number between 1 and 10 is an odd number.

zans> pred \forall x : 1 \upto 10 @ x \mod 2 = 1
cont>

False

ZANS also allows you to introduce new variables and assign values to them interactively.
To introduce new variables, you enter their declarations using the para command. The syntax
is the same as the declaration part in a schema box or axiom box.

zans> para U, V, W : \power \nat
cont>

This declaration introduces three new names U, V and W, all of which are sets of natural
numbers. The argument of the para command can be any Z paragraph.

You can assign values to the variable names using the assign command with the following
syntax:

assign <variable> := <expression>

Now we can assign values to U and V.

zans> assign U := \{ x : 1 \upto 5 @ x * x \}
cont>

{1, 4, 9, 16, 25}

zans> assign V := \{ x : 1 \upto 13 @ 2 * x \}
cont>

{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26}

Both para and assign are multi-line commands.
Now, you can check if the assignments are performed correctly by evaluating the variables
as follows:

zans> eval U
cont>

{1, 4, 9, 16, 25}

zans> eval V
cont>

{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26}
Exactly what we expect! Now, let’s assign W the intersection of U and V:

zans> zans> assign W := U \cap V
cont>

{4, 16}

All the types, operations, and relations defined in the ZRM 2nd edition are supported by
ZANS.

3.2 Function definitions
You can also define functions using A-expressions.

zans> para AddOne : \nat \fun \nat
cont>

zans> assign AddOne := (\lambda x : \nat @ x + 1)
cont>

lambda x : N @ x + 1
Now you can apply the function to an expression.

zans> eval AddQOne 2
cont>

3

Recursive functions also work fine.

zans> para Fact : \nat \fun \nat
cont>

zans> assign Fact := (\lambda n : \nat @ \zif n = 1 \zthen 1 \zelse n * Fact(n-1))
cont>

zans> eval Fact 4
cont>

24

3.3 Infinite sets

ZANS can handle infinite sets in several situations:

1. Membership in an infinite set.

zans> pred 2 \in \{ x : \num | x \mod 2
cont>

0 \}

True

zans> pred 3 \in \{ x : \num | x \mod 2 = 0 \}

cont>
False

2. Subset relation between a finite and an infinite set. (The left operand must be a finite
set.)

zans> pred \{ 2, 4, 6 \} \subseteq \{ x : \num | x \mod 2 = 0 \}
cont>

True

zans> pred (2 \upto 5) \subseteq \{ x : \num | x \mod 2 = 0 \}
cont>

False

3. Intersection and difference of a finite and an infinite set. (The left operand must be a
finite set.)

zans> eval \{ x : 1 \upto 100 | x \mod 3 = 0 \} \cap \{ x : \num | x \mod 2 = 0 \}
cont>

{6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96}
zans> eval \{ x : 1 \upto 100 | x \mod 3 = 0 \} \setminus

cont>\{ x : \num | x \mod 2 = 0 \}
cont>

{3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99}

zans> eval (0 \upto 7 \cross 2 \upto 3) \cap \{ x, y : \num | x < y \}
cont>

{(0, 2), (0, 3, (1, 2), (1, 3), (2, 3)}

ZANS represents set comprehensions in closed forms. It will be expand a set comprehension
unless it’s necessary. By default, the eval command does not exapnd set comprehensions.

zans> eval \{ x : 1 \upto 60 | x \mod 3 = 0 \}
cont>

{x:1..60 | xmod 3 =01}
The -e option (eager mode) will force the expansion of set comprehensions.

zans> eval -e \{ x : 1 \upto 60 | x \mod 3 = 0 \}
cont>

{3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}

It will cause an exception, if you force the expansion of an infinite set.

zans> eval \{ x : \nat | x \mod 3 = 0 \}
cont>

{x:N| xmod 3=012

zans> eval -e \{ x : \nat | x \mod 3 = 0 \}
cont>

Execption: ZMT class error @ ZSetList::InsertElement().

Execeed maximun cardinality allowed.

{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57,
60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111,
114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156,
159, 162, 165, 168, 171, 174, 177, 180, 183, 186, 189, 192, 195, 198, 201,
204, 207, 210, 213, 216, 219, 222, 225, 228, 231, 234, 237, 240, 243, 246,
249, 252, 255, 258, 261, 264, 267, 270, 273, 276, 279, 282, 285, 288, 291,
294, 297}

To ensure termination of all evaluation and operations, ZANS enforce the following two
limits:

e the maximum cardinality of a set (currently 100);

e the maximum iterations when expanding set comprehensions (currently 10,000).

