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A Golden Age for Theorem Provers

Powerful software tools for computer-checked proofs
I Coq (France)
I Agda (Sweden)
I Isabelle (Germany/UK)

Trustworthy proofs for Math/CS
Many amazing examples

I CS: Quark verified web-browser kernel [Jang et al. 2012]
I CS: Compcert optimizing C compiler [Leroy. 2006]
I Math: Feit-Thompson theorem [Gonthier et al. 2013]
I Math: Kepler conjecture (completed fall 2014)

Starting to have an impact in USA
I Key technology for some top assistant profs (MIT, UW, Cornell)



Trouble in Paradise
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Bugs in the Theorem Prover

Soundness bug: False can be proved
I Martin-Löf Type Theory (1971) with Type : Type
I Shown unsound by Girard (1972)

Type preservation bug: t : T and t ; t ′ but not t ′ : T
I Coq (1986) with coinductive types (1996)
I Type preservation bug discovered, Oury (2008)
I Still present in Coq 8.4 (current version)!

Anomalies:
I Agda (2005), discovered to be anti-classical (2010)
I Agda and Coq, discovered incompatible with isomorphism (2013)

F Contradiction from (False→ False) = True
F Based on a subtle bug latent for 17 years!
F Problem for homotopy type theory
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Lambda Encodings

Encode all data as functions in lambda (λ ) calculus
Several different encodings known, starting with Church 1941
No need for datatypes (except primitive types)
Simplify design for

I programming languages
I languages for computer-checked proofs

Simpler language design => fewer bugs

Maybe even prove soundness in a theorem prover!

Benchmark example datatype: natural numbers



Lambda Encodings

Encode all data as functions in lambda (λ ) calculus
Several different encodings known, starting with Church 1941
No need for datatypes (except primitive types)
Simplify design for

I programming languages
I languages for computer-checked proofs

Simpler language design => fewer bugs

Maybe even prove soundness in a theorem prover!

Benchmark example datatype: natural numbers



Lambda Encodings

Encode all data as functions in lambda (λ ) calculus
Several different encodings known, starting with Church 1941
No need for datatypes (except primitive types)
Simplify design for

I programming languages
I languages for computer-checked proofs

Simpler language design => fewer bugs

Maybe even prove soundness in a theorem prover!

Benchmark example datatype: natural numbers



Lambda Encodings

Encode all data as functions in lambda (λ ) calculus
Several different encodings known, starting with Church 1941
No need for datatypes (except primitive types)
Simplify design for

I programming languages
I languages for computer-checked proofs

Simpler language design => fewer bugs

Maybe even prove soundness in a theorem prover!

Benchmark example datatype: natural numbers



What is a number?

Church (1941): a number is an iterator



What is a number?

Church (1941): a number is an iterator



The Church Encoding

Iterator: a function that can apply f repeatedly (n times) to a.

Iterate n f a = f · · ·(f︸ ︷︷ ︸
n

a)

In the Church encoding, numbers are iterators

n f a = f · · ·(f︸ ︷︷ ︸
n

a)

0 = λ f. λ a. a
1 = λ f. λ a. f a
2 = λ f. λ a. f (f a)
3 = λ f. λ a. f (f (f a))
...

suc = λ n. λ f. λ a. f (n f a)



Church Encoding: Basic Operations

For addition, iterate suc:

n+m = 1+ · · ·+1+︸ ︷︷ ︸
n

m

add = λ n. λ m. n suc m

For multiplication by m, iterate adding m:

n ∗m = m+ · · ·m+︸ ︷︷ ︸
n

0

mult = λ n. λ m. n (add m) 0

Alternative clever versions due to Rosser

exp = λ n. λ m. m n

(4 2) = 16



Typing the Church Encoding

Nat = ∀X : Type.(X → X )→ X → X

2 : Nat = λX : Type.λ f : X → X .λa : X . f (f a)︸︷︷︸
:X︸ ︷︷ ︸

:X

Typable in polymorphic lambda calculus (System F),
Girard/Reynolds
In System F, typable programs guaranteed to terminate!
Sound basis for computer-checked proofs

I Proofs = programs (Curry, Howard)
I Induction = recursion
I This requires all programs (= proofs) to terminate
I Coq, Agda based on this idea



Everything looks good!

Church: “But how do you do predecessor?”

Kleene:

(x ,y) 7→ (suc x ,x)

(0,0) 7→ (1,0) 7→ (2,1) 7→ (3,2)︸ ︷︷ ︸
3

Predecessor of n takes O(n) steps!
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The Parigot Encoding

Recursor: like an iterator, but given the predecessors!

