# Type Theory and Strong Functional Programming:

Adventures at the Edge of Reason

Aaron Stump Computer Science The University of Iowa

Boston College, February 13, 2024



## Type Theory and Functional Programming

#### Type theory (TT)

- a language for computer-checked proofs
- intense interest currently, for formalized Math
- longstanding interest in CS:
  - verified compilers (Compcert, in Coq [award 2021])
  - now standard for Programming Languages theory

#### **Functional programming (FP)**

- Haskell, OCaml, Scala, Clojure, influencing many more
- also tightly connected to TT...

## The Curry-Howard Isomorphism

#### **Connection between Constructive Logic and FP:**

Formulas ~ Types

Proofs ≃ Programs

Case = Pattern splitting matching

Induction  $\simeq$  Terminating recursion

#### Type theory based on this connection

## The Edge of Reason

Programs can diverge...

...but then these are not sound as proofs!

General Programs

Proofs =
Terminating programs



#### Outline

Past: Cedille and inductive lambda-encodings

**Present:** Strong functional programming with DCS

Future: More expressive type-based termination

Program termination for type theory and FP

## Cedille and Inductive Lambda Encodings

Monotone recursive types and recursive data representations in Cedille. Christopher Jenkins and Aaron Stump. Mathematical Structures in Computer Science (MSCS), 31(6), pages 682-745, 2021.

Generic Derivation of Induction for Impredicative Encodings in Cedille.

Denis Firsov and Aaron Stump. 7th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP), pages 215-227, 2018.

<u>From Realizability to Induction via Dependent Intersection.</u>
Aaron Stump. Annals of Pure and Applied Logic (APAL), 169(7), pages 637-655, 2018.

<u>Efficiency of Lambda-Encodings in Total Type Theory.</u>
Aaron Stump and Peng Fu. Journal of Functional Programming (JFP), 26(e3), 2016.

and 8 more...

## **Pragmatics of foundations**

Theorem provers based on set of axioms

How small?

**How trustworthy?** 

How much code?

## **Inductive types**

#### Types for tree-like data

```
data List a = Nil | Cons a (List a)
data Nat = Zero | Succ Nat
```

#### In TT, need induction principles, like

```
\forall P: Nat \rightarrow *.

(\forall x: Nat. P x \rightarrow P (Succ x)) \rightarrow

P Zero \rightarrow

\forall x: Nat. P x
```

#### **Complicated to state in general...**

## Inductive madhouse

$$\frac{(\forall i=1\dots n)}{\Gamma \vdash c: (I \ \vec{a}) \ \Gamma \vdash Q: (\vec{x}:\vec{A})(I \ \vec{x}) \rightarrow s' \quad \Gamma \vdash f_i: C_i \{I,Q,\mathsf{Const} \land \Gamma \vdash \mathsf{Elim}(c,Q) \{f_1|\dots|f_n\}: (Q \ \vec{a} \ c)}$$

$$A \equiv (\vec{x}:\vec{A}) \text{Set} \qquad I =$$
 (W-ELIM) 
$$\frac{\Gamma \vdash Q:(\vec{x}:\vec{x}:\vec{x})}{-}$$

$$\begin{array}{c} \Gamma \vdash c : (I \ \vec{a}) \quad \Gamma \vdash Q : (\vec{x} : \vec{A})(I \ \vec{x}) \rightarrow s' \quad \Gamma \vdash f_i : C_i \{I, Q, \mathsf{Const}'\} \\ \Gamma \vdash \mathsf{Elim}(c, Q) \{f_1 | \dots | f_n\} : (Q \ \vec{a} \ c) \\ \\ A \equiv (\vec{x} : \vec{A}) \mathsf{Set} \qquad I = \\ (W-\mathsf{ELIM}) \qquad \qquad \Gamma \vdash Q : (\vec{x} : \vec{x}) \\ \hline \\ (W-\mathsf{ELIM}) \qquad \qquad \Gamma \vdash Q : (\vec{x} : \vec{x}) \\ \hline \\ Elimination (definition) \\ \\ T = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ F \neq N \\ \hline \\ P = n + m \\ \hline \\ P =$$