4 Animation

4.1 Preparation

Animation is to execute the operation schemas in your specification to see if the specification
accurately captures the requirements.
Before start animation, some minor modification to the specification may be necessary.

1. Indicate which schema is the state schema, and which is the initialization schema by
adding the following tow lines into the specification

%% state-schema <state schema name>
%% init-schema <initialization schema name>

These two lines may cause some harmless warning messages during type checking. Just
ignore the warning message. If you do not have these tow lines in your specification, ZANS
will attempt guess which one is the state schema and which one is the initialization schema.
However, it is not very smart yet. With incorrect information on state and/or initialization
schema, the animation may fail. Therefore, unless for very simple specifications, give
ZANS a helping hand by specifying the state and initialization schemas explicitly to
ensure that the animation can be carried out.

2. Optionally, you may also want to indicate which ones are user level operation schemas
using the operation pragma.

%% operation Enquire
%% operation Enrol

%% operation Test
%% operation Leave

When operation pragmas are present, only these schemas indicated as operation schemas
will be analyzed and can be animated. When operation pragma is absent, all the schemas
will be analyzed and may be animated.

3. If you use global names, such as size in the Class Manager’s Assistant example, you
need to assign a specific value for the animation to be carried out. Append the following
paragraph at the end of the Class Manager’s Assistant specification should suffice:

size = 6
4. Make implied predicate explicit. Originally, The schema ClassInit was defined as follows.

ClassInit = [Class’ | enrolled’ = 2]

ZANS will indicate that the schema is non-explicit, because tested’ is left unspecified.
It is constrained by the invariant dom tested’ C enrolled’. We have to infer that the
only value tested' can take to satisfy the invariant is @. Therefore, the initial state is
completely determined. However, ZANS is not smart enough to carried out this kind of
inference.? Again a helping hand is needed here. Change the ClassInit to the following
would suffice:

ClassInit = [Class’ | enrolled’ = @ A tested’ = @]

Note: ZANS follows the convention of intialization schema in [1], i.e., the initialization schema
includes the dashed state schema.

4.2 Loading specifications

ZANS has extensive capabilities to manipulate schemas and schema expressions. Usually, you
edit and save a specification in a file and type check it using ZTC. When the specification is
correctly typed, it is ready for animation. In ZANS, you can load a specification with the 1oad
command.

2The current version of ZANS does not include a theorem prover. We are currently working on a theorem
prover that will be integrated into ZANS in future releases.

zans> load classman.zed
Parsing main file: classman.zed
. Type checking Given Set. "classman.zed" Line 9

. Type checking Axiom Box. "classman.zed" Lines 13-15

. Type checking Free Type Definition: Response. '"classman.zed" Lines 19-25
Pragma ‘state-schema’, parameter: Class

. Type checking Schema Box: Class. "classman.zed" Lines 30-34
Pragma ‘init-schema’, parameter: ClassInit

. Type
. Type
. Type
. Type

checking Schema
checking Schema
checking Schema
checking Schema

Box: ClassInit. "classman.zed" Lines 39-43
Box: Enrolok. "classman.zed" Lines 52-61
Box: Testok. "classman.zed" Lines 64-73
Box: Leaveok. "classman.zed" Lines 76-86

Pragma ‘operation’, parameter: Enquire

.. Type
. Type
. Type
. Type
. Type

checking Schema
checking Schema
checking Schema
checking Schema
checking Schema

Box: Enquire. "classman.zed" Lines 91-98

Box: AlreadyEnrolled. "classman.zed" Lines 102-108
Box: NoRoom. "classman.zed" Lines 111-117

Box: AlreadyTested. "classman.zed" Lines 121-127
Box: NotEnrolled. "classman.zed" Lines 130-136

Pragma ‘operation’, parameter: Enrol
Pragma ‘operation’, parameter: Test
Pragma ‘operation’, parameter: Leave
. Type checking Schema Definition: Enrol. "classman.zed" Line 144
. Type checking Schema Definition: Test. "classman.zed" Line 145
Type checking Schema Definition: Leave. "classman.zed" Line 146

End of main file:

classman.zed

This loads the specification of a Class Manager’s Assistantin [1]. I will use this specification
as an example in the remainder of this tutorial. The specification is type checked when it is
loaded. The type checking performed here is identical to ZTC version 2.03.

