
Lambda Encodings Reborn

Aaron Stump

Computational Logic Center
Computer Science

The University of Iowa

A Golden Age for Theorem Provers

Powerful software tools for computer-checked proofs
I Coq (France)
I Agda (Sweden)
I Isabelle (Germany/UK)

Trustworthy proofs for Math/CS
Many amazing examples

I CS: Quark verified web-browser kernel [Jang et al. 2012]
I CS: Compcert optimizing C compiler [Leroy. 2006]
I Math: Feit-Thompson theorem [Gonthier et al. 2013]
I Math: Kepler conjecture (completed fall 2014)

Starting to have an impact in USA
I Key technology for some top assistant profs (MIT, UW, Cornell)

Trouble in Paradise

Trouble in Paradise

Bugs in the Theorem Prover

Soundness bug: False can be proved
I Martin-Löf Type Theory (1971) with Type : Type
I Shown unsound by Girard (1972)

Type preservation bug: t : T and t ; t ′ but not t ′ : T
I Coq (1986) with coinductive types (1996)
I Type preservation bug discovered, Oury (2008)
I Still present in Coq 8.4 (current version)!

Anomalies:
I Agda (2005), discovered to be anti-classical (2010)
I Agda and Coq, discovered incompatible with isomorphism (2013)

F Contradiction from (False→ False) = True
F Based on a subtle bug latent for 17 years!
F Problem for homotopy type theory

These bugs all have one thing in common

They all depend on the DATATYPE SUBSYSTEM

These bugs all have one thing in common

They all depend on the DATATYPE SUBSYSTEM

Idea:

Let’s get rid of datatypes!

Idea:

Let’s get rid of datatypes!

Programs = Functions + Data

+ Observations/IO
+ Concurrency
+ Mutable state
+ Exceptions/control
+ ...

Programs = Functions + Data
+ Observations/IO
+ Concurrency
+ Mutable state
+ Exceptions/control
+ ...

Programs = Functions + Data
+ Observations/IO
+ Concurrency
+ Mutable state
+ Exceptions/control
+ ...

Programs = Functions Data
+ Observations/IO
+ Concurrency
+ Mutable state
+ Exceptions/control
+ ...

Lambda Encodings

Programs = Functions Data
+ Observations/IO
+ Concurrency
+ Mutable state
+ Exceptions/control
+ ...

Lambda Encodings

Lambda Encodings

Encode all data as functions in lambda (λ) calculus
Several different encodings known, starting with Church 1941
No need for datatypes (except primitive types)
Simplify design for

I programming languages
I languages for computer-checked proofs

Simpler language design => fewer bugs

Maybe even prove soundness in a theorem prover!

Benchmark example datatype: natural numbers

Lambda Encodings

Encode all data as functions in lambda (λ) calculus
Several different encodings known, starting with Church 1941
No need for datatypes (except primitive types)
Simplify design for

I programming languages
I languages for computer-checked proofs

Simpler language design => fewer bugs

Maybe even prove soundness in a theorem prover!

Benchmark example datatype: natural numbers

Lambda Encodings

Encode all data as functions in lambda (λ) calculus
Several different encodings known, starting with Church 1941
No need for datatypes (except primitive types)
Simplify design for

I programming languages
I languages for computer-checked proofs

Simpler language design => fewer bugs

Maybe even prove soundness in a theorem prover!

Benchmark example datatype: natural numbers

Lambda Encodings

Encode all data as functions in lambda (λ) calculus
Several different encodings known, starting with Church 1941
No need for datatypes (except primitive types)
Simplify design for

I programming languages
I languages for computer-checked proofs

Simpler language design => fewer bugs

Maybe even prove soundness in a theorem prover!

Benchmark example datatype: natural numbers

What is a number?

Church (1941): a number is an iterator

What is a number?

Church (1941): a number is an iterator

The Church Encoding

Iterator: a function that can apply f repeatedly (n times) to a.

Iterate n f a = f · · ·(f︸ ︷︷ ︸
n

a)

In the Church encoding, numbers are iterators

n f a = f · · ·(f︸ ︷︷ ︸
n

a)

0 = λ f. λ a. a
1 = λ f. λ a. f a
2 = λ f. λ a. f (f a)
3 = λ f. λ a. f (f (f a))
...

suc = λ n. λ f. λ a. f (n f a)

Church Encoding: Basic Operations

For addition, iterate suc:

n+m = 1+ · · ·+1+︸ ︷︷ ︸
n

m

add = λ n. λ m. n suc m

For multiplication by m, iterate adding m:

n ∗m = m+ · · ·m+︸ ︷︷ ︸
n

0

mult = λ n. λ m. n (add m) 0

Alternative clever versions due to Rosser

exp = λ n. λ m. m n

(4 2) = 16

Typing the Church Encoding

Nat = ∀X : Type.(X → X)→ X → X

2 : Nat = λX : Type.λ f : X → X .λa : X . f (f a)︸︷︷︸
:X︸ ︷︷ ︸

:X

Typable in polymorphic lambda calculus (System F),
Girard/Reynolds
In System F, typable programs guaranteed to terminate!
Sound basis for computer-checked proofs

I Proofs = programs (Curry, Howard)
I Induction = recursion
I This requires all programs (= proofs) to terminate
I Coq, Agda based on this idea

Everything looks good!