PB Branch

 $\frac{\Delta \cdot \ldots \kappa, \quad \Gamma, [\overline{a_i}^i/\Delta] \Delta_i \, \theta, y :^{\mathsf{L}} a = d_i \, \Delta_i \vdash^{\theta} b_i : B}{\Gamma \vdash^{\theta} \mathsf{case} \, a \, \mathsf{of} \, \{ \, \overline{d_i \, \Delta_i \Rightarrow b_i}^{\, i \in 1 \dots k} \, \} : B} \quad \mathsf{TCASE}$ 

## Disadvantages

#### Inductive types complicated to specify

- increases trusted computing base
- more work to prove theory sound

#### A particular class of inductive types chosen

- new kinds of inductive type still being devised
- so old soundness proofs obsolete

#### Couldn't you derive these somehow instead?

## Lambda encodings

#### Represent data as functions

#### Original encoding due to Alonzo Church

- numbers encoded as iterators
- 2 encoded as function
  - Inputs: f and x
  - Output: (f (f x))
  - 2 :=  $\lambda f \cdot \lambda x \cdot f(f x)$
- can define usual operations by iteration

CNat := 
$$\forall$$
 X. (X  $\rightarrow$  X)  $\rightarrow$  X  $\rightarrow$  X

## Inductive lambda-encodings?

## H. Geuvers proved induction not derivable in pure type theory [Geuvers 2001]

No matter how Nat defined with constructors Zero and Succ, there is no term t with

```
    - t : ∀ P : Nat → *.
    (∀ x : Nat. P x → P (Succ x)) →
    P Zero →
    ∀ x : Nat. P x
```

## The path they trod

This was already believed in the 1980s

Researchers added inductive types as primitives to the pure theory

Coq, Lean, Agda all use this approach

#### **Cedille**

#### Constructive type theory with tiny core

- core checker around 1kloc Haskell
- inductive types <u>not</u> in the core
  - they are in the core for Coq, Agda, Lean



#### Translates from rich surface language to core

- inductive types are lambda-encoded
- induction principles derived!

## A different way

Geuvers's Theorem requires adding something to pure type theory to get induction

## Cedille is based on the discovery that adding just three simple primitives is enough

- a primitive equality type on untyped terms
- "implicit products"
- "dependent intersections"

## An insight of Leivant

Daniel Leivant: proofs of induction for n are isomorphic to lambda-encoded n

This is the key to Cedille's approach

Let's dig in...

### Induction for n : CNat

#### Let's define Ind n as

```
\forall P : CNat → *.

(\forall x : CNat. P x → P (Succ x)) → P Zero → P n
```

## What is a proof of Ind 2?

```
\forall P : CNat \rightarrow *.
  (\forall x : CNat. Px \rightarrow P(Succ x)) \rightarrow
  P Zero →
  P 2
Assume
    - P : CNat → *
    - step : \forall x : CNat. Px \rightarrow P(Succ x)
    base : P Zero
Apply step twice...
```

## What is a proof of Ind 2?

#### **Assuming:**

- P : CNat → \*
- step:  $\forall$  x: CNat. P x → P (Succ x)  $\lambda$  step.
- base : P Zero

#### Have:

- base : P 0
- step 0 base : P 1
- step 1 (step 0 base) : P 2

- λР.
- λ base.
- step 1 (step 0 base)

## What is a proof of Ind 2?

λ P. λ step. λ base. step 1 (step 0 base)

renaming

 $\lambda P \cdot \lambda f \cdot \lambda x \cdot f 1 (f 0 x)$ 

eliding

 $\lambda f. \lambda x. f (f x)$ 

Tada! It's 2!

#### So what is an inductive Nat?

#### A Nat is

- a Church-encoded n
- that also proves Ind n

#### Can we say this in type theory?

## **Dependent intersections**

There's a type for that! [Kopylov 2003]

x:AnB

Like an intersection  $A \cap B$ , but with x bound in B

#### Type for values v which

- have type A and also
- have type B v

## Nat with dependent intersection

Nat := n : CNat n Ind

#### 2: Nat means

- 2 : CNat, and also

- 2: Ind 2

2 is a computational nat

2 proves induction for 2

#### This requires erasure

- Need to erase  $\lambda P \cdot \lambda f \cdot \lambda x \cdot f \cdot 1$  (f 0 x)
- to get  $\lambda f. \lambda x. f$  (f x)

#### **Use in Cedille**

**Ind: induction for CNat** 

From this, can derive induction for Nat

#### **Datatypes supported in usual syntax**

Translated to inductive lambda-encodings

**Checker in under 1kloc Haskell** 

## Summary

#### New way to define inductive datatypes in type theory

- very small core theory
- hence, small proof checker
  - Just inductive types takes more code for Lean, Coq, Agda!