Before you proceed, you can list all the schema names in the specification with the 1ist

command:

zans> list

Class

ClassInit

Enrolok
Testok

Leaveok
Enquire

AlreadyEnrolled

NoRoom

AlreadyTested
NotEnrolled

Enrol
Test
Leave

They are listed in the order they appear in the specification. Now you can expand the
schemas using the expand command which takes a schema expression as its parameter.

zans> expand ClassInit
cont>

—== ClassInit =—=—=—=== ==
| enrolled’, tested’ : P Student

| enrolled’ = {};

| tested’ = {};

| # enrolled’ <= size;

| tested’ subseteq enrolled’

4.3 Analyzing specifications

As you see, ZANS can only animate a subset of Z specifications, however I will argue that it
is a very useful subset, and the kind of modifications needed do not sacrifice the virtues of Z
specifications.

The mechanism behind animation is called explicitness analysis. ZANS can only animate
those operation schemas that are explicit. Informally, an operation schema is explicit if all the
output variables and the post-state are defined by the input variables and the pre-state. For
details of the animation mechanism, see [4].

When ZANS indicates that a schema is non-explicit, there are several possible causes:

e A missing post-condition in the schema. In this case, ZANS actually reveals a problem
in the specification.

e An implicit post-condition, like the one in ClassInit. Make the implied post-condition
explicit as illustrated above, and try again.?

e An intermediate schema not intended to be executed directly. Ignore the non-explicit
message.

e Intentionally loose specification. ZANS can not animate most of the loose specifications.

Schemas that are non-explicit can still be animated, but the output will contain undefined
values.

Now, to start the animation, use the animate command. This will cause ZANS to enter the
animation mode:

zans> animate
. Initialization.

The initialization of animation may take a while depending on the load of the system and
the size of your specification. A lot of things are happening during initialization. You will see
a lot of messages as it progresses. Don’t worry, if you didn’t catch all the messages. All the
screen output is saved in the log file zans03.log.

The messages show the progress of the initialization process. The initialization process
begins with looking all the schema classification pragmas:

3Implicit post-conditions arise in many situations. For example, z’ can be constrained by z as follows:
— function inversion: z = f(z').
— equation: F(z,z’) =0,

It is not always possible to derive f—! from f or to solve a general equation.

10

- Search for schema classification pragmas.
pragma ‘state-schema’, parameter: Class
pragma ‘init-schema’, parameter: ClassInit
pragma ‘operation’, parameter: Enquire
pragma ‘operation’, parameter: Enrol
pragma ‘operation’, parameter: Test
pragma ‘operation’, parameter: Leave

Now, ZANS analyzes the state and the initialization schemas. If state-schema or init-schema
is not present, ZANS will attempt to auto-set the state and initialization schemas. Auto-set
can be fooled sometimes. Using explicit state-schema and init-schema is the safest bet.

- Analyze state schemas.
state schema: Class -- ok.
State schema analysis done.
- Analyze initialization schemas.
init schema: ClassInit -- ok.
Initialization schema analysis done.

Next, ZANS analyzes the axiomatic definitions to see if all the global names are properly
defined.

- Analyze axiomatic definitions -- ok.

If size were not defined in our example, it would be non-explicit.
Next, ZANS will perform explicitness analysis on each operation schema specified by the
operation pragma.

analyze operation schema: ClassInit -- ok.
analyze operation schema: Enquire -- ok.
analyze operation schema: Enrol -- ok.
analyze operation schema: Test -- ok.
analyze operation schema: Leave -- ok.

In this example, all the operation schemas are explicit.
Before animating the specifition the global environment must be set. All global names must
be initialized.
Initializing equivalence definitionms.
Initializing global names.
Try branch #1
Branch #1 succeed.
size : 6

Next, ZANS executes the initialzation schema.

Initialization schema ClassInit
. Execute schema: ClassInit
Try branch #1
Branch #1 succeed.
Schema: ClassInit
enrolled’: {}
tested’: {}

anim>

Now, ZANS is ready for your commands. Note that the prompt is changed to anim> as we
are now in the animation mode.

11

4.4 Get set, Go!

You can execute any of the explicit operation schemas using the execute command. You will
be prompted for input arguments when needed.
First, we enroll Jack in the class.

We can have a look at the current state using the show -v command.

anim> execute Enrol

. Execute schema: Enrol
Enter input arguments:
s? =-> Jack
Try branch #1
Branch #1 succeed.
Schema: Enrol
enrolled: {3}
tested: {}
enrolled’:
tested’: {}
s?7: Jack
r!: success

{Jack}

anim> show -v Class
Schema: Class
enrolled: <{Jack}

tested: {}

By default, the execution of an operation schema will update the values of the components

in the state schema.