Church: “But how do you do predecessor?”

Kleene:

(x ,y) 7→ (suc x ,x)

(0,0) 7→ (1,0) 7→ (2,1) 7→ (3,2)︸ ︷︷ ︸
3

Predecessor of n takes O(n) steps!

Everything looks good!

Church: “But how do you do predecessor?”

Kleene:

(x ,y) 7→ (suc x ,x)

(0,0) 7→ (1,0) 7→ (2,1) 7→ (3,2)︸ ︷︷ ︸
3

Predecessor of n takes O(n) steps!

Everything looks good!

Church: “But how do you do predecessor?”

Kleene:

(x ,y) 7→ (suc x ,x)

(0,0) 7→ (1,0) 7→ (2,1) 7→ (3,2)︸ ︷︷ ︸
3

Predecessor of n takes O(n) steps!

Everything looks good!

Church: “But how do you do predecessor?”

Kleene:

(x ,y) 7→ (suc x ,x)

(0,0) 7→ (1,0) 7→ (2,1) 7→ (3,2)︸ ︷︷ ︸
3

Predecessor of n takes O(n) steps!

What is a number?

Parigot (1988): a number is a recursor

What is a number?

Parigot (1988): a number is a recursor

The Parigot Encoding

Recursor: like an iterator, but given the predecessors!

Rec n f a = f (n−1) · · ·(f 1 (f 0 a))

In the Parigot encoding, numbers are recursors

n f a = f (n−1) · · ·(f 1 (f 0 a))

0 = λ f. λ a. a
1 = λ f. λ a. f 0 a
2 = λ f. λ a. f 1 (f 0 a)
3 = λ f. λ a. f 2 (f 1 (f 0 a))
...

suc = λ n. λ f. λ a. f n (n f a)
add = λ n. λ m. n (λ p. suc) m
mult = λ n. λ m. n (λ p. add m) 0
pred = λ n. n (λ p. λ d. p) 0

Typing the Parigot Encoding

Nat = ∀X : Type.(Nat→ (X → X))→ (X → X)

Typable in System F + positive-recursive types (Parigot,Mendler)
Recursive use of Nat is positive:

I occurs in the left part of an even number of arrows
I for polarity, p→ q is like ¬p∨q

Typable programs still guaranteed to terminate!
Suitable basis for computer proofs under Curry-Howard

Expected asymptotic time complexities!

Awesome!

Typable in a terminating type theory! Awesome!

Numbers require exponential space! Oh dear.

Expected asymptotic time complexities! Awesome!

Typable in a terminating type theory! Awesome!

Numbers require exponential space! Oh dear.

Expected asymptotic time complexities! Awesome!

Typable in a terminating type theory!

Awesome!

Numbers require exponential space! Oh dear.

Expected asymptotic time complexities! Awesome!

Typable in a terminating type theory! Awesome!

Numbers require exponential space! Oh dear.

Expected asymptotic time complexities! Awesome!

Typable in a terminating type theory! Awesome!

Numbers require exponential space!

Oh dear.

Expected asymptotic time complexities! Awesome!

Typable in a terminating type theory! Awesome!

Numbers require exponential space! Oh dear.

What is a number?

Stump-Fu (2014): a number is the ordered
collection of iterators for all its predecessors

What is a number?

Stump-Fu (2014): a number is the ordered
collection of iterators for all its predecessors

Embedded-Iterators Encoding (Stump-Fu 2014)

Same asymptotic time complexities as Parigot
But: normal form of numeral n is only O(n2)

Basic idea:
3 = (c3,(c2,(c1,(c0,0))))

where cN is the Church encoding of N

0 = λ f. λ a. a
1 = λ f. λ a. f c1 0
2 = λ f. λ a. f c2 1
3 = λ f. λ a. f c3 2
...
suc = λ n. n (λ c. λ p. λ f. λ a. f (csuc c) n) 1

Use embedded Church-encoded numbers for iteration

add = λ n . λ m . n (λ c . λ p . c suc m) m

Put embedded iterators in binary to reduce space to O(n log2 n)

Typing the Embedded-Iterators Encoding

Nat = ∀X : Type.(CNat→ (Nat→ X))→ (X → X)

Like Parigot encoding, typable in System F + positive-rec. types
Recursive use of Nat is positive