#### Lambda encodings

#### Typed using dependent intersections

## Strong functional programming with DCS

<u>A Type-Based Approach to Divide-and-Conquer Recursion in Coq.</u>
Pedro Abreu, Benjamin Delaware, Alex Hubers, Christa Jenkins, J. Garrett Morris,
Aaron Stump. Proceedings of the ACM on Programming Languages (PACMPL), volume
7, number POPL, January 2023, pages 61-90, 2023.

<u>Strong functional pearl: Harper's regular-expression matcher in Cedille.</u> Aaron Stump, Christopher Jenkins, Stephan Spahn, and Colin McDonald. Proceedings of the ACM on Programming Languages (PACMPL), volume 2, number ICFP (International Conference on Functional Programming), pages 122:1 - 122:25, 2020.

https://gitlab.com/astump97/dcs



St. Philip Neri

Born 1515 in Florence
Arrives in Rome age 18
Befriends St. Ignatius around 1544
Becomes a priest in 1551
Founds the Oratory
congregation of priests under obedience
Dies 1595

Known for emphasizing humility through mortification

Eccentric behavior... Hiding true sanctity.



## What is strong FP?

Type Theory minus the fancy types!

FP with static check for uniform termination for all functions

"Elementary Strong Functional Programming", David Turner, LNCS 1022:1-13, 1995





#### Structural termination

#### Standard approach (Coq, Agda, Lean)

- check code directly (syntactic) for
- structural decrease at recursive call sites

#### In Agda:

```
length : List A → Nat
length Nil = 0
length (Cons x xs) = 1 + length xs
```

```
Cons x xs > xs
```

#### Issues with structural termination

#### Cannot recurse on output of function

defining division by repeated subtraction,
 cannot recurse on x - y

#### So refactoring can break termination

code that passed may fail after refactoring

#### Cannot call constructor and then recurse

## Divide-and-conquer recursion

#### **Example: mergesort**

- split list (length > 1) into two sublists
- recursively sort
- merge results

**Embarrassing!** 

#### With structural recursion:

- splitting builds a new list, so cannot recurse

#### Mergesort cannot be written in Coq/Lean/Agda!

- must resort to tricks like recursing on length of list

#### **DCS**

#### New programming language for strong FP

#### Typing enforces termination

- supports refactoring
- divide-and-conquer recursion
- soundness proven in Coq [POPL 2023]
- general recursion (to be) supported through *monads*

#### **Central design ideas:**

- Commitment to subtyping
- Algebraic approach to datatypes

# Signature functors

#### Datatypes from signature functors F

- Show one layer of datatype structure
- Look like the datatype, but
- recursive occurrences abstracted away

#### List datatype:

data List  $A = Nil \mid Cons A (List A)$ 

#### Its signature functor:

data ListF  $A X = NilF \mid ConsF A X$ 

# **Datatypes in DCS**

#### DCS datatype declaration:

 $\delta$  List A = Nil | Cons A (List A)

Introduces both datatype, signature functor with same names:

 $\delta$  List A = Nil | Cons A (List A)

 $\delta$  List A X = Nil | Cons A X

# Datatypes as fixed-points

If D is a datatype with sig functor F:

$$D \cong FD$$

So in DCS:

$$D \cong DD$$

With subtyping:

- D <: D D
- D D <: D

# **Computation via algebras**

#### (List A)-algebra with carrier X has type

```
alg : (List A X) \rightarrow X
```

## **Example:**

```
lengthAlg : (List A Nat) → Nat
lengthAlg Nil = 0
lengthAlg (Cons x n) = 1 + n
```

From this, obtain (lengthAlg): List A → Nat

# Mendler algebras

#### Instead of

alg : 
$$FX \rightarrow X$$

#### Mendler proposed [Mendler 1991]

alg: 
$$\forall R. (R \rightarrow X) \rightarrow FR \rightarrow X$$

Now an algebra gets an F R, way to turn Rs into Xs.