If you only want to see the execution result of an operation schema

but do not want to update the state, you can execute the operation schema in trial mode, or
non-committal mode, with the -t switch.

anim> execute -t Enrol

. Execute schema: Enrol
Enter input arguments:
s? -> Jill
Try branch #1
Branch #1 succeed.
Schema: Enrol
enrolled: {Jack}
tested: {7}
enrolled’:
tested’: {}
s?7: Jill
r!: success

{Jack, Jill}

To verify that the state is not changed:

anim> show -v Class
Schema: Class
enrolled: {Jack}
tested: {}

We can continue to enroll Jill, Mark, Jennifer, Susan, and Johnson.

following:

anim> show -v Class

Schema: Class
enrolled: {Jack, Jill, Mark, Jennifer, Susan, Johnson}
tested: {}

12

Now the state is the

Now, Jill has passed the test.

anim> execute Test
. Execute schema: Test
Enter input arguments:
s? -> Jill
Try branch #1
Branch #1 succeed.
Schema: Test
enrolled: {Jack, Jill, Mark, Jennifer, Susan, Johnson}
tested: {}
enrolled’: <{Jack, Jill, Mark, Jennifer, Susan, Johnson}
tested’: {Jill}
s?: Jill
r!: success

Now, we can enquire the status of Jack.

anim> execute Enquire
. Execute schema: Enquire
Enter input arguments:
s? -> Jack
Try branch #1
Branch #1 fail.
Try branch #2
Branch #2 succeed.
Schema: Enquire
enrolled: {Jack, Jill, Mark, Jennifer, Susan, Johnson}
tested: {Jill}
enrolled’: {Jack, Jill, Mark, Jennifer, Susan, Johnson}
tested’: {Jill}
s?: Jack
r!: alreadyenrolled

Another way to execute an operation schema is to use the try-all mode with the -a switch.
It will try all the branches to see if the operation is loose.
Now, we try to enrol Susan again, using try-all mode.

13

anim> execute -a Enrol
. Execute schema: Enrol
Enter input arguments:
s? -> Susan
Try branch #1
Branch #1 fail.
Try branch #2
Branch #2 succeed.
Schema: Enrol
enrolled: {Jack, Jill, Mark, Jennifer, Susan, Johnson}
tested: {Jill}
enrolled’: <{Jack, Jill, Mark, Jennifer, Susan, Johnson}
tested’: {Jill}
s?: Susan
r!: noroom
Try branch #3
Branch #3 succeed.
Schema: Enrol
enrolled: {Jack, Jill, Mark, Jennifer, Susan, Johnson}
tested: {Jill}
enrolled’: <{Jack, Jill, Mark, Jennifer, Susan, Johnson}
tested’: {Jill}
s?: Susan
r!: alreadyenrolled
>>> Operation Enrol is loose. 2 branches succeeded.

The try-all mode is always non-committal. Now, Susan leaves the class.

anim> execute Leave
. Execute schema: Leave
Enter input arguments:
s? =-> Susan
Try branch #1
Branch #1 fail.
Try branch #2
Branch #2 succeed.
Schema: Leave
enrolled: {Jack, Jill, Mark, Jennifer, Susan, Johnson}
tested: {Jill}
enrolled’: <{Jack, Jill, Mark, Jennifer, Johnson}
tested’: {Jill}
s?: Susan
r!: cert

Oops. Susan is not supposed to get a certificate. Double check the specification, you will
find a mistake in the Leave schema. This is just one kind of problems in Z specifications that
can be discovered with the help of ZANS.

5 Extra Points

5.1 Compiled specification

If you are puzzled by the “non-explicit” complaints, you may want to have a look at the
“complied” specification. It offers some clues as to why an operation schema is not explicit.
Use

14

analyze filename

to generate the compiled specification and save it in a file named filename. The default extension
is ope. The compiled specification is represented in the extended guarded commands described
in [4].

For an operation schema that is not explicit, you should find messages like:

Unable to find definition for: variable

This indicates that either the definition concerning variable is missing, or variable is implicitly
constrained not explicitly defined.
Sorry, if that’s not much help at all. It’s only version 0.3.

5.2 Configuration file

If you use ZSL or ATEX with oz mnemonics, you need to set up a configuration file. The
configuration file is named zans.cfg. It is simply an empty specification in the style you
choose.