Implementation

fore tool for Fω + positive-recursive type definitions
Compiles fore terms to Racket, Haskell
For Racket, erase all type annotations
For Haskell, encodings are actually typable with newtype

newtype CNat =
FoldCNat { unfoldCNat :: forall (x :: *) . (x -> x) -> x -> x}

Observe computed answers by translating to native data
Emitted programs optionally count reductions
cadd :: CNat -> CNat -> CNat
cadd = (\ n -> (\ m -> (incr ((incr ((unfoldCNat n) csuc)) m))))

Experiments

Based on the following example programs:
I Compute 2n

I Compute x −x , where x = 2n

I Mergesort a list of small Parigot-encoded numbers
F Use Braun trees as intermediate data structure
F Faster, more natural iteration

For Racket (CBV), some adjustments needed:
Bool : * = ∀ X : * , X → X → X .
true : Bool = λ X:*, λx:X, λy: X, x.
false : Bool = λ X:*, λx: X, λy: X, y .

becomes
Bool : * = ∀ X : * , (unit → X) → (unit → X) → X .
true : Bool = λ X:*, λx:unit → X, λy: unit → X, x triv.
false : Bool = λ X:*, λx: unit → X, λy: unit → X, y triv .

Sizes of Normal Forms

0 1 2 3 4 5 6 7 8 9 10
1

10

100

1000

10000

Church

Parigot

Stump Fu

Stump Fu (bnats)

Numeral

S
iz

e
 o

f n
o

rm
a

l f
o

rm

Exponentiation Test in Racket

10 12 14 16 18 20 22
1

10
100

1000
10000

100000
1000000

10000000
100000000

1000000000
10000000000

Church

Church R

Parigot

Cbv Parigot

Stump Fu

Stump Fu (bnats)

Power of two

N
u

m
b

e
r

o
f r

e
d

u
ct

io
n

s

Exponentiation Test in Haskell

Church, Church R, Parigot exactly the same reductions
Embedded iterators: slightly fewer reductions in Haskell

power SF Racket SF Haskell SF (bnats) Racket SF (bnats) Haskell
10 19765 19709 279455 260818
12 78185 78129 1336475 1246109
14 311709 311653 6249007 5822720
16 1245649 1245593 28647524 26681058

Subtraction Test in Racket

8 9 10 11 12 13 14 15
1

10
100

1000
10000

100000
1000000

10000000
100000000

1000000000
10000000000

Church

Parigot

Cbv Parigot

Stump Fu

Power of two

N
u

m
b

e
r

o
f r

e
d

u
ct

io
n

s

Subtraction Test in Haskell
Church, Embedded iterators take slightly less time
Parigot takes much less:

8 9 10 11 12 13 14 15
1

10
100

1000
10000

100000
1000000

10000000
100000000

1000000000
10000000000

Parigot Racket

CBV Parigot Racket

Parigot Haskell

Power of two

N
u

m
b

e
r

o
f r

e
d

u
ct

io
n

s

Each predecessor takes one step less with lazy evaluation

(x ,y) 7→ (suc x ,x)

Sorting Test in Racket

Mergesort list of small numbers
Use Braun trees (balanced) as intermediate data structure

10 11 12 13 14 15 16 17 18
1

10
100

1000
10000

100000
1000000

10000000
100000000

1000000000
10000000000

Cbv Church

Cbv Parigot

Stump Fu

List size (power of two)

N
u

m
b

e
r

o
f r

e
d

u
ct

io
n

s

Sorting Test in Haskell

10 11 12 13 14 15
1

10

100

1000

10000

100000

1000000

10000000

100000000

Church

Parigot

Stump Fu

List size (power of two)

N
u

m
b

e
r

o
f r

e
d

u
ct

io
n

s

14: embedded iterators 350 times fewer reductions
14: Parigot 2.8 times fewer

Comparison with Native Racket

101112 1314151617 1819202122 23
0.1

1

10

100

1000

10000

Cbv Parigot Racket

Native Racket

List size (power of two)

T
im

e
 (

se
co

n
d

s)

For list of length 8 million (23):

Parigot almost 3x faster than native Racket!

Summary

New embedded-iterators encoding
I Expected asymptotic time complexities (like Parigot)
I Size of normal form of n is O(n2), even O(n log2 n)
I Best encoding if size of normal form matters

Promising empirical results for lambda encodings
I CBV Parigot beating native Racket sorting by 3x on large lists!

Typable in total type theories (F or F + pos.-rec. types)
Hope for using lambda encodings for practical data (structures)

Future Work

Much still to do for computer-checked proofs
To derive induction, need dependent types

I “Induction Is Not Derivable in Second Order Dependent Type Theory”
[Geuvers, 2001]

I “Self Types for Dependently Typed Lambda Encodings” [Fu, Stump, 2014]

Combining general-recursive programs, proofs
Lifting lambda encodings from term to type level

arrows A n = A→ ···A→︸ ︷︷ ︸
n

A

A Paradise of

λ