$$Alg_F X = \forall R . (R \rightarrow X) \rightarrow F R \rightarrow X$$

# Mendler algebra for length

```
length: Alg<sub>ListF A</sub> Nat
```

```
length _ Nil = 0
length f (Cons x r) = 1 + f r
  - r: R
  - f: R → Nat
```

If we just wrote length instead of f, it would look like a recursive call

1 + length r

# DCS algebras

#### Syntax: $\omega$ f(xs): C. t

- f for making recursive calls in body t
- xs is input of type F R (sig. functor F)
- R as in Mendler algebras
- C is the carrier of the algebra
- f: R → ...
- R ~ F means "R from an F-alg"

#### Type: F ⇒ C

# length

```
length A : List A ⇒ K Nat =
    w length(xs) : K Nat .
    γ xs {
        Nil → Zero
        | Cons x xs' → Succ (length xs')
        }
In body of length, we have:
        - abstract type R
```

- xs : List A R
- xs' : R
- length : R → Nat
So length xs' well typed

# **Subsidiary recursions**

#### Suppose parent recursion invokes child

- Parent has abstract type P
- Child has abstract type R

#### Idea: child algebra can reference P

to build data that the parent can recurse on

# Subsidiary recursion and subtyping



F R <: P R <: P

# **Subsidiary invocation**

parent

abstract type P

In parent:

child :  $P \rightarrow C P$ , where  $P \sim F$ 

child :  $F \Rightarrow C$ 

abstract type R

In child:

child:  $R \rightarrow C R$ 

# Algebras for mergesort

mergesort

abstract type P

*In mergesort:* 

split : P → Pair P P

split : List A ⇒ Split

abstract type R

*In split:* 

split : R → Pair R R

where Split P = Pair P P

# How does subtyping fit in?



List A R <: P

# DCS Demo

More expressive type-based termination

# John Ronald Reuel Tolkien John Ronald Philip Reuel Tolkien



## From lists to trees

#### DCS's current interface works great for lists

- List A R <: P</li>
- child recursion can build a list, and parent can recurse

#### **Less well for trees**

- Tree A R <: P
- If both subtrees of type R, parent can recurse
- But what if one subtree smaller, other the same?

# Goal: recurse when one part smaller, others unchanged

# Multi-argument signature functors

Instead of Tree A X = Leaf | Node A X X

Would like to have something more fine-grained:

Tree A X1 X2 = Leaf | Node A X1 X2

**Then can have** Tree A L1 R2 <: P Tree A R1 L2 <: P

# Semantics: well-founded structural order

Express structural decrease explicitly, as a well-founded ordering:

- ignore data stored in the structure
- Node  $\times$  I r < Node  $\times$  I' r, if I < I'

Instead of comparing (ordinal) sizes of data, compare the data themselves in this ordering

Have a formalization in Agda for any algebraic datatype

Goal: improve DCS interface for types beyond list

#### **General future directions**

#### Interplay between logic and programming

- type theory
- strong functional programming

#### **Advances in core CS**

- new type theories
  - more expressive, better abstractions
- improve programming through typing
  - use subtyping to infer coercions, reduce boilerplate code
  - applying to abstractions from Haskell (Functor, Monad)

#### Advance tech for computer-checked proofs

## Conclusion

Past: Cedille and inductive lambda-encodings

**Present:** Strong functional programming with DCS

Future: More expressive type-based termination

Program termination for type theory and FP





Five Canonized in 1622

# Type Theory and Strong Functional Programming:

Adventures at the Edge of Reason

Aaron Stump Computer Science The University of Iowa

Boston College, February 13, 2024



# Some further reading

**Elementary Strong Functional Programming.** David Turner, Functional Programming Languages in Education, LNCS 1022, 1-13, 1995

**A Type-Based Approach to Divide-and-Conquer Recursion in Coq.** Proc. ACM Program. Lang. 7(POPL), 61-90, 2023

**Data types à la carte.** Wouter Swierstra, Journal of Functional Programming, 18(4), 423-436, 2008

**Polymorphic subtyping in O'Haskell.** Johan Nordlander, Science of Computer Programming, 43(2), 93-127, 2002

https://www.wordonfire.org/articles/fellows/whats-in-a-name-tolkiens-st-philip-neri-connection/