Rec n f a = f (n−1) · · ·(f 1 (f 0 a))

In the Parigot encoding, numbers are recursors

n f a = f (n−1) · · ·(f 1 (f 0 a))

0 = λ f. λ a. a
1 = λ f. λ a. f 0 a
2 = λ f. λ a. f 1 (f 0 a)
3 = λ f. λ a. f 2 (f 1 (f 0 a))
...

suc = λ n. λ f. λ a. f n (n f a)
add = λ n. λ m. n (λ p. suc) m
mult = λ n. λ m. n (λ p. add m) 0
pred = λ n. n (λ p. λ d. p) 0



Typing the Parigot Encoding

Nat = ∀X : Type.(Nat→ (X → X ))→ (X → X )

Typable in System F + positive-recursive types (Parigot,Mendler)
Recursive use of Nat is positive:

I occurs in the left part of an even number of arrows
I for polarity, p→ q is like ¬p∨q

Typable programs still guaranteed to terminate!
Suitable basis for computer proofs under Curry-Howard
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Typable in a terminating type theory! Awesome!

Numbers require exponential space! Oh dear.
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Embedded-Iterators Encoding (Stump-Fu 2014)

Same asymptotic time complexities as Parigot
But: normal form of numeral n is only O(n2)

Basic idea:
3 = (c3,(c2,(c1,(c0,0))))

where cN is the Church encoding of N

0 = λ f. λ a. a
1 = λ f. λ a. f c1 0
2 = λ f. λ a. f c2 1
3 = λ f. λ a. f c3 2
...
suc = λ n. n (λ c. λ p. λ f. λ a. f (csuc c) n) 1

Use embedded Church-encoded numbers for iteration

add = λ n . λ m . n (λ c . λ p . c suc m) m

Put embedded iterators in binary to reduce space to O(n log2 n)



Typing the Embedded-Iterators Encoding

Nat = ∀X : Type.(CNat→ (Nat→ X ))→ (X → X )

Like Parigot encoding, typable in System F + positive-rec. types
Recursive use of Nat is positive



Implementation

fore tool for Fω + positive-recursive type definitions
Compiles fore terms to Racket, Haskell
For Racket, erase all type annotations
For Haskell, encodings are actually typable with newtype

newtype CNat =
FoldCNat { unfoldCNat :: forall (x :: *) . (x -> x) -> x -> x}

Observe computed answers by translating to native data
Emitted programs optionally count reductions
cadd :: CNat -> CNat -> CNat
cadd = (\ n -> (\ m -> (incr ((incr ((unfoldCNat n) csuc)) m))))



Experiments

Based on the following example programs:
I Compute 2n

I Compute x −x , where x = 2n

I Mergesort a list of small Parigot-encoded numbers
F Use Braun trees as intermediate data structure
F Faster, more natural iteration

For Racket (CBV), some adjustments needed:
Bool : * = ∀ X : * , X → X → X .
true : Bool = λ X:*, λx:X, λy: X, x.
false : Bool = λ X:*, λx: X, λy: X, y .

becomes
Bool : * = ∀ X : * , (unit → X) → (unit → X) → X .
true : Bool = λ X:*, λx:unit → X, λy: unit → X, x triv.
false : Bool = λ X:*, λx: unit → X, λy: unit → X, y triv .



Sizes of Normal Forms
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Exponentiation Test in Racket
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Exponentiation Test in Haskell

Church, Church R, Parigot exactly the same reductions
Embedded iterators: slightly fewer reductions in Haskell

power SF Racket SF Haskell SF (bnats) Racket SF (bnats) Haskell
10 19765 19709 279455 260818
12 78185 78129 1336475 1246109
14 311709 311653 6249007 5822720
16 1245649 1245593 28647524 26681058



Subtraction Test in Racket
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Subtraction Test in Haskell
Church, Embedded iterators take slightly less time
Parigot takes much less:
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Each predecessor takes one step less with lazy evaluation

(x ,y) 7→ (suc x ,x)



Sorting Test in Racket

Mergesort list of small numbers
Use Braun trees (balanced) as intermediate data structure
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Sorting Test in Haskell
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14: embedded iterators 350 times fewer reductions
14: Parigot 2.8 times fewer



Comparison with Native Racket
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For list of length 8 million (23):

Parigot almost 3x faster than native Racket!



Summary

New embedded-iterators encoding
I Expected asymptotic time complexities (like Parigot)
I Size of normal form of n is O(n2), even O(n log2 n)
I Best encoding if size of normal form matters

Promising empirical results for lambda encodings
I CBV Parigot beating native Racket sorting by 3x on large lists!

Typable in total type theories (F or F + pos.-rec. types)
Hope for using lambda encodings for practical data (structures)



Future Work

Much still to do for computer-checked proofs
To derive induction, need dependent types

I “Induction Is Not Derivable in Second Order Dependent Type Theory”
[Geuvers, 2001]

I “Self Types for Dependently Typed Lambda Encodings” [Fu, Stump, 2014]

Combining general-recursive programs, proofs
Lifting lambda encodings from term to type level

arrows A n = A→ ···A→︸ ︷︷ ︸
n

A



A Paradise of

  

λ