For ZSL, it is

specification
end specification

Remember, there must be a leading TAB on each line.
For IATEX oz-zed compatible mode, it is

%% oz
\begin{spec}
\end{spec}

For IATEX oz native mode, it is

%% oz-native
\begin{spec}
\end{spec}

If the configuration file is not found, the default input form is A TEX with only the mnemonic
names defined in the zed.sty package.

5.3 Creating and running scripts

During specification validation, you may need to run a sequence of commands repeatedly.
ZANS allows you to save the commands in a script file. A script file is simply an ASCII file
that contains ZANS commands. Each line contains a single command. A multi-line command
must be followed by a blank line. Script files can be created using a text editor, or the script
command in ZANS, which records the commands you type during an interactive session.

To record a script file, first you specify the script file name as follows:

script spcriptfile

15

Now the recording starts. All the following commands you type will be saved in the script file
name spcriptfile. The default extension of script files is spt.
You can turn the recording on and off with the following commands:

script -off to turn off
script -on to turn on

To run a script file, you use the source command:
source spcriptfile

Alternatively, you can directly invoke ZANS with a script file from the command line using
the -f option:

zans -f spcriptfile

5.4 Verbosity control

If you want to see how does ZANS animate your specifications, you can set a higher verbosity
level, so that ZANS will reveal a lot more about the animation process.
You can adjust the verbosity level using the verbose command:

verbose digit

The verbosity level ranges from 0 to 9, with 9 being the most verbose and 0 the least. The
initial verbosity level is set to 5. You can set your own initial verbosity level at the beginning
of the configuration file with the %% verbose pragma.

References

[1] J.B. Wordsworth. Software Development with Z: A Practical Approach to Formal Methods
in Software Engineering. Addison-Wesley, 1992.

[2] Xiaoping Jia. ZTC: A Type Checker for Z Notation, User’s Guide, Version 2.02, June 1995.
Available via anonymous ftp at ise.cs.depaul.edu.

[3] J.M. Spivey. The Z Notation, A Reference Manual. Prentice Hall International, second
edition, 1992.

[4] Xiaoping Jia. An approach to animating Z specifications. In Proc. 19th Annual Int’l
Computer Software and Applications Conf., Dallas, Texas, USA, August 1995.

16

A Summary of ZANS Commands

Notation.
Each command is annotated using the following notation:

e S: single-line command; M: multi-line command.

e |: available in the initial mode; A: available in the animation mode.

e —|: transition to the initial mode; —A: transition to the animation mode.
Examples:

e <M,IA>: multi-line command, available in both modes, no mode change.

e <S5 1—A>: single-line command, available only in the initial mode and changes to the
animation mode after its execution.

Summary of ZANS Commands

analyze filename <S,IA>
Analyze the entire specification. The operations generated are saved in the file named
filename. Default extension is .ope.

animate <S,I-A>
Start animation.

assign variable := expression <M, IA>
Assign the value of the expression to the variable.

clear <SIA=1>
Clear the current specification.

eval expression <M, IA>
Evaluate the expression.

Options:
-e: eager evaluation

execute [-at] schemaname <S,A>
Execute the operation schema named schemaname.

Options:
-a: try all branches
-t: non-committal execution

exit <S,1A>
Exit ZANS.
expand [-dn] schemaexp <M,IA>

Expand the schema expression.

17

Options:
-d: convert to disjunctive normal form
-n: normalized

expfile [-dn] filename

Expand the entire specification and save the results in the file named filename.

Options:
-d: convert to disjunctive normal form
-n: normalized

help
List all the commands of ZANS.

list
List all the schema names in the currently loaded specification.

load infile
Load and type check the specification file named infile.

para paragraph
Enter and type check a paragraph.

pragma pragmaname [args ...]
Set pragmas.

pred predicate
Evaluate the predicate.

script scriptfilename
Set the name of the script file to scriptfilename.

script [-on|-off]
Turn on or off the script file.

show [-ov] schemaname

Show the schema named schemaname in its original, unexpanded form.

Options:
-o: show the operation generated from the schema;
-v: show the current value of the schema components.

source scriptfilename
Run the script file named scriptfilename.

stop
Stop animation.

style [-t1b]
Set the output style

18

<S,IA>

<S,IA>

<S,IA>

<S,IA>

<M, IA>

<S,IA>

<M, IA>

<S,IA>

<S,IA>

<S,IA>

<S,IA>

<S,A>

<S,I1A>

Options:

-t: IATEX style

-1: ZSL text style

-b: ZSL box style (default)

verbose digit <S.IA>
Set verbosity level: 0-9. 0 the least verbose, 9 the most verbose.
Initial value: 5.

19